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ABSTRACT. We show that if cov(M) = k, where k is a regular
cardinal such that VA < k(2% < k), then for every unbounded
directed family H of size k there is an ultrafilter Uy, such that the
relativized Mathias forcing M(U3;) preserves the unboundedness of
‘H. This improves a result of M. Canjar (see [4, Theorem 10]). We
discuss two instances of generic ultrafilters for which the relativized
Mathias forcing preserves the unboundedness of certain unbounded
families of size < .

1. INTRODUCTION

Recall that Mathias forcing M consists of pairs (u, A) where u is a
finite subset of w, A € [w]* and maxu < min A. The extension relation
<u is defined as follows: (us, A3) < (uy, Ay) if uy is an end-extension
of uy, Ay C Ay and us\u; € A;. Whenever U is a filter on w, the
relativized Mathias forcing M(i/) is the suborder of M consisting of all
conditions (u, A) such that A € Y. It is well known that if ¢/ is a selec-
tive ultrafilter the relativized Mathias poset M(H/) adds a dominating
real. In [4] M. Canjar gives a characterization of the ultrafilters for
which the relativized Mathias poset does not add a dominating real.
Namely, if ¢ is an ultrafilter such that M(H/) is weakly bounding (i.e.
preserves the ground model reals as an unbounded family) then U is a
P-point with no rapid predecessors in the Rudin-Keisler order.

In [4] it is shown that if 0 = ¢, then there is an ultrafilter ¢ for which
M(U) is weakly bounding. Recall that a family H C “w is directed if
for every H' € [H]</"l there is a real h € H which simultaneously dom-
inates all elements of H'. In this paper we show that given any regular
uncountable cardinal s such that VA < k(2* < k), the weaker hypothe-
sis cov(M) = k, implies the existence of ultrafilters ¢ for which M(U)
is weakly bounding. Furthermore, we show that under this hypothe-
sis, if H C “w is an unbounded directed family of size x then there is
an ultrafilter Uy, which preserves the unboundedness of H. Thus in a
sense our result improves Canjar’s result, since the existence of such
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ultrafilters allows one to preserve the unboundedness of a fixed un-
bounded family along certain finite support iterations. Note also that
this weaker hypothesis, cov(M) = k and 2* < k for all A < k, implies
that 0 = k. In section 3 we discuss the generic existence of ultrafilters
for which the relativized Mathias forcing preserves the unboundedness
of unbounded families of size < c.

2. NON-DOMINATING ULTRAFILTERS

Under CH, there are known methods with which one can associate
to a given unbounded family of size ¢ an ultrafilter which preserves
the unboundedness of the family. Recall that a filter F C P(w) is
a K, -filter, if it is generated by countably many compact subsets of
P(w) = 2. In [7, Proposition 5.1], C. Laflamme shows that CH implies
the existence of a maximal almost disjoint family A such that the dual
filter F(A) is not contained in any K,-filter. Then using the techniques
of [2, Theorem 3.1], one can extend F(A) to an ultrafilter & such
that M(U) does not add a dominating real. Furthermore, with every
unbounded directed family of cardinality ¢ = N;, one can associate
such an ultrafilter, i.e. an ultrafilter for which the relativized Mathias
forcing preserves the unboundedness of the family.

Using the notion of logarithmic measures, S. Shelah obtains a mod-
ification of the Mathias poset which is almost “w-bounding and thus
in particular does not add a dominating real. Recall also that count-
able support iterations of proper almost “w-bounding posets is weakly
bounding (see [8]).

Definition 2.1 (S. Shelah, [8]). A function h : [s]** — w, where s C w
is a logarithmic measure if Ya € [s]<¥ Vag, a; such that a = ag U ay,
there is i € {0,1} such that h(a;) > h(a) — 1 unless h(a) = 0. If s is
a finite set and h a logarithmic measure on s, the pair z = (s, h) is a
finite logarithmic measure.

Shelah’s poset @ (see [5, Definition 3.8]) consists of all pairs p =
(u,T') where u is a finite subset of w and T' = ((s;, h;))icw 1S an infi-
nite sequence of finite logarithmic measures such that maxu < min s,
maxs; < mins;yq for all ¢ € w and (h;(s;))iew is unbounded. The
sequence 1T is called the pure part of p also pure condition and is iden-
tified with the pair (3, T'). Let int(T) = [, si- Note that if (u,T) is a
condition in @), then (u,int(7")) is a condition in the Mathias poset M.
The extension relation <g is defined as follows: (uq, T5) <¢ (u1,71) if

(1) (Ug,iﬂt(Tg)) SM (ul,int(Tl))
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(2) Let Ty = {(s%, ht))icw, £ € {1,2}. Then FH(B;)ico, C [w]< such

that max u, < min s; for j = min By and for all i € w, max B; <

min By, 57 C U;cp, 5; and if e C s7 is such that hi(e) > 0,
then there is j € B; for which hj(e N s;) > 0.

Remark 2.2. For the purposes of this note, it is sufficient to know that
if (ug,T5) <g (u1,T1) then (ug,int(7h)) <w (ui,int(77)). However for
completeness we have stated the entire definition of <g.

Definition 2.3 ([5, Definition 3.9]). Let C' be a centered family of
pure conditions in . Then Q(C) is the suborder of @) consisting of all
(u, R) € @ such that T <g R for some T € C.

