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Abstract. We show that Hechler’s forcings for adding a tower and for adding a mad family can be repre-
sented as finite support iterations of Mathias forcings with respect to filters and that these filters are B-Canjar
for any countably directed unbounded family B of the ground model. In particular, they preserve the un-
boundedness of any unbounded scale of the ground model. Moreover, we show that b = ω1 in every extension
by the above forcing notions.

1. Introduction

In this paper, we analyze Hechler’s forcings from [Hec72] for adding a tower (see Section 3) and for
adding a mad family (see Section 4), after giving some preliminaries on B-Canjar filters in Section 2.

The forcings consist of finite conditions approximating a generic tower or a generic mad family, re-
spectively. We first show that the poset for adding a tower can be represented as a finite support iteration,
where each iterand adds a single real to the tower (which diagonalizes the initial part of the tower). In
fact, each such iterand is equivalent to Mathias forcing with respect to the filter generated by the respective
initial part of the tower (see Lemma 3.5). For the forcing adding a mad family, the situation is analogous
(see Lemma 4.5); in this case, the filter is generated by the complements of the elements of the initial part
of the mad family. It follows from these representations that the above forcing notions are σ-centered (see
Corollary 3.6 and Corollary 4.6) in many cases of interest.

The main results of this paper show that the above posets preserve the unboundedness of any count-
ably directed unbounded family of the ground model (see Theorem 3.7 and Theorem 4.7); in particular,
any unbounded ground model scale is preserved. We actually prove that, for a given countably directed
unbounded family B of the ground model, all the filters which are involved in the representation of Hech-
ler’s posets are B-Canjar, i.e., the corresponding Mathias forcings preserve the unboundedness of B. To
verify B-Canjarness, we use a combinatorial characterization from [GK21] (see Theorem 2.3), together
with a genericity argument. In Section 5, we conclude that b = ω1 holds true in every extension by
one of Hechler’s forcings, using that they can be decomposed into a forcing which adds an unbounded
family of size ω1 and a forcing which preserves the unboundedness of this family (see Corollary 5.1 and
Corollary 5.2). Finally, in Section 6, we list some open questions.

In [FKW], the authors of this paper define a forcing which adds a refining matrix of regular height λ,
i.e., a refining system of mad families of height λ without common refinement. There is always a refining
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matrix of height h (which is the minimal possible height), where h is the well-known distributivity number.
In order to get a model with a refining matrix of regular height λ > h, it is shown that the forcing to add the
refining matrix keeps the bounding number b (and hence h) small: to this end, the forcing is represented
as an iteration of Mathias forcings with respect to filters, which are shown to be B-Canjar, where B is the
family of ground model reals; this ensures that B is unbounded in the final model, witnessing that b is
small.

Since a refining matrix consists of mad families as well as (along the branches of its corresponding
tree) towers, the forcing used in [FKW] is an elaborate combination of Hechler’s poset for adding a mad
family and a tower, respectively. The proof that the forcing from [FKW] preserves the unboundedness of
the ground model reals is a more complicated version of the proofs given in this paper.

2. B-Canjar filters

In this section, we will give the necessary preliminaries about B-Canjar filters and the preservation of
unboundedness.

Definition 2.1. Let F ⊆ P(ω) be a filter containing the Fréchet filter. Mathias forcing with respect to F
(denoted by M(F )) is the set of pairs (s, A) with s ∈ 2<ω and A ∈ F , where the order is defined as follows:
(t, B) ≤ (s, A) if

(1) t D s, i.e., t extends s,
(2) B ⊆ A,
(3) for each n ≥ |s|, if t(n) = 1, then n ∈ A.

Note that M(F ) is σ-centered: for s ∈ 2<ω, the set {(s, A) | A ∈ F } is clearly centered (i.e., finitely
many conditions have a common lower bound). Also note that Mathias forcing with respect to a countably
generated filter has a countable dense subset, and therefore is forcing equivalent to Cohen forcing C. For
f , g ∈ ωω, we write f ≤∗ g if f (n) ≤ g(n) for all but finitely many n ∈ ω. We say that B ⊆ ωω is an
unbounded family, if there exists no g ∈ ωω with f ≤∗ g for all f ∈ B. The bounding number b is the
smallest size of an unbounded family inωω. A familyB ⊆ ωω is called countably directed if the following
closure property holds:

∀A ⊆ B (|A| = ℵ0 → ∃ f ∈ B ∀g ∈ A g ≤∗ f ).

