NON-DOMINATING ULTRAFILTERS

VERA FISCHER AND BERNHARD IRRGANG

ABSTRACT. We show that if $\operatorname{cov}(\mathcal{M}) = \kappa$, where κ is a regular cardinal such that $\forall \lambda < \kappa(2^{\lambda} \leq \kappa)$, then for every unbounded directed family \mathcal{H} of size κ there is an ultrafilter $\mathcal{U}_{\mathcal{H}}$ such that the relativized Mathias forcing $\mathbb{M}(\mathcal{U}_{\mathcal{H}})$ preserves the unboundedness of \mathcal{H} . This improves a result of M. Canjar (see [4, Theorem 10]). We discuss two instances of generic ultrafilters for which the relativized Mathias forcing preserves the unboundedness of certain unbounded families of size $< \mathfrak{c}$.

1. INTRODUCTION

Recall that Mathias forcing \mathbb{M} consists of pairs (u, A) where u is a finite subset of $\omega, A \in [\omega]^{\omega}$ and max $u < \min A$. The extension relation $\leq_{\mathbb{M}}$ is defined as follows: $(u_2, A_2) \leq (u_1, A_1)$ if u_2 is an end-extension of $u_1, A_2 \subseteq A_1$ and $u_2 \setminus u_1 \subseteq A_1$. Whenever \mathcal{U} is a filter on ω , the relativized Mathias forcing $\mathbb{M}(\mathcal{U})$ is the suborder of \mathbb{M} consisting of all conditions (u, A) such that $A \in \mathcal{U}$. It is well known that if \mathcal{U} is a selective ultrafilter the relativized Mathias poset $\mathbb{M}(\mathcal{U})$ adds a dominating real. In [4] M. Canjar gives a characterization of the ultrafilters for which the relativized Mathias poset does not add a dominating real. Namely, if \mathcal{U} is an ultrafilter such that $\mathbb{M}(\mathcal{U})$ is weakly bounding (i.e. preserves the ground model reals as an unbounded family) then \mathcal{U} is a P-point with no rapid predecessors in the Rudin-Keisler order.

In [4] it is shown that if $\mathfrak{d} = \mathfrak{c}$, then there is an ultrafilter \mathcal{U} for which $\mathbb{M}(\mathcal{U})$ is weakly bounding. Recall that a family $\mathcal{H} \subseteq {}^{\omega}\omega$ is directed if for every $\mathcal{H}' \in [\mathcal{H}]^{<|\mathcal{H}|}$ there is a real $h \in \mathcal{H}$ which simultaneously dominates all elements of \mathcal{H}' . In this paper we show that given any regular uncountable cardinal κ such that $\forall \lambda < \kappa(2^{\lambda} \leq \kappa)$, the weaker hypothesis $\operatorname{cov}(\mathcal{M}) = \kappa$, implies the existence of ultrafilters \mathcal{U} for which $\mathbb{M}(\mathcal{U})$ is weakly bounding. Furthermore, we show that under this hypothesis, if $\mathcal{H} \subseteq {}^{\omega}\omega$ is an unbounded directed family of size κ then there is an ultrafilter $\mathcal{U}_{\mathcal{H}}$ which preserves the unboundedness of \mathcal{H} . Thus in a sense our result improves Canjar's result, since the existence of such

The second author acknowledges support from the European Science Foundation through a Short Visit Grant within the INFTY network.

ultrafilters allows one to preserve the unboundedness of a fixed unbounded family along certain finite support iterations. Note also that this weaker hypothesis, $\operatorname{cov}(\mathcal{M}) = \kappa$ and $2^{\lambda} \leq \kappa$ for all $\lambda < \kappa$, implies that $\mathfrak{d} = \kappa$. In section 3 we discuss the generic existence of ultrafilters for which the relativized Mathias forcing preserves the unboundedness of unbounded families of size $< \mathfrak{c}$.