Lemma 2.4. Let C' be a centered family of pure conditions in Q. Then
Q(C) 1is densely embedded in M(F¢) where

Fo={X€w]®:3T € Cint(T) C X)}.
Proof. Tt is sufficient to observe that the mapping
i:(a,T)— (a,int(T))

from Q(C) to M(F¢) is a dense embedding. Indeed, it is clear that i
is order preserving. Let (a, X) € M(F¢). Then by definition there is
T € C such that int(7") € X and so in particular maxa < minint(7).
Therefore (a,T) is a condition in Q(C') such that (a,int(7")) < (a, X).
It remains to show that i preserves incompatibility. Let (a,7’) and
(b, R) be incompatible conditions in Q(C'). By definition of Q(C) there
are Ty, Ry in C such that Ty < T, Ry < R. However C'is centered fam-
ily and so there is a pure condition Z in C' which is a common extension
of Ty, Ry. Then Z is a common extension of T', R. Case 1. If a is not
an end-extension of b and b is not an end-extension of a, then clearly
(a,int(T")) and (b,int(R)) are incompatible. Case 2. Suppose w.l.o.g.
that a end-extends b. If a\b C int(R) then (a, Z) is a common extension
of (a,T) and (b, R), which is a contradiction. Therefore a\b  int(R)
and so the conditions (a,int(7")) and (b,int(R)) are incompatible. O

By [5, Lemma 6.2], if cov(M) = & for some regular cardinal s such
that VA < x(2* < k) and ‘H C “w is an unbounded, directed family of
size k then there is a centered family C' such that Q(C') preserves the
unboundedness of ‘H and adds a real which is not split by the ground
model reals. Applying Lemma 2.4 we obtain the following.

Theorem 2.5. Let k be a reqular cardinal such that Y\ < k(2 < k)
and let cov(M) = k. Then there is an ultrafilter U such that M(U) is
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weakly bounding. Furthermore if H C “w is an unbounded directed fam-
ily of size k then there is an ultrafilter Uy such that M(Uy) preserves
the unboundedness of H.

Proof. To obtain the first part of the claim consider a dominating di-
rected family of size k, which exists since cov(M) <0 = k. Let H be
an unbounded directed family of size k and let C' = Cy be the asso-
ciated centered family constructed in [5, Lemma 6.2]. By Lemma 2.4
Q(C) is densely embedded in M(U), where

U=Fc={X€w*:3T e C>int(T) C X)}.

Therefore Q(C) and M(U) are forcing equivalent and so M(U) preserves
the unboundedness of H.

It remains to observe that U is an ultrafilter. Let {Agi1}s<x be a
fixed enumeration of the infinite subsets of w. Note that the centered
family C' is defined as the union of a sequence 0 = (C,,)a<, 0f centered
families (see [5, Lemma 6.2]), which in particular satisfy the following

property:

(x) For every a = B+1 < k successor, there is a set D,,, where D, = A,
or D, = A, such that for all X € C,(int(X) C D,).

Now to see that U is an ultrafilter, consider an arbitrary infinite subset
A of w. Then A = Ap;y for some f < k. Let v = 3+ 1. Since
C = U,<. Ca, by the above property (x), every element of C, can
serve as a witness to the fact that A or A€ is in U. 0

3. PRESERVING SMALL UNBOUNDED FAMILIES

There is very little known about models in which ¢ > N, and there is
an ultrafilter which preserves the unboundedness of a given unbounded
family of size < ¢. Let C(k) denote the poset for adding k-many Cohen
reals and let V' denote the ground model.

Theorem 3.1. Assume CH. There is a countably closed, No-c.c. poset
P which adds a C(ws)-name for an ultrafilter U such that in VF*Ce2)
the forcing notion M(U) preserves the unboundedness of all families of
Cohen reals of size wy.

Proof. Let P be the poset defined in [6, Definition 16] and let C' be
the C(wy)-name for the centered family of pure condition added by
P. In VP*Qw2) by [6, Theorem 1], the poset Q(C) preserves the un-

boundedness of all families of Cohen reals of cardinality w;. Fur-
thermore by Lemma 2.4 Q(C) is densely embedded in M(U) where
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U={X € [w]¥:3IT € C>int(T) C X)}. It remains to observe that U
is an ultrafilter (see [6, Lemma 7 and Theorem 1]). O

Theorem 3.2 (Brendle, Fischer [3]). Assume GCH. Let k < X be
reqular uncountable cardinals. Let Vi = VEW) and let B be the family
of Cohen reals. Then there is a ccc generic extension Vo of Vi such
that Vo E ¢ = X and in Vy there is an ultrafilter U which preserves the
unboundedness of B.

Proof. Let p = A+ 1 and let P, be a forcing notion defined as Py,
from [3, Section 4], with the only difference that P, ; = C(«) for all

o < k. Then Vi = Ve is the desired generic extension (following the
notation of [3], let U = U, ). O

The method used in [3], referred to as matriz-iteration, first appears
in [1], where assuming GCH with any regular cardinal A one associates
generic extensions V; C Vj such that V; = V@) and V4 E (¢ = A) is
a ccc extension of V4. If B is the family of the w; Cohen reals added
over the ground model V', then in V5 there is an ultrafilter for which
the relativized Mathias forcing preserves the unboundedness of B.
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