A filter F is Canjar ifM(F ) does not add a dominating real over the ground model (i.e., the ground model
reals remain unbounded). We are interested in the following generalization of Canjarness:

Definition 2.2. Let B ⊆ ωω be an unbounded family. A filter F on ω is B-Canjar if M(F ) preserves the
unboundedness of B (i.e., B is still unbounded in the extension by M(F )).

2.1. A combinatorial characterization of B-Canjarness. Later, we will prove that certain filters are
B-Canjar. A combinatorial characterization of Canjarness has been given by Hrušák-Minami [HM14],
which has been generalized to B-Canjarness for well-ordered unbounded families B by Guzmán-Hrušák-
Martı́nez [GHMC14]. This has been extended to countably directed unbounded families by Guzmán-
Kalajdzievski [GK21].

Let F be a filter on ω; recall that a set X ⊆ [ω]<ω is in (F <ω)+ if and only if for each A ∈ F there is
an s ∈ X with s ⊆ A. Note that if G ⊆ F are filters and X ∈ (F <ω)+, then X ∈ (G<ω)+.
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Given X̄ = 〈Xn | n ∈ ω〉 (with Xn ⊆ [ω]<ω for each n ∈ ω), and f ∈ ωω, let

X̄ f =
⋃
n∈ω

(Xn ∩ P( f (n))).

Theorem 2.3. Let B ⊆ ωω be a countably directed unbounded family. A filter F on ω is B-Canjar if and
only if the following holds: for each sequence X̄ = 〈Xn | n ∈ ω〉 ⊆ (F <ω)+, there exists an f ∈ B such that
X̄ f ∈ (F <ω)+.

Proof. See [GK21, Proposition 10]. �

It is well-known that Cohen forcing C preserves1 the unboundedness of every unbounded family. As
mentioned above, Mathias forcing with respect to a countably generated filter is forcing equivalent to C,
and hence any countably generated filter is B-Canjar for every unbounded family B. To illustrate the
characterization of B-Canjarness from Theorem 2.3, we want to provide the following easy combinatorial
proof:

Lemma 2.4. Let B be a countably directed unbounded family. Then every countably generated filter is
B-Canjar.

Proof. Let F be a filter generated by {an | n < ω}, i.e., A ∈ F if and only if an ⊆ A for some n ∈ ω.
Let X̄ = 〈Xn | n ∈ ω〉 ⊆ (F <ω)+. For every n ∈ ω, let sn ∈ Xn with sn ⊆

⋂
k<n ak (such sn exists since

Xn ∈ (F <ω)+). Let g ∈ ωω be such that g(n) = max(sn) for every n ∈ ω. Since B is unbounded, we can
pick f ∈ B such that f (n) > g(n) for infinitely many n. It is easy to check that sn ∈ X̄ f for infinitely
many n, and this implies that X̄ f ∈ (F <ω)+, as desired. �

Later, we will actually use the following lemma (which is again based on the characterization from the
above Theorem 2.3) to show that a filter is B-Canjar.

Lemma 2.5. Let V ⊆ W be models of ZFC, and assume that B ⊆ ωω ∩ V is unbounded and countably
directed in W, and that F ∈ W is a filter on ω. Moreover, assume the following: for each sequence 〈Xn |

n ∈ ω〉 ⊆ (F <ω)+ there exists a sequence 〈sn | n ∈ ω〉, as well as a model V ′ with V ⊆ V ′ ⊆ W such that

(1) 〈sn | n ∈ ω〉 ∈ V ′,
(2) sn ∈ Xn for each n ∈ ω,
(3) for each D ∈ [ω]ω ∩ V ′ and for each A ∈ F , there exists n ∈ D such that sn ⊆ A.

Then F is B-Canjar (in W).

Proof. We want to show that F is B-Canjar by proving its characterization given by Theorem 2.3. So
suppose a sequence 〈Xn | n ∈ ω〉 ⊆ (F <ω)+ is given. By the hypothesis of the lemma, we can fix 〈sn | n ∈
ω〉 and V ′ satisfying (1)–(3). Due to (1), there is g ∈ V ′ such that sn ⊆ g(n) for each n ∈ ω. Since B is
unbounded in W, there is an f ∈ B such that g �∗ f (i.e., g(n) < f (n) for infinitely many n ∈ ω); to finish
the proof, we want to show that

X̄ f =
⋃
n∈ω

(Xn ∩ P( f (n)))

1In fact, C is almost bounding.
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is in (F <ω)+. So fix A ∈ F . We will find s ∈ X̄ f with s ⊆ A. Note that both f (which is actually in V) and
g are in V ′, so there is an infinite set D ∈ V ′ such that g(n) ≤ f (n) for each n ∈ D. Now use (3) to obtain
an n ∈ D with sn ⊆ A; observe that sn ∈ Xn by (2), and sn ⊆ g(n) ≤ f (n), hence sn ∈ X̄ f , as desired. �

2.2. Preservation of unboundedness at limits. We will also use the following theorem by2 Judah-
Shelah [JS90] about preservation of unboundedness in finite support iterations:

Theorem 2.6. Suppose {Pα, Q̇α | α < δ} is a finite support iteration of c.c.c. partial orders of limit length δ,
and B ⊆ ωω is unbounded and countably directed. Moreover, suppose that

∀α < δ 
Pα “B is an unbounded family”.

Then 
Pδ “B is an unbounded family”.

Proof. See [Fis08, Theorem 3.5.2]. �

3. Hechler’s tower forcing

In this section, we analyze Hechler’s forcing from [Hec72] to add a tower. First, we give some basic
definitions: For a, b ∈ [ω]ω, we say that b ⊆∗ a if b \ a is finite, i.e., ⊆∗ denotes almost-inclusion. For a
sequence 〈aξ | ξ < δ〉 ⊆ [ω]ω, we say that b ∈ [ω]ω is a pseudo-intersection of 〈aξ | ξ < δ〉 if b ⊆∗ aξ for
each ξ < δ. We say that 〈aξ | ξ < δ〉 is a tower of length δ if aη ⊆∗ aξ for any η > ξ, and it does not have
an infinite pseudo-intersection. The tower number t is the smallest length of a tower.

The definition of the forcing we are giving here is not exactly as in [Hec72], but it is easy to see that it
is equivalent. Let λ be a regular uncountable cardinal.

Definition 3.1. TOWλ is defined as follows: p ∈ TOWλ if p is a function with finite domain, dom(p) ⊆ λ,
and for each α ∈ dom(p), we have

p(α) = (sp
α, f p

α ) = (sα, fα),

where

(1) sα ∈ 2<ω,
(2) for each β ∈ dom(p) with β < α, |sβ| ≥ |sα|,
(3) dom( fα) ⊆ dom(p) ∩ α,
(4) fα : dom( fα)→ ω,
(5) whenever β ∈ dom( fα), and n ∈ ω with n ∈ dom(sβ) ∩ dom(sα) and n ≥ fα(β), we have

sβ(n) = 0→ sα(n) = 0.

The order on TOWλ is defined as follows: q ≤ p (“q is stronger than p”) if

(1) dom(p) ⊆ dom(q),
(2) and for each α ∈ dom(p), we have

(a) sp
α E sq

α,
(b) dom( f p

α ) ⊆ dom( f q
α ) and f p

α (β) ≥ f q
α (β) for each β ∈ dom( f p

α ).

2In fact, [JS90, Theorem 2.2] is a much more general version than the one presented here.
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Given a generic filter G for TOWλ, we define, for each α < λ,

aα :=
⋃
{sp
α | p ∈ G ∧ α ∈ dom(p)}.

It is not difficult to verify that the generic object 〈aα | α < λ〉 added by TOWλ is a tower of length λ.

3.1. Complete subforcings. We will now show that Hechler’s forcing for adding a tower of length λ has
many complete subforcings. Let us start with a useful definition:

Definition 3.2. A condition p ∈ TOWλ is called full if there exists an N ∈ ω such that for all α ∈ dom(p)

(1) |sp
α| = N,

(2) N ≥ max(rng( f p
α )),

(3) ∀β ∈ dom(p) with β < α it holds that β ∈ dom( f p
α ).

The set of full conditions is dense:

Lemma 3.3. For every condition p ∈ TOWλ there exists a full condition q with q ≤ p and dom(q) =

dom(p). In particular the set of full conditions is dense in TOWλ.

Proof. First extend p by defining f p
α (β) := |sp

α| for every α, β ∈ dom(p) with β < α for which f p
α (β)

was not defined before. It is easy to see that this extension yields a condition which fulfills (3). Now let
N ≥ max(rng( f p

α )), |sp
α| for every α ∈ dom(p). For every β ∈ dom(p) extend sp

β with 0’s to length N. It is
easy to see that this is a condition and it is full. �

For any C ⊆ λ, let TOWC = {p ∈ TOWλ | dom(p) ⊆ C}. In particular, for any α ≤ λ, we have
TOWα = {p ∈ TOWλ | dom(p) ⊆ α}. Moreover, for p ∈ TOWλ, let p �� C be the condition p′ with
dom(p′) = dom(p) ∩ C, and sp′

α = sp
α, and f p′

α = f p
α � C for each α ∈ dom(p′). Clearly, p �� C is a

condition in TOWC . Note that if C ⊆ λ is downward closed (i.e., if C is an ordinal), then p �� C = p � C.

Lemma 3.4. Let C ⊆ α ≤ λ. Then TOWC is a complete subforcing of TOWα. Moreover, if p ∈ TOWα is
a full condition, then p �� C is a reduction of p to TOWC .

In particular, TOWβ is a complete subforcing of TOWα for each β < α ≤ λ, and, if p ∈ TOWα is a
full condition (in this case, it is easy to see that it is actually not necessary to assume that p is full), then
p � β is a reduction of p to TOWβ. In fact, this is all we are going to need in this paper. Nevertheless, we
decided to prove the more general version (for sets C which are not an ordinal) because it might be useful
for future applications.

Proof of Lemma 3.4. We first show that TOWC ⊆ic TOWα, i.e., incompatible conditions from TOWC are
incompatible in TOWα. Let p0, p1 ∈ TOWC and q ∈ TOWα with q ≤ p0, p1. We have to show that there
exists a condition q′ ∈ TOWC with q′ ≤ p0, p1. Let q′ := q �� C. It is very easy to check that q′ is as we
wanted.

Let p ∈ TOWα. We want to define a reduction of p to TOWC . Let p′ ≤ p be a full condition (see
Lemma 3.3), and let Np′ ∈ ω be such that |sp′

β | = Np′ for all β ∈ dom(p′). Let red(p) := p′ �� C. Let
q ≤ red(p) with q ∈ TOWC; by appending 0’s if necessary we can assume that there is Nq ∈ ω such that
Nq ≥ Np′ and |sq

β| = Nq for all β ∈ dom(q) (we do not need to assume that q is full). We have to show
that q is compatible with p. To show this, we define a witness r as follows. Let dom(r) := dom(p′) ∪



6 VERA FISCHER, MARLENE KOELBING, AND WOLFGANG WOHOFSKY

dom(q) = (dom(p′) \ C) ∪̇ dom(q). For β ∈ dom(q) ∩ dom(p′), let dom( f r
β ) := dom( f q

β ) ∪ dom( f p′

β ) and

let f r
β (δ) := f q

β (δ) for every δ ∈ dom( f q
β ) and f r

β (δ) := f p′

β (δ) for every δ ∈ dom( f p′

β ) \ dom( f q
β ), and for

β ∈ dom(q) \ dom(p′), let f r
β := f q

β . For β ∈ dom(p′) \ dom(q), let f r
β := f p′

β . For β ∈ dom(q), let sr
β := sq

β.

For β ∈ dom(p′) \ C, define sr
β D sp′

β with |sr
β| = Nq as follows: for each n ∈ [Np′ ,Nq), let sr

β(n) = 1 if
and only if there exists δ > β such that δ ∈ dom(p′) ∩ C and sq

δ(n) = 1. Note that |sr
β| = Nq for each

β ∈ dom(r).
The only non-trivial part in showing that r is a condition in TOWα is verifying Definition 3.1(5). So

assume that β < γ, β ∈ dom( f r
γ ), n ≥ f r

γ (β) and sr
γ(n) = 1. We have to show that sr

β(n) = 1. In case both γ
and β belong to dom(q), this just follows from the fact that q is a condition; otherwise, both γ and β belong
to dom(p′), and at least one of the two does not belong to C. If n < Np′ , we get that sr

β(n) = 1 by definition
of r and the fact that p′ is a condition. So we can assume that n ∈ [Np′ ,Nq), and it remains to check the
following three cases. Case 1: γ ∈ dom(p′)∩C and β ∈ dom(p′) \C. Here, sr

β(n) = 1 by definition: since
γ ∈ dom(p′)∩C ⊆ dom(q), we have sq

γ = sr
γ by definition, and hence sq

γ(n) = 1 by assumption; therefore,
sr
β(n) = 1 by definition of sr

β. Case 2: γ, β ∈ dom(p′) \ C. Since sr
γ(n) = 1, by definition there exists

δ > γ such that δ ∈ dom(p′) ∩ C ⊆ dom(q) and sq
δ(n) = 1. Note that δ > β, so by definition sr

β(n) = 1.
Case 3: γ ∈ dom(p′) \C and β ∈ dom(p′) ∩C. Since sr

γ(n) = 1, by definition there exists δ > γ such that

δ ∈ dom(p′) ∩ C ⊆ dom(q) and sq
δ(n) = 1. Recall that p′ is a full condition, so in particular β ∈ dom( f p′

δ )
and f p′

δ (β) ≤ Np′ . Moreover, q ≤ p′, hence β ∈ dom( f q
δ ) and f q

δ (β) ≤ f p′

δ (β) ≤ Np′ . Therefore, due to
n ≥ Np′ ≥ f q

δ (β), it follows that sq
β(n) = 1, and hence sr

β(n) = 1 by definition of r. It is straightforward to
check that r ≤ q and r ≤ p′ ≤ p. �

3.2. Iteration via filtered Mathias forcings. For α < λ, TOWα is a complete subforcing of TOWα+1 by
Lemma 3.4, so we can form the quotient TOWα+1/TOWα. For a generic filter G for TOWα, the quotient
is defined by TOWα+1/TOWα = {p ∈ TOWα+1 | ∀q ∈ G p 6⊥ q}. Note that using Lemma 3.4 a (full)
condition p ∈ TOWα+1 belongs to TOWα+1/TOWα if and only if p � α ∈ G.

Moreover, because conditions in TOWλ have finite domain,

TOWα =
⋃
δ<α

TOWδ

for each limit ordinal α ≤ λ; in other words, TOWα is the direct limit of the forcings TOWδ for δ < α. So
TOWλ is forcing equivalent to the finite support iteration of the quotients TOWα+1/TOWα for α < λ.

Recall that M(F ) denotes Mathias forcing with respect to the filter F (see Definition 2.1). We are now
going to show that TOWα+1/TOWα is forcing equivalent to M(Fα) for a filter Fα. Work in an extension
by TOWα, and note that, for each β < α, a set aβ has been added by TOWα. Let

Fα := 〈{aβ | β < α}〉Fréchet,

i.e., Fα is the filter generated by (the Fréchet filter and) the ⊆∗-decreasing sequence {aβ | β < α} added by
TOWα. Note that each element of Fα is a superset of aβ \ N for some β < α and N ∈ ω.

The quotient TOWα+1/TOWα adds the set aα. The following lemma will provide a dense embedding
from TOWα+1/TOWα toM(Fα) which preserves (the finite approximations of) the generic real aα. There-
fore, aα is also the generic real for M(Fα). Recall that the generic real for M(F ) is a pseudo-intersection
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of F , and the definition of Fα ensures that a pseudo-intersection of it is almost contained in aβ for each
β < α, as it is the case for the real aα.

Lemma 3.5. TOWα+1/TOWα is densely embeddable into M(Fα).

Proof. We work in a fixed extension by TOWα with generic filter G. The embedding ι is defined as
follows: ι(p) := (sp

α, A) where

A :=
⋂

β∈dom( f p
α )

(aβ ∪ f p
α (β)) \ |sp

α|.

To see that it is a dense embedding, we have to check the following conditions:

(1) (Density) For every condition (s, A) ∈ M(Fα) there exists a condition p such that ι(p) ≤ (s, A).
(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p) and ι(p′).
(3) (Order preserving) If p′ ≤ p then ι(p′) ≤ ι(p).

To show (1): Let (s, A) ∈ M(Fα). Since A ∈ Fα, there exist γ < α and N ∈ ω such that aγ \ N ⊆ A.
Extend s with 0’s to sα such that |sα| = max(|s|,N) and let dom( fα) := {γ} and fα(γ) := |sα|. Let
p := {(α, (sα, fα))} