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Abstract. We show that there are no analytic maximal towers, while in the constructible universe

L there are co-analytic maximal towers. The existence of a co-analytic maximal tower is consistent

not only with c being arbitrarily large, but also b. We introduce the notion of strong diagonalization

of a tower and develop a theory of preservation of maximal towers along matrix iterations. This

allows us to show that the existence of a co-analytic maximal tower is consistent with s = ℵ2, and

also that consistently there are no Σ1
2 definable maximal towers, c is arbitrarily large and t = ℵ1.

In the latter case, we can additionally require that b = s = c, or b = ℵ1 < s = c.

1. Introduction

A maximal tower is a wellordered subset of [ω]ω with respect to the relation of almost inclusion

which has no pseudointersection (see Definition 2.1). In the following, we look at two aspects of

the existence of maximal towers. On one side, we study their definability properties and show for

example that there are no analytic maximal towers and that in the Constructible Universe, there

are co-analytic maximal towers. On the other, we look at the minimal size of a maximal tower, the

tower number t, and its relation to some of the well-known cardinal characteristics of the continuum.

Developing the technique of matrix iterations in the context of towers, we show for example that

whenever κ < λ are arbitrary regular uncountable cardinals then consistently t = κ < s = b = λ.

Moreover, the methods we develop allow for an interplay, which in particular gives the existence of

a co-analytic maximal tower in a model of s = c = ℵ2 (see Theorem 6.5), as well as the fact that

consistently there are no Σ1
2 maximal towers, while the continuum is arbitrarily large and t = ℵ1

(see Theorem 6.6). In the latter case, we can also require that b = s = c, or that b = ℵ1 < s = c

(see Corollary 6.6).

The paper is organized as follows. In section 2, we study the definability properties of towers

in [ω]ω and show that there are no analytic maximal towers (see Theorem 2.2), and that every Σ1
2

maximal tower is of size ω1. In addition, we relax the condition of well-foundedness of the order

relation of the members of a maximal tower and consider subsets of [ω]ω which are linearly ordered

with respect to almost inclusion and have no pseudointersections. We refer to such families as

inextendible linearly ordered towers, abbreviated ilt. We show that there are no analytic ilts and

that every Σ1
2 definably ilt contains a cofinal subset of size ω1 (see Theorems 2.4 and 2.6).

The existence of various nicely definable combinatorial sets of reals, like maximal almost disjoint

families (see [15]), maximal cofinitary groups (see [7]), maximal families of orthogonal measures

(see [8]), has been of increased interests in the last few decades. Elaborating on Miller’s method
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from [15] (see also [8, 7]), in Section 3, we obtain one of our first positive results, by showing that

in the Constructible Universe there is a co-analytic maximal tower (see Theorem 3.2).

In Section 4, we turn our attention towards the preservation of towers along 2D-coherent systems,

i.e. matrix iterations (for a general presentation of coherent systems see [6]). Recall that a system

of finite support iterations 〈Pα,β : β ≤ λ〉 where α ≤ κ is called a matrix iteration (introduced

by Blass and Shelah in [4], and later studied in [5, 13, 6]) if whenever α1 ≤ β1, α2 ≤ β2 then

Pα1,β1 l Pα2,β2 . The preservation properties for maximal towers which we establish, even though

quite different, have been at least partially motivated by existing techniques for preservation of

maximal almost disjoint families along matrix iterations. Since mad families are well-known, we

give below a brief account of this analogy. A standard method for introducing a maximal almost

disjoint family along a finite support iteration is the almost disjoint poset, which given an almost

disjoint family A generically (with finite approximations) adjoins a real a such that for each b ∈ A,

the intersection b∩a is finite, while for every ground model x which is not in the ideal generated by

A, denoted I(A), the intersection x∩a is infinite. This property of the almost disjoint poset allows

along a finite support iterations whose length is of uncountable cofinality, using just a cofinal family

of stages of the iteration, to adjoin a maximal almost disjoint family. Hechler’s poset for adjoining

a mad family (see [9, 5]) is characterized by an analogous property: If Hκ is the Hechler poset

adjoining the mad family {aγ}γ∈κ, then for each γ < κ, Hγ l Hκ, Hγ adjoins Aγ = {aµ}µ<γ and

aγ not only has finite intersection with every member of Aγ , but also meets every ground model

infinite subset x of ω, x /∈ I(Aγ), in an infinite set. The authors of [5] strengthen the above weak

diagonalization property to a property which allows a Hechler mad family adjoined along the first

column of a matrix iteration to be preserved along the entire matrix iteration. This preservation

result is central to the relative consistency of b = a = κ < s = λ, which is one of the main results

of see [5].

In order to preserve a Hechler tower (see Definition 4.1) along a matrix iteration, as mentioned

above we formulate a notion of strong diagonalization for towers (see Definitions 4.2, 4.3 and Lemma

5.11) and establish its properties under various iterations (see Lemma 4.7 and Lemma 5.11). In

particular, we show that Hechler forcing preserves strong diagonalization (see Theorem 5.7) and

also, that whenever M ⊆ N are models, x ∈ N ∩ [ω]ω is a real strongly diagonalizing M and U is

an ultrafilter in M , then there is an ultrafilter V in N extending U such that for the relativized

Mathias posets M(U) and M(V) we have M(U) lM M(V) and furthermore, if G is M(V) generic

over N , then x strongly diagonalizes M [G∩M(U)] (see Theorem 5.1). Our observations on strong

diagonalization and the existence of ultrafilters preserving strong diagonalizaiton for towers, allow

us, given an arbitrary maximal tower and assuming CH, to inductively construct an ultrafilter,

such that the relativized Mathias poset preserves the maximality of the given maximal tower (see

Theorem 5.4).

In Section 6, we establish our main results and applications of the above theory. In theorem

6.1 we show that consistently t = κ < s = b = λ, where κ < λ are arbitrary regular uncountable

cardinals. We show that the existence of a Π1
1 definable tower is consistent not only with c being

arbitrarily large, but also b being arbitrarily large. Furthermore, in Theorem 6.4, we show that the

existence of a Π1
1 maximal tower, is consistent with c = s = ℵ2. Turning back to our analogy with

the definability properties of mad families in models of large continuum, it is worth pointing out

that there is still very little known about the cardinal characteristics of the continuum, other than
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b in models with nicely definable mad families, and that our techniques significantly differ from

the techniques used to analyze such families. We conclude the paper, by showing that consistently

there are no Σ1
2 definable inextendible linearly ordered towers, and so no maximal towers, while the

continuum is arbitrarily large and t = ω1. Additionally we can control the values of b and s (see

Theorem 6.5 and Corollary 6.6).