2. Non-dominating ultrafilters

Under CH, there are known methods with which one can associate to a given unbounded family of size \mathfrak{c} an ultrafilter which preserves the unboundedness of the family. Recall that a filter $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a K_{σ} -filter, if it is generated by countably many compact subsets of $\mathcal{P}(\omega) = 2^{\omega}$. In [7, Proposition 5.1], C. Laflamme shows that CH implies the existence of a maximal almost disjoint family \mathcal{A} such that the dual filter $\mathcal{F}(\mathcal{A})$ is not contained in any K_{σ} -filter. Then using the techniques of [2, Theorem 3.1], one can extend $\mathcal{F}(\mathcal{A})$ to an ultrafilter \mathcal{U} such that $\mathbb{M}(\mathcal{U})$ does not add a dominating real. Furthermore, with every unbounded directed family of cardinality $\mathfrak{c} = \aleph_1$, one can associate such an ultrafilter, i.e. an ultrafilter for which the relativized Mathias forcing preserves the unboundedness of the family.

Using the notion of logarithmic measures, S. Shelah obtains a modification of the Mathias poset which is almost ${}^{\omega}\omega$ -bounding and thus in particular does not add a dominating real. Recall also that countable support iterations of proper almost ${}^{\omega}\omega$ -bounding posets is weakly bounding (see [8]).

Definition 2.1 (S. Shelah, [8]). A function $h : [s]^{<\omega} \to \omega$, where $s \subseteq \omega$ is a *logarithmic measure* if $\forall a \in [s]^{<\omega}$, $\forall a_0, a_1$ such that $a = a_0 \cup a_1$, there is $i \in \{0, 1\}$ such that $h(a_i) \ge h(a) - 1$ unless h(a) = 0. If s is a finite set and h a logarithmic measure on s, the pair x = (s, h) is a finite logarithmic measure.

Shelah's poset Q (see [5, Definition 3.8]) consists of all pairs p = (u,T) where u is a finite subset of ω and $T = \langle (s_i, h_i) \rangle_{i \in \omega}$ is an infinite sequence of finite logarithmic measures such that $\max u < \min s_0$, $\max s_i < \min s_{i+1}$ for all $i \in \omega$ and $\langle h_i(s_i) \rangle_{i \in \omega}$ is unbounded. The sequence T is called the *pure part* of p also *pure condition* and is identified with the pair (\emptyset, T) . Let $\operatorname{int}(T) = \bigcup_{i \in \omega} s_i$. Note that if (u, T) is a condition in Q, then $(u, \operatorname{int}(T))$ is a condition in the Mathias poset \mathbb{M} . The extension relation \leq_Q is defined as follows: $(u_2, T_2) \leq_Q (u_1, T_1)$ if

(1) $(u_2, \operatorname{int}(T_2)) \leq_{\mathbb{M}} (u_1, \operatorname{int}(T_1))$

(2) Let $T_{\ell} = \langle (s_i^{\ell}, h_i^{\ell}) \rangle_{i \in \omega}, \ \ell \in \{1, 2\}$. Then $\exists \langle B_i \rangle_{i \in \omega} \subseteq [\omega]^{<\omega}$ such that $\max u_2 < \min s_j^1$ for $j = \min B_0$ and for all $i \in \omega$, $\max B_i < \min B_{i+1}, \ s_i^2 \subseteq \bigcup_{j \in B_i} s_j^1$ and if $e \subseteq s_i^2$ is such that $h_i^2(e) > 0$, then there is $j \in B_i$ for which $h_i^1(e \cap s_i^1) > 0$.

Remark 2.2. For the purposes of this note, it is sufficient to know that if $(u_2, T_2) \leq_Q (u_1, T_1)$ then $(u_2, \operatorname{int}(T_2)) \leq_{\mathbb{M}} (u_1, \operatorname{int}(T_1))$. However for completeness we have stated the entire definition of \leq_Q .

Definition 2.3 ([5, Definition 3.9]). Let C be a centered family of pure conditions in Q. Then Q(C) is the suborder of Q consisting of all $(u, R) \in Q$ such that $T \leq_Q R$ for some $T \in C$.

Lemma 2.4. Let C be a centered family of pure conditions in Q. Then Q(C) is densely embedded in $\mathbb{M}(\mathcal{F}_C)$ where

$$\mathcal{F}_C = \{ X \in [\omega]^{\omega} : \exists T \in C(int(T) \subseteq X) \}.$$

Proof. It is sufficient to observe that the mapping

$$i: (a,T) \mapsto (a, \operatorname{int}(T))$$

from Q(C) to $\mathbb{M}(\mathcal{F}_C)$ is a dense embedding. Indeed, it is clear that iis order preserving. Let $(a, X) \in \mathbb{M}(\mathcal{F}_C)$. Then by definition there is $T \in C$ such that $\operatorname{int}(T) \subseteq X$ and so in particular max $a < \min(T)$. Therefore (a, T) is a condition in Q(C) such that $(a, \operatorname{int}(T)) \leq (a, X)$. It remains to show that i preserves incompatibility. Let (a, T) and (b, R) be incompatible conditions in Q(C). By definition of Q(C) there are T_0 , R_0 in C such that $T_0 \leq T$, $R_0 \leq R$. However C is centered family and so there is a pure condition Z in C which is a common extension of T_0 , R_0 . Then Z is a common extension of T, R. Case 1. If a is not an end-extension of b and b is not an end-extension of a, then clearly $(a, \operatorname{int}(T))$ and $(b, \operatorname{int}(R))$ are incompatible. Case 2. Suppose w.l.o.g. that a end-extends b. If $a \setminus b \subseteq \operatorname{int}(R)$ then (a, Z) is a common extension of (a, T) and (b, R), which is a contradiction. Therefore $a \setminus b \not\subseteq \operatorname{int}(R)$ and so the conditions $(a, \operatorname{int}(T))$ and $(b, \operatorname{int}(R))$ are incompatible. \Box

By [5, Lemma 6.2], if $\operatorname{cov}(\mathcal{M}) = \kappa$ for some regular cardinal κ such that $\forall \lambda < \kappa (2^{\lambda} \leq \kappa)$ and $\mathcal{H} \subseteq {}^{\omega}\omega$ is an unbounded, directed family of size κ then there is a centered family C such that Q(C) preserves the unboundedness of \mathcal{H} and adds a real which is not split by the ground model reals. Applying Lemma 2.4 we obtain the following.

Theorem 2.5. Let κ be a regular cardinal such that $\forall \lambda < \kappa(2^{\lambda} \leq \kappa)$ and let $cov(\mathcal{M}) = \kappa$. Then there is an ultrafilter \mathcal{U} such that $\mathbb{M}(\mathcal{U})$ is weakly bounding. Furthermore if $\mathcal{H} \subseteq {}^{\omega}\omega$ is an unbounded directed family of size κ then there is an ultrafilter $\mathcal{U}_{\mathcal{H}}$ such that $\mathbb{M}(\mathcal{U}_{\mathcal{H}})$ preserves the unboundedness of \mathcal{H} .

Proof. To obtain the first part of the claim consider a dominating directed family of size κ , which exists since $\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d} = \kappa$. Let \mathcal{H} be an unbounded directed family of size κ and let $C = C_{\mathcal{H}}$ be the associated centered family constructed in [5, Lemma 6.2]. By Lemma 2.4 Q(C) is densely embedded in $\mathbb{M}(\mathcal{U})$, where

$$\mathcal{U} = \mathcal{F}_C = \{ X \in [\omega]^{\omega} : \exists T \in C(\operatorname{int}(T) \subseteq X) \}.$$

Therefore Q(C) and $\mathbb{M}(\mathcal{U})$ are forcing equivalent and so $\mathbb{M}(\mathcal{U})$ preserves the unboundedness of \mathcal{H} .

It remains to observe that \mathcal{U} is an ultrafilter. Let $\{A_{\beta+1}\}_{\beta<\kappa}$ be a fixed enumeration of the infinite subsets of ω . Note that the centered family C is defined as the union of a sequence $\sigma = \langle C_{\alpha} \rangle_{\alpha<\kappa}$ of centered families (see [5, Lemma 6.2]), which in particular satisfy the following property:

(*) For every $\alpha = \beta + 1 < \kappa$ successor, there is a set D_{α} , where $D_{\alpha} = A_{\alpha}$ or $D_{\alpha} = A_{\alpha}^{c}$, such that for all $X \in C_{\alpha}(\operatorname{int}(X) \subseteq D_{\alpha})$.

Now to see that \mathcal{U} is an ultrafilter, consider an arbitrary infinite subset A of ω . Then $A = A_{\beta+1}$ for some $\beta < \kappa$. Let $\gamma = \beta + 1$. Since $C = \bigcup_{\alpha < \kappa} C_{\alpha}$, by the above property (*), every element of C_{γ} can serve as a witness to the fact that A or A^c is in \mathcal{U} .

3. Preserving small unbounded families

There is very little known about models in which $\mathfrak{c} \geq \aleph_2$ and there is an ultrafilter which preserves the unboundedness of a given unbounded family of size $< \mathfrak{c}$. Let $\mathbb{C}(\kappa)$ denote the poset for adding κ -many Cohen reals and let V denote the ground model.

Theorem 3.1. Assume CH. There is a countably closed, \aleph_2 -c.c. poset \mathbb{P} which adds a $\mathbb{C}(\omega_2)$ -name for an ultrafilter \mathcal{U} such that in $V^{\mathbb{P}\times\mathbb{C}(\omega_2)}$ the forcing notion $\mathbb{M}(\mathcal{U})$ preserves the unboundedness of all families of Cohen reals of size ω_1 .

Proof. Let \mathbb{P} be the poset defined in [6, Definition 16] and let C be the $\mathbb{C}(\omega_2)$ -name for the centered family of pure condition added by \mathbb{P} . In $V^{\mathbb{P}\times\mathbb{Q}(\omega_2)}$ by [6, Theorem 1], the poset Q(C) preserves the unboundedness of all families of Cohen reals of cardinality ω_1 . Furthermore by Lemma 2.4 Q(C) is densely embedded in $\mathbb{M}(\mathcal{U})$ where $\mathcal{U} = \{X \in [\omega]^{\omega} : \exists T \in C(\operatorname{int}(T) \subseteq X)\}$. It remains to observe that \mathcal{U} is an ultrafilter (see [6, Lemma 7 and Theorem 1]).

Theorem 3.2 (Brendle, Fischer [3]). Assume GCH. Let $\kappa < \lambda$ be regular uncountable cardinals. Let $V_1 = V^{\mathbb{C}(\kappa)}$ and let \mathcal{B} be the family of Cohen reals. Then there is a ccc generic extension V_2 of V_1 such that $V_2 \models \mathfrak{c} = \lambda$ and in V_2 there is an ultrafilter \mathcal{U} which preserves the unboundedness of \mathcal{B} .

Proof. Let $\mu = \lambda + 1$ and let $\mathbb{P}'_{\kappa,\mu}$ be a forcing notion defined as $\mathbb{P}_{\kappa,\mu}$ from [3, Section 4], with the only difference that $\mathbb{P}'_{\alpha,0} = \mathbb{C}(\alpha)$ for all $\alpha \leq \kappa$. Then $V_2 = V^{\mathbb{P}'_{\kappa,\lambda}}$ is the desired generic extension (following the notation of [3], let $\mathcal{U} = \mathcal{U}_{\kappa,\lambda}$).

The method used in [3], referred to as *matrix-iteration*, first appears in [1], where assuming GCH with any regular cardinal λ one associates generic extensions $V_1 \subseteq V_2$ such that $V_1 = V^{\mathbb{C}(\omega_1)}$ and $V_2 \models (\mathfrak{c} = \lambda)$ is a ccc extension of V_1 . If \mathcal{B} is the family of the ω_1 Cohen reals added over the ground model V, then in V_2 there is an ultrafilter for which the relativized Mathias forcing preserves the unboundedness of \mathcal{B} .

References

- [1] A. Blass, S. Shelah Ultrafilters with small generating sets Israel Journal of Mathematics 65(1984) 259 171.
- [2] J. Brendle *Mob families and mad families* Archive for Mathematical Logic 37 (1998), 183 197.
- [3] J. Brendle, V. Fischer Mad families, splitting families and large continuum submitted.

[4] M. Canjar *Mathias forcing which does not add a dominating real* Proceedings of the American Mathematical Society 104 (1988), 1239 - 1248.

[5] V. Fischer, J. Steprāns The consistency of $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$ Fundamenta Mathematicae 201 (2008), 283 - 293.

[6] V. Fischer, J. Steprāns *Further combinatorial properties of Cohen forcing* RIMS Conference Proceedings in Combinatorial and Descriptive Set Theory, Kyoto 2008.

[7] C. Laflamme Zapping Small Filters Proceedings of the American Mathematical Society 144 (1992), 535 - 544.

[8] S. Shelah On cardinal invariants of the continuum Contemporary Mathematics 31 (1984), 184 - 207.

Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1020 Vienna, Austria

E-mail address: vfischer@logic.univie.ac.at

Mathematisches Institut, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

E-mail address: irrgang@math.uni-bonn.de