2. Towers and Definability

We work with the following definition of a tower. Note that we do not assume the standard

requirement that a tower is maximal.

Definition 2.1. A tower is a set X ⊆ [ω]ω which is well ordered with respect to the relation

defined by x ≤ y iff y ⊆∗ x. It is called maximal if it cannot be further extended, i.e. it has no

pseudointersection.

Theorem 2.2. There is no Σ1
1 definable maximal tower.

Proof. Assume X ⊆ [ω]ω is a Σ1
1 maximal tower. Then X is uncountable and thus contains an

uncountable perfect set P ⊆ X of reals by the Perfect Set Theorem for Analytic sets (see [11,

Theorem 29.1]). The set R = {(x, y) : x, y ∈ P ∧ x ⊆∗ y} is Borel. P is an uncountable Polish

space and R is Borel as a subset of P ×P . But R is a well order of P , which contradicts R having

the Baire property by [11, Theorem 8.48]. �

Theorem 2.3. Every Σ1
2 maximal tower is of size ω1.

Proof. If X is Σ1
2 and has size > ω1, then it contains an uncountable Borel set. Now derive the

same contradiction as in the proof of Theorem 2.2. �

Both of the proofs rely mostly on the fact that towers exhibit a well ordered structure and the

maximality is inessential. Thus it is natural to ask for a more general version of a tower which is not

trivially ruled out by an analytic definition. We call a set X ⊆ [ω]ω an inextendible linearly ordered

tower (abreviated as ilt) if it is linearly ordered with respect to ⊆∗ and has no pseudointersection.

We call Y ⊆ X cofinal in X if ∀x ∈ X∃y ∈ Y (y ⊆∗ x).

Theorem 2.4. There is no Σ1
1 definable inextendible linearly ordered tower.

Proof. Assume X = p[T ] is an ilt where T is a tree on 2× ω.

Claim 2.5. There is T ′ ⊆ T so that for every (s, t) ∈ T ′, p[T ′(s,t)] is cofinal in X.

Proof. Let T ′ = {(s, t) : p[T(s,t)] is cofinal in X}. For every (u, v) ∈ T \ T ′, we let xu,v be such

that ∀y ∈ p[T(u,v)](xu,v ⊆∗ y). The collection {xu,v : (u, v) ∈ T \ T ′} is countable and therefore

there is x ∈ X so that x (∗ xu,v for every (u, v) ∈ T \ T ′. Now let (s, t) ∈ T ′ be arbitrary and

x′ ∈ X such that x′ ⊆∗ x. As p[T(s,t)] is cofinal in X, there is y ∈ p[T(s,t)] so that y ⊆∗ x′. Say

(y, z) ∈ [T(s,t)]. For every n ∈ ω, (y � n, z � n) ∈ T ′ because else we get a contradiction to y ⊆∗ x.

Thus y ∈ p[T ′(s,t)]. �

By the claim we can wlog assume that for every (s, t) ∈ T , p[T(s,t)] is cofinal in X. Now consider

T as a forcing notion (which is equivalent to Cohen forcing). The generic real will be a new element

of p[T ] together with a witness. Let ċ be a name for the generic real. Notice that the statement
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that p[T ] is linearly ordered by ⊆∗ is absolute. Thus for every y ∈ X there is a contition (s, t) ∈ T
and n ∈ ω so that either

(s, t) 
 ċ ⊆ y \ n
or

(s, t) 
 y ⊆ ċ \ n.
The second option is impossible, because p[T(s,t)] is cofinal in X. We can thus find (s, t), n ∈ ω

and Y ⊆ X cofinal in X, so that for every y ∈ Y , (s, t) 
 ċ ⊆ y \n. Let (x, z) ∈ [T(s,t)] be arbitrary.

As Y is cofinal in X, there is y ∈ Y so that y (∗ x. But this clearly contradicts (s, t) 
 ċ ⊆ y\n. �

Theorem 2.6. Every Σ1
2 inextendible linearly ordered tower has a cofinal subset of size ω1.

Proof. Assume X is Σ1
2. Then it is the union of ω1 many Borel sets. By Theorem 2.4 each of these

Borel sets has a lower bound in X. �

The following result will appear a very useful tool in showing that consistently there are no Σ1
2

definable maximal towers, see Theorem 6.6. For this we need to define Mathias forcing relative to

a filter.

Definition 2.7. Let F be a filter on ω containing all cofinite sets. Then Mathias forcing relative to

F is the poset MF consisting of pairs (s,X) ∈ [ω]<ω ×F such that max s < minX. The extension

relation is defined by (s,X) ≤ (t, Y ) iff t ⊆ s, X ⊆ Y and t \ s ⊆ Y .

Throughout the paper we denote with V a fixed ground model.

Theorem 2.8. Assume that X is a Σ1
2 definable subset of [ω]ω, linearly ordered with respect to ⊆∗.

Then there is a ccc forcing notion Q so that for any V′ ⊇ VQ, X (its evaluation) is not an ilt in

V′.

Proof. As X is Σ1
2 we can write X as the union of ω1 many Borel sets 〈Bα : α < ω1〉 so that in any

extension V′ of V, (X)V
′

=
⋃
α<ω1

(Bα)V
′
, where (X)V

′
, (Bα)V

′
is the evaluation of X,Bα in V′

(see 13.4,13.7 in [10]).

If some Bα is cofinal in X, then this will hold true in any extension by absoluteness (Bα is cofinal

in X iff ∀x ∈ [ω]ω(x /∈ X ∨ ∃y ∈ Bα[y ⊆∗ x]), which is Π1
2). Thus by Theorem 2.4 we could choose

the trivial poset for Q.

If no Bα is cofinal in X, then for any α < ω1 there is xα ∈ X so that ∀y ∈ Bα(xα ⊆∗ y).

Moreover this will hold true in any extension of V by absoluteness. As X is linearly ordered wrt

⊆∗, {xα : α < ω1} generates a non-principal filter F . Let Q = M(F). Then in VQ there is a real x

so that x ⊆∗ xα for every α < ω1. In particular we have that x ⊆∗ y for every y ∈ X and this will

hold true in any further extension. �

Note that the above results can be applied similarly to inextendible linearly ordered subsets of

(ωω,≤∗).

3. A Π1
1 definable maximal tower in L

In this section we will show how to construct in L a maximal tower with a Π1
1 definition. For

this we apply the coding technique that has been developed in [15] in order to show the existence

of various nicely definable combinatorial objects in L.
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Let O be the set of odd and E the set of even natural numbers.

Lemma 3.1. Suppose z ∈ 2ω, y ∈ [ω]ω and 〈xα : α < γ〉 is a tower, where γ < ω1, so that

∀α < γ(|xα ∩O| = ω∧ |xα ∩E| = ω). Then there is x ∈ [ω]ω so that ∀α < γ(x ⊆∗ xα), |x∩O| = ω,

|x ∩ E| = ω, z ≤T x and |y ∩ ω \ x| = ω.

Proof. It is a standard diagonalization to find x so that ∀α < γ(x ⊆∗ xα), |x∩O| = ω, |x∩E| = ω

and |y ∩ ω \ x| = ω. We assume that z is not eventually constant, else there is nothing to do. Now

given x find 〈ni〉i∈ω increasing in x so that ni ∈ O iff z(i) = 0. Let x′ = {ni : i < ω}. Then x′

works. �

Theorem 3.2. Assume V = L. Then there is a Π1
1 definable maximal tower with an absolute

definition (i.e. it evaluates to the same set in any transitive model of ZFC).

In what follows, <L will stand for the canonical global L well-order. Whenever r ∈ 2ω, we write

Er ⊆ ω2 for the relation defined by

mErn iff r(2m3n) = 0.

If Er is a well-founded and extensional relation then we denote with Mr the unique transitive

∈-model isomorphic to (ω,Er). Notice that {r ∈ 2ω : Er is well-founded and extensional} is co-

analytic.

Proof. Let 〈yξ : ξ < ω1〉 enumerate [ω]ω via the canonical well order of L. We will construct a

sequence 〈δ(ξ), zξ, xξ : ξ < ω1〉, where for every ξ < ω1:

• δ(ξ) is a countable ordinal

• zξ ∈ 2ω ∩ Lδ(ξ)+ω
• xξ ∈ [ω]ω ∩ Lδ(ξ)+ω

The sequence is defined by the following requirements for each ξ < ω1:

(1) δ(ξ) is the least ordinal δ greater than supν<ξ δ(ξ) so that yξ, 〈δ(ν), zν , xν : ν < ξ〉 ∈ Lδ and

Lδ projects to ω1.

(2) zξ is the <L least code for the ordinal δ(ξ).

(3) 〈xν : ν < ξ〉 is a tower and ∀ν < ξ(|xν ∩O|) = ω ∧ |xν ∩ E| = ω).

(4) xξ is <L least so that ∀ν < ξ(xξ ⊆∗ xν), |xξ ∩ O| = ω, |xξ ∩ E| = ω, zξ ≤T x and

|yξ ∩ ω \ x| = ω.

Notice that zξ and xξ indeed can be found in Lδ(ξ)+ω given that yξ, 〈xν : ν < ξ〉 ∈ Lδ(ξ), and that

Lδ(ξ) projects to ω. It is then straightforward to check that (1)-(4) uniquely determine a sequence

〈δ(ξ), zξ, xξ : ξ < ω1〉 for which 〈xξ : ξ < ω1〉 is a maximal tower.

Claim 3.3. {xξ : ξ < ω1} is a Π1
1 subset of 2ω.

Proof. Let Ψ(v) be the formula expressing that for some ξ < ω1, v = 〈δ(ν), zν , xν : ν ≤ ξ〉. More

precisely, Ψ(v) says that v is a sequence 〈ρν , ζν , τν : ν ≤ ξ〉 of some length ξ + 1, that satisfies the

clauses (1)-(4) for every ν ≤ ξ.
The formula Ψ(v) is absolute for transitive models of some finite fragment Th of ZFC which holds

at limit stages of the L hierarchy. Namely we need absoluteness of the formula ϕ1(ξ, y) expressing

1This means that over Lδ there is a definable surjection to ω. The set of such δ is unbounded in ω1.
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that y = yξ, ϕ2(δ,M) expressing that M = Lδ projects to ω and ϕ3(z, δ) expressing that z is the

<L least code for δ.

Moreover we have that 〈δ(ν), zν , xν : ν ≤ ξ〉 ∈ Lδ(ξ)+ω and that

Lδ(ξ)+ω |= Ψ(〈δ(ν), zν , xν : ν ≤ ξ〉)

for every ξ < ω1.

Now let Φ(r, x) be a formula expressing that Er is a well founded and extensional relation,

Mr |= Th and for some v ∈Mr,

Mr |= v is a sequence 〈ρν , ζν , τν : ν ≤ ξ〉 ∧Ψ(v) ∧ τξ = x.

We thus have that x = xξ for some ξ < ω1 iff ∃r ∈ 2ωΦ(r, x). Φ(r, x) can clearly be taken as a

Π1
1 formula.

For any ξ < ω1, the well order δ(ξ) is coded by zξ and zξ ≤T xξ. Thus δ(ξ) + ω < ω
xξ
1 and there

is r ∈ L
ω
xξ
1

so that Mr = Lδ(ξ)+ω. In particular

∃r ∈ L
ω
xξ
1

(Φ(r, xξ)).

We get that

∃ξ < ω1(x = xξ)↔ ∃r ∈ Lωx1 (Φ(r, x)).

The right hand side can be expressed by a Π1
1 formula. �

�

The fact that the Π1
1 definition above will give rise to the same set in any extension of L follows

from the following general observation:

Remark 3.4. Any Σ1
2 maximal tower has an absolute definition. This follows from the Mansfield-

Solovay Theorem (see e.g. [14, Theorem 21.1]) and because a tower cannot contain a perfect set

(see the proof of Theorem 2.2).

4. Towers and Diagonalization

Definition 4.1. [Hechler [9]] For an ordinal γ we define the poset Tγ consisting of all finite partial

functions p : γ × ω → 2 with dom p = Fp × np for some Fp ∈ [γ]<ω and np ∈ ω. q ≤ p if q ⊇ p and

whenever α < β ∈ Fp, n ∈ nq \ np and q(β, n) = 1 then p(α, n) = 1.

For any ordinal γ the poset Tγ is ccc. Moreover, whenever G is Tγ generic, the sets Tα := {n ∈
ω : ∃p ∈ G(p(α, n) = 1)} for α < γ form a tower 〈Tα : α < γ〉, i.e. a decreasing sequence in

([ω]ω,⊆∗). When cof(γ) ≥ ω1 then 〈Tα : α < γ〉 is maximal in V [G] (see [9]).

For any δ < γ we have that Tδ l Tγ and we can explicitly find a quotient Ṫ[δ,γ), so that Tγ is

forcing equivalent to Tδ ∗ Ṫ[δ,γ). In V [G], where G is Tδ generic, T[δ,γ) will consist of all pairs (p,H)

such that p is a finite partial function p : [δ, γ)× ω → 2, with dom p = Fp × np and H ∈ [δ]<ω. The

order is defined by (q,K) ≤ (p,H) if q extends p in the sense of Tγ , H ⊆ K and for all α ∈ Fp,
β ∈ H, n ∈ nq \ np if q(α, n) = 1 then n ∈ Tβ.

Definition 4.2. [weak diagonalization] Assume M ⊆ N are transitive models of set theory, x ∈
[ω]ω ∩N . We say that x weakly diagonalizes M if for all y ∈ [ω]ω ∩M , |y ∩ (ω \ x)| = ω.
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Definition 4.3. [strong diagonalization] Assume M ⊆ N are transitive models of set theory,

x ∈ [ω]ω∩N . We say that x strongly diagonalizes M if for every f ∈M , k ∈ ω, where f : ω → [ω]≤k

is such that f(n) ⊆ ω \ n for every n, there is some n ∈ ω such that f(n) ⊆ ω \ x.

Notice that strong diagonalization implies weak diagonalization. To see this, given y ∈ M just

let f(n) = {min y ∩ (ω \ n)} for every n. There is another way to get weak diagonalization as we

will show now:

Definition 4.4. Let M ⊆ N be models of set theory, c ∈ N ∩ ωω. We say that c is unbounded

over M if for every f ∈M ∩ ωω, c 6<∗ f .

Lemma 4.5. Let M ⊆ N be models of set theory, x ∈ [ω]ω ∩ N . Let fx be defined by fx(n) =

minx \ n. If fx is unbounded over M , then x weakly diagonalizes M .

Proof. Assume that y ∈ M is such that y ⊆∗ x, say y \ m ⊆ x. Then clearly for every n ≥ m,

fy(n) ≥ fx(n), where fy is defined in the same way as fx. �

We are now showing that the generics added by Tγ satisfy strong diagonalization and unbound-

edness in a certain sense.

Lemma 4.6. Let γ be an ordinal. Let Gγ+1 be Tγ+1 generic and Gγ := Gγ+1 ∩ Tγ. Furthermore,

as before, let Tα := {i ∈ ω : ∃p ∈ G(p(α, i) = 1)} for α < γ + 1. Then:

(1) Tγ strongly diagonalizes V[Gγ ],

(2) fTγ is unbounded over V[Gγ ], where fTγ is defined as in Lemma 4.5.

Proof. (1) We work in V[Gγ ]. Let f, k be as in the definition of strong diagonalization and (p,H) ∈
T[γ,γ+1) be arbitrary with dom p = {γ} × np for np ∈ ω. As f is diverging, there is some n so that

f(n) ∩ np = ∅. Now extend (p,H) to (q,H) so that q(γ, i) = 0 for all i ∈ f(n). Then we have that

(q,H) 
 f(n) ⊆ ω \ Tγ .

(2) is analogous to (1). �

Lemma 4.7. Assume 〈xα : α < κ〉 is a maximal tower and M is a countable model of set theory.

Then there is α < κ so that xα is strongly diagonalizing over M .

Proof. It suffices to show that for any k ∈ ω, f : ω → [ω]k so that ∀n(f(n) ⊆ ω \ n), there is α < κ

so that ∃∞n ∈ ω(f(n) ∩ xα = ∅).
We show this by induction on k. For k = 1 this is just saying that 〈xα : α < κ〉 is a maximal

tower. Let f : ω → [ω]k+1. Consider g : ω → [ω]k defined by g(n) = f(n) \ {max f(n)}. Then if

we know the statement for k, there is α < κ so that X = {n ∈ ω : g(n) ∩ xα = ∅} is infinite.

Let x := {max f(n) : n ∈ X}. Then there is β > α so that |x ∩ ω \ xβ| = ω. Clearly now

{n ∈ X : max f(n) ∈ ω \ xβ} ⊆∗ {n ∈ ω : f(n) ∩ xβ = ∅}. �

5. Preservation results

Lemma 5.1. Assume P0lP1, ẋ a P1 name for a real so that 
P1 “ẋ is strongly diagonalizing over

VP0”. Further assume that Q̇l is a Pl name for a poset, l ∈ {0, 1}. Then,

(1) P0 ? 1l P1 ? Q̇1 and 
P1?Q̇1
“ẋ is strongly diagonalizing over VP0?1”,

(2) P0 ? Q̇0 l P1 ? Q̇0 and 
P1?Q̇0
“ẋ is strongly diagonalizing over VP0?Q̇0”.
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Proof. (1) and the first part of (2) are straightforward. Let us show that 
P1?Q̇0
“ẋ is strongly

diagonalizing over VP0?Q̇0”. Let ḟ ∈ VP0 be a Q0 name for a function f : ω → [ω]≤k so that

f(n) ⊆ ω \ n for all n. Also let q ∈ Q0 be a condition. Then we can find in VP0 a decreasing

sequence 〈qn : n ∈ ω〉 of conditions below q and a function g so that qn 
 g(n) = ḟ(n) for every n.

By strong diagonalization, there is n ∈ ω so that g(n)∩x = ∅ and thus in VP1 , qn 
 ḟ(n)∩x = ∅. We

have thus shown that in VP1 , the set of conditions q forcing that there is some n with ḟ(n)∩x = ∅
is dense in Q0. �

5.1. Mathias forcing.

Lemma 5.2. Let M ⊆ N be models of set theory, V ∈ M an ultrafilter in M , x ∈ N strongly

diagonalizes M . Then there is an ultrafilter U ⊇ V in N , so that:

(1) every maximal antichain of M(V) in M is a maximal antichain of M(U) in N ,

(2) whenever G is M(U)-generic over N then x strongly diagonalizes M [G].

Proof. Work in N . Let C ⊆M(V) be a maximal antichain in M and let s ∈ [ω]<ω. We call X ∈ V+
(V positive sets) forbidden by s, C if (s,X) is incompatible with every p ∈ C.

For k ∈ ω, ḟ ∈ M an M(V) name for a function ω → [ω]≤k so that ḟ(n) ⊆ ω \ n there are (in

M) maximal antichains Dḟ
n ⊆ M(V) and functions gḟn : Dḟ

n → [ω]≤k so that p 
 ḟ(n) = gḟn(p) for

p ∈ Dḟ
n. We say Y ∈ V+ is forbidden by ḟ , k, t if for all n ∈ ω, (t, Y ) is incompatible with all

conditions p ∈ Dḟ
n so that gḟn(p) ⊆ ω \ x.

Let I be the ideal generated by all forbidden sets.

Claim 5.3. I ∩ V = ∅.

Proof. Assume there are sets

X0, . . . Xl−1;Y0, . . . , Yl−1

forbidden by

s0, C0, . . . , sl−1, Cl−1; ḟ0, k0, t0, . . . , ḟl−1, kl−1, tl−1

so that
⋃
i<lXi ∪

⋃
i<l Yi ⊇ Z ∈ V.

For t ∈ [ω]<ω and C ⊆M(V) we say that C permits t if there is (s,X) ∈ C so that (t,X) ≤ (s,X).

Further let k =
∑

i<l ki.

Sublaim 5.4. There is a function h : ω → ω in M and a function g : ω → [ω]≤k in M so that for

any n ∈ ω, whenever we cover Z ∩ h(n) with 2l pieces, then at least one piece s of the covering has

the following property:

• for all i < l there is t ⊆ s such that Ci permits si ∪ t,
• for all i < l there is t ⊆ s such that some p ∈ Dḟi

n with gḟin (p) ⊆ g(n) permits ti ∪ t.

Proof. Work in M . Let G : ω → [ω]≤k be such that |G−1(a)| = ω for every a ∈ [ω]≤k.

Assume that for some n, we cannot find an appropriate h(n) and g(n) = G(h(n)). By a compact-

ness argument we find a covering of Z with 2l pieces so that for any initial covering the conclusion

of the subclaim fails for g(n) chosen according to G. One of the pieces of the covering has to be in

V, say W . Since Ci is a maximal antichain, there is p ∈ C compatible to (si,W ). But then there is
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t ⊆W so that p permits si∪ t. Similarly there are pi ∈ Dḟ
n and t ⊆W so that pi permits si∪ t. Let

a =
⋃
i<l g

ḟ
n(pi). Then if we choose h(n) large enough we can get a = G(h(n)) and s = W ∩ h(n)

having the required properties for g(n) = G(h(n)), which contradicts the assumption. �

Now let h and g be given as in the subclaim. Notice that by strong diagonalization of x over M

we have that for some n ∈ ω, g(n) ⊆ ω \ x.

Fix such an n ∈ ω and consider the covering {Xi ∩ h(n), Yi ∩ h(n) : i < l}. Since (si, Xi) is

incompatible with all conditions from Ci, there is no t ⊆ Xi ∩ h(n) such that Ci permits si ∪ t. So

Xi ∩ h(n) is not the piece that the subclaim claims to exist. Thus a piece of the form Yi ∩ h(n) is

as claimed by the subclaim. This means that there are t ⊆ Yi ∩ h(n) and p ∈ Dḟi
n with gḟin (p) ⊆

g(n) ⊆ ω \ x and p permits ti ∪ t. But this contradicts Yi being forbidden by ḟi, ki, ti.

�

Now that the claim is proven, construct U ⊇ V in N such that U ∩ I = ∅. It is clear that then

(1) and (2) hold true. �

Theorem 5.5. (CH) For any maximal tower 〈xα : α < ω1〉 there is an ultrafilter U so that M(U)

preserves 〈xα : α < ω1〉, i.e. 
M(U) “〈xα : α < ω1〉 is maximal”.

Proof. The ultrafilter U is constructed recursively using Lemma 4.7 and 5.2. More precisely, given

an enumeration 〈yα : α < ω1〉 of 2ω, we define by induction a sequence 〈Uα,Mα, ξ(α) : α < ω1〉 so

that the following hold true for all α < ω1:

(1) Mα is the transitive collapse of a countable elementary submodel of H(ω2) and yα, 〈Uβ,Mβ :

β < α〉 ∈Mα.

(2) xξ(α) ∈Mα+1 is strongly diagonalizing over Mα.

(3) Uα ∈Mα is an ultrafilter over Mα ∩ P(ω).

(4) Uα+1 ⊇ Uα is such that every maximal antichain of M(Uα) in Mα is still a maximal antichain

of M(Uα+1) in Mα+1.

(5) Uα+1 ⊇ Uα is such that whenever G is M(Uα+1) generic over Mα+1, then xξ(α) is strongly

diagonalizing over Mα[G].

(6) When α is limit, then Uα is such that every maximal antichain of M(Uβ) in Mβ is still a

maximal antichain of M(Uα) in Mα for any β < α.

Using Lemma 4.7 we can get (2) and using Lemma 5.2 we get (3),(4) and (5). (6) can be attained

by a straightforward strengthening of Lemma 5.2, whose proof is almost the same (see also [4, p.

266]).

Given this sequence, let U =
⋃
α<ω1

Uα. First notice that for any α < ω1, any maximal antichain

A ∈Mα of M(Uα) is still maximal in M(U). If ẋ is any M(U)-name for a real consisting of countably

many pairs of the form 〈ň, (s,X)〉, then ẋ ∈Mα for some α. Whenever G is M(U) generic then G is

also M(Uα) generic over Mα, and by (5), xξ(α) is strongly diagonalizing over Mα[G]. In particular

ẋ[G] 6⊆∗ xξ(α).
This proves that M(U) preserves the tower 〈xα : α < ω1〉 maximal. �

5.2. Hechler forcing. We use the following version of Hechler forcing.
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Definition 5.6. Let IS denote the subset of ω<ω consisting of increasing sequences. Hechler forcing

for adding a dominating real is the poset D consisting of pairs (s, f) ∈ IS × ωω. The extension

relation is defined by (s, f) ≤ (t, g) iff t ⊆ s, g ≤ f , ∀n ∈ dom(s) \ dom(t)(s(n) ≥ f(n)).

A very useful tool for the study of combinatorial properties of Hechler forcing is the notion of a

rank function.

Definition 5.7. Assume D is a dense open subset of D. Then we define a corresponding rank

function rk: IS → ω1 as follows:

• rk(s) = 0 iff there is g ∈ ωω so that (s, g) ∈ D,

• rk(s) ≤ α iff there is l ∈ ω and a sequence 〈ti : i ∈ ω〉 of extensions of s so that for every

i ∈ ω, |ti| = l , ti(n) > i for every n ∈ l \ dom s, and rk ti < α.

Lemma 5.8. If D is open dense then the corresponding rank is defined for every s ∈ IS.

Proof. Assume rk(s) is undefined. For any l ∈ ω we let Tl be the set of all minimal extensions t of

s with rk(t) being defined and |t| = l.

We claim that {t(l − 1) : t ∈ Tl} is bounded for every l ∈ ω. Assume l ∈ ω is such that

{t(l − 1) : t ∈ Tl} is unbounded, then we find a sequence 〈ti : i ∈ ω〉 in Tl so that ti(l − 1) > i for

every i ∈ ω. Using the minimality of the ti we find that ti(l− 2) is also unbounded so we can pass

to a subsequence 〈tin : n ∈ ω〉 so that tin(l − 1), tin(l − 2) > n for n ∈ ω. Continuing like this we

find a sequence 〈si : i ∈ ω〉 with |si| = l, rk(si) is defined, and si(n) > i for every n ∈ l \ dom(s)

and every i ∈ ω. This poses a contradiction to rk(s) being undefined.

Now let f(n) = max{t(n) : t ∈ Tn+1}+ 1. Then (s, f) can be extended to a condition (t, g) ∈ D.

rk(t) is defined and there is a minimal t′ ⊆ t, s ⊆ t′, for which rk(t′) is defined, say |t′| = l. But

then t′(l − 1) ≥ f(l − 1) which is a contradiction. �

Theorem 5.9. Assume M ⊆ N are models of set theory and x ∈ N ∩ [ω]ω strongly diagonalizes

M . Then, whenever G is D generic over N , then x strongly diagonalizes M [G].

Proof. Assume the statement of the theorem is false. This means that there is a D name ḟ ∈M so

that 
 ∀n ∈ ω[ḟ(n) ⊆ ω \n∧|ḟ(n)| = k] for some k ∈ ω, and there is some condition (s, g) ∈ D∩N
so that (s, g) 
 ∀n(ḟ(n) ∩ x 6= ∅).

We define the dense open sets Dn = {t ∈ IS : ∃h ∈ ωω[(t, h) 
 ḟ(n) = a] for some a ∈ [ω]≤k}
and the respective rank functions rkn : IS → ω1.

For each n ∈ ω and for t ∈ IS we define the set

Zn(t) = {a ∈ [ω]k : ∀f ∈ ωω∃(t′, f ′) ≤ (t, f)[(t′, f ′) 
 ḟ(n) = a]}

Claim 5.10. ∀m ∈ ω∃n ≥ m(Zn(s) 6= ∅).

Proof. Fix m ∈ ω and assume that for every n ≥ m, Zn(s) = ∅. For any n ≥ m we define a partial

function vn : IS → [ω]≤k \ {∅} in M so that the following will hold true for every t ∈ dom vn:

(1) ∀h ∈ ωω∃(t′, h′) ≤ (t, h)[(t′, h′) 
 vn(t) ⊆ ḟ(n)],

(2) if (t, g) ≤ (s, g) then vn(t) ∩ x 6= ∅.
The definition is done recursively in M step by step as follows:

• Initial step: For t ∈ Dn let vn(t) be such that ∃h ∈ ωω[(t, h) 
 ḟ(n) = vn(t)]. Then clearly

(1) holds true and (2) holds true because we assumed that (s, g) 
 ḟ(n) ∩ x 6= ∅.
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• Assume we defined vn already on a set D ⊆ IS. Assume t ∈ IS \D is such that there is

l ∈ ω and a sequence 〈ti : i ∈ ω〉 of extensions of t with |ti| = l, ti ∈ D for every i ∈ ω and

ti(j) > i for every j ∈ dom ti \ t.
Further assume that the following hold true of the sequence 〈ti : i ∈ ω〉:
– vn(ti) has the same size J ≤ k for every i ∈ ω.

– There is a 6= ∅, so that a ⊆ vn(ti) for every i ∈ ω and either |a| = J (i.e. a = vn(ti) for

every i) or 〈min vn(ti) \ a : i ∈ ω〉 is strictly increasing.

Then we set vn(t) = a.

We have to show that (1) and (2) hold true.

(1): Let h ∈ ωω be given. If we let i = maxj<l h(j), then ti > h so that (ti, h) ≤ (t, h).

We know that (1) was true of ti, so there is (t′, h′) ≤ (ti, h) with (t′, h′) 
 vn(ti) ⊆ ḟ(n). In

particular (t′, h′) 
 vn(t) = a ⊆ vn(ti) ⊆ ḟ(n).

(2): Assume (t, g) ≤ (s, g). If |a| = J then definitely vn(t)∩x 6= ∅ has to hold true because

vn(t) = vn(ti) for every i and in particular for some large enough i where (ti, g) ≤ (s, g).

Now assume |a| < J , and thus 〈min vn(ti) \ a : i ∈ ω〉 is strictly increasing. As x is strongly

diagonalizing over M there must be i ∈ ω large enough so that vn(ti) \ a ⊆ ω \ x and

(ti, g) ≤ (s, g). vn(ti) ∩ x = ((vn(ti) \ a) ∪ a) ∩ x 6= ∅ by assumption and thus a ∩ x 6= ∅.
We might have different possible choices for vn(t) because a lot of sequences 〈ti : i ∈ ω〉

as above might exist, so we pick it arbitrarily if it exists.

Sublaim 5.11. vn(s) is defined.

Proof. Assume vn(s) was not defined. We know that rkn(s) is defined. Let 〈ti : i ∈ ω〉 be such that

for i ∈ ω, |ti| = l, rkn(ti) < rkn(s) and ti(j) > i for every j ∈ dom ti \ s.
Then vn(ti) must be undefined for almost every i ∈ ω. Because assume vn(ti) is defined for

infinitely many i. Then we could assume wlog, by passing to a subsequence, that vn(ti) is defined

for all i, |vn(ti)| has constant value J ≤ k and either

• 〈min vn(ti) : i ∈ ω〉 is strictly increasing,

• or there is a 6= ∅ so that ∀i ∈ ω(a ⊆ vn(ti)) and in case |a| < J , 〈min vn(ti) \ a : i ∈ ω〉 is

strictly increasing.

In the first case we would get vn(ti) ⊆ ω \ x for some large enough i where (ti, g) ≤ (s, g)

contradicting (2) above. In the second case vn(s) would be defined, contrary to our assumption.

Thus consider i ∈ ω large enough so that vn(ti) is undefined and (ti, g) ≤ (s, g) and let t0 = ti.

By arguing in the same way for t0, we get a sequence t0, t1, . . . in N so that rkn(ti+1) < rkn(ti),

(ti+1, g) ≤ (ti, g) and vn(ti) is undefined. This sequence has to end eventually with rk(ti) = 0. But

then vn(ti) is defined as in the initial step. We get a contradiction. �

Finally unfix n. We get a sequence 〈vn(s) : n ≥ m〉 defined in M , so that vn(s) ⊆ ω \ n,

vn(s) ∈ [ω]≤k and vn(s) ∩ x 6= ∅. But by strong diagonalization we know that there is some n ≥ m
so that vn(s) ⊆ ω \ x. Again we have a contradiction and the claim is proven.

�

Now that we proved the claim, we are finished. Namely, pick in M for every n ∈ ω where

Zn(s) 6= ∅, an ∈ Zn(s). Then by strong diagonalization of x, there is some n so that an ⊆ ω \ x.

But then we can extend (s, g) to force that ḟ(n) = an ⊆ ω \ x, which is a contradiction.
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�

The following Theorem was proven by Baumgartner and Dordal in [1]. We give a proof of it

based on Theorem 5.9 and Lemma 4.7.

Theorem 5.12. Suppose 〈xα : α < κ〉 is a maximal tower. Then D preserves 〈xα : α < κ〉
maximal.

Proof. Suppose ẋ is D name for an element of [ω]ω. Let M be a countable elementary submodel of

H(θ) containing ẋ, where θ is a large enough regular cardinal. Then by Lemma 4.7 there is some

α < κ so that xα is strongly diagonalizing over M . By Theorem 5.9 xα stays strongly diagonalizing

over M [G], where G is a Hechler generic. In particular ẋ[G] 6⊆∗ xα. �

5.3. Limits of fsi.

Lemma 5.13. Let 〈Pl,i, Q̇l,i : i < δ〉, l ∈ {0, 1} be finite support iterations so that for every i < δ,

P0,i l P1,i. Further assume that ẋ is a P1,0 name for a real so that for every i < δ, 
P1,i “ẋ is

strongly diagonalizing over VP0,i”. Then,

(1) P0,δ l P1,δ,

(2) 
P1,δ
“ẋ is strongly diagonalizing over VP0,δ”.

Proof. (1) is well known (see e.g. [5, Lemma 10]). For (2) assume that ḟ is a P0,δ name for a

function ω → [ω]k so that ḟ(n) ⊆ ω \ n for every n ∈ ω. Further assume that p ∈ P1,δ forces

that ∀n ∈ ω(ḟ(n) ∩ ẋ 6= ∅), say p ∈ P1,i for i < δ. Let G1,i be a P1,i-generic containing p and

let G0,i = G1,i ∩ P0,i. In V[G0,i], let R0
i,δ be the quotient poset P0,δ/G0,i and ḟ ′ the quotient

name ḟ/G0,i. Find in V[G0,i] a sequence 〈qn〉 of R0
i,δ conditions and a sequence 〈an〉 so that

qn 
 ḟ ′(n) = an. As p forced that ∀n ∈ ω(ḟ(n) ∩ ẋ 6= ∅) we must have that an ∩ ẋ[G0,i] 6= ∅ for

every n. But this is a contradiction to 
P1,i “ẋ is strongly diagonalizing over VP0,i”. �

The following was implicitly proven in [1] (see Theorem 3.3 and 3.5 there).

Lemma 5.14. Suppose 〈xα : α < κ〉 is a maximal tower. Assume that 〈Pi, Q̇i : i ≤ δ〉 is a finite

support iteration of ccc posets so that for every i < δ, 
Pi “〈xα : α < κ〉 is maximal”, then 
Pδ
“〈xα : α < κ〉 is maximal”.

6. Applications

Theorem 6.1. (GCH) Let κ < λ be regular uncountable cardinals. Then there is a ccc forcing

extension in which t = κ < b = s = λ and λ<λ = λ.

Proof. Consider a matrix iteration 〈Pα,β, Q̇α,β : α ≤ κ, β < λ〉 where P0,κ is Hechler’s poset Tκ (see

Definition 4.1) for adjoining a maximal tower T = {tγ}γ∈κ. Let V denote the ground model and for

each α ≤ κ, β ≤ λ, let Vα,β = VPα,β . Use successor stages β such that β ≡ 1 mod 3 to guarantee

that V Pκ,λ � κ ≤ p = t. For this it is sufficient to arrange, that whenever F is a family with

the strong finite intersection property in VPκ,λ of caridnality < κ, then there is β < λ and α < κ

such that F ∈ VPα,β and the posets {Q̇ζ,β}ζ∈κ are used to add a pseudointersection to F . This

can be achieved by an appropriate bookkeeping function and after fixing α, β as above, defining

Q̇ζ,β to be a Pζ,β name for the trivial poset whenever ζ < α, and a Pζ,β name for the Mahtias
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forcing relativized to F whenever ζ ≥ α. Successor stages β for which β ≡ 2 mod 3 are used to

adjoin full Hechler reals, i.e. for each ζ ∈ κ define Q̇ζ,β to be a Pζ,β name for Hechler’s forcing for

adjoining a dominating real. This clearly guarantees that VPκ,λ � b = λ. Finally, to guarantee that

s = λ in VPκ,λ , one can use successor β’s such that β ≡ 0 mod 3 and Lemma 5.1. to construct an

increasing sequence of ultrafilters {Uζ,β}ζ∈κ, where for each Uζ,β is an ultrafilter in VPζ,β such that

M(Uζ,β) lVζ,β
M(Uη,β) whenever ζ < η < κ and such that if tζ strongly diagonalizes Vζ,β, then tζ

strongly diagonalizes Vζ,β+1 for each ζ ∈ κ. Then clearly VPκ,λ � s = λ.

The preservation properties developed in the previous two sections, and in particular Lemmas

4.7, 5.1, 5.7 and 5.11 imply that T remains a maximal tower in V Pκ,λ and so a witness to t = κ in

the final generic extension. �

Remark 6.2. The consistency of t = κ < b = s = λ can be proven in several different ways. The

simplest one is to use the fact that for any infinite θ < t, 2θ = c (see [2, Theorem 6.14]). Using

this we can start with a model where 2κ > λ and construct an iteration in which we add λ many

dominating reals, λ many unsplit reals and destroy small filter bases. But this approach gives

strong restrictions to cardinal arithmetic and we don’t get that λ<λ = λ. The other one is to use a

result of Blass ([3, Theorem 2]) that says that whenever V is the union of an increasing sequence

〈Vα〉α<κ of models of ZFC, where [ω]ω ∩ (Vα+1 \Vα) 6= ∅ and 〈[ω]ω ∩Vα〉α<κ ∈ V, then t ≤ κ

(even g ≤ κ where g is the groupwise density number). Thus in the above matrix iteration we may

have simply used Cohen reals in the first column to get the same result. But our approach shows

how to additionaly preserve a generically added tower and get an explicit witness for t = κ.

Remark 6.3. For κ < λ regular uncountable cardinals, assuming GCH one can easily obtain the

consistency of t = b = κ < s = λ. Indeed, one can use a matrix iteration 〈Pα,β, Q̇α,β : α ≤ κ, β < λ〉,
where Pκ,0 = Cκ is the standard poset for adjoining κ-many Cohen reals. Successors β, such that

β ≡ 1 mod 2 and an appropriate bookkeeping (see [5]) can be used to guarantee that in the final

extension Vκ,λ there are no unbounded families of cardinality < κ, i.e. we use these columns to force

with appropriate (depending on the bookkeeping function) restricted Hechler posets. Successor

stages β, where β ≡ 0 mod 2 can be used to define increasing sequences of ultrafilters {Uζ,β}ζ<κ
such that forcing with the relativized Mathias poset over Vζ,β not only adjoins an unsplit real, but

also preserves the unboundedness of cγ , the γ-th Cohen real over Vγ,0. This can be achieved as

in [5], and results in Vκ,λ � s = c = λ. The preservation properties of the construction, see [5],

imply that the family of Cohen reals remains unbounded in Vκ,λ and so a witness to b = κ in this

model.

Theorem 6.4. The existence of a Π1
1 definable maximal tower is consistent with arbitrarily large

continuum and with b being arbitrarily large.

Proof. Start in L. For κ uncountable consider Cκ the forcing adding κ many Cohen reals. It is

well known that Cκ preserves every maximal tower. Thus the tower given by Theorem 3.2 will stay

maximal in any forcing extension of L via Cκ and have the same definition there.

For b consider Dκ the κ length fsi of Hechler forcing. By Theorem 5.12 and Lemma 5.14, any

maximal tower is preserved by Dκ. �

Theorem 6.5. The existence of a Π1
1 definable maximal tower is consistent with s = ω2.
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Proof. Work in V = L and let 〈xα : α < ω1〉 be the Π1
1 maximal tower given by Theorem 3.2.

Using Theorem 5.5 and Lemma 5.14, construct a finite support iteration 〈Pi, Q̇i : i ≤ ω2〉 such that

for every i < ω2

(1) 
Pi “〈xα : α < ω1〉 is a maximal tower”,

(2) 
Pi c = ω1,

(3) 
Pi Q̇i = M(U̇i) where U̇i is a Pi name for an ultrafilter preserving 〈xα : α < ω1〉 maximal.

Again by Lemma 5.14, in any extension via Pω2 , 〈xα : α < ω1〉 is maximal and thus there is a

Π1
1 maximal tower. Each iterand Q̇i adds an unsplit real over VPi . Thus VPω2 |= ω2 ≤ s ≤ c ≤ ω2.

�

Theorem 6.6. It is consistent with arbitrarily large continuum that there is no Σ1
2 definable inex-

tendible linearly ordered tower (in particular no maximal tower), but t = ω1.

Proof. Fix an uncountable regular cardinal κ and assume GCH. As before, we will construct a

matrix iteration 〈Pα,β : α ≤ ω1, β ≤ κ〉 in which we explicitly add a generic maximal tower that

will be preserved. Formally we also fix a bookkeeping function F : κ → [H(κ)]ω enumerating all

countable subsets of H(κ), repeating every set unboundedly often.

(1) If β = 0, then Pα,0 is Hechler’s poset Tα for adding a tower of length α.

(2) If β > 0 is a limit ordinal, then Pα,β is the direct limit of the posets 〈Pα,ζ : ζ < β〉.
(3) If β = ζ + 1 and F (ζ) = ċ is a Pω1,ζ name for a real, encoding a Σ1

2 subset X of [ω]ω that

is linearly ordered wrt ⊆∗, then ċ is a Pα,ζ name for some α < ω1. By Theorem 2.8 there

is a Pα,ζ name Q̇ for a ccc forcing, so that X will not be an ilt in any extension of VPα,ζ?Q̇.

In this case let Pγ,β = Pγ,ζ ? 1 for γ < α and Pγ,β = Pγ,ζ ? Q̇ for γ ≥ α.

(4) If β = ζ + 1 and we are not in case (3) let Pα,β = Pα,ζ ? 1 for every α < ω1.

Our preservation theorems imply that VPω1,κ |= t = ω1, while clearly VPω1,κ |= c = κ. Also it

follows from the construction that there is no Σ1
2 ilt in VPω1,κ . �

Corollary 6.7. Let κ be an arbitrary regular uncountable cardinal. The lack of a Σ1
2 definable ilt

is consistent with t = ω1 and each of the following:

(1) b = s = c = κ,

(2) b = ω1 ≤ s = κ.

Proof. The techniques of Theorem 6.1 and Theorem 6.6 can clearly be combined to obtain the

desired result. �

We would like to conclude the paper with the following questions: Is it consistent that there is

a co-analytic maximal tower and s > ℵ2? Is there an ilt in Solovay’s model?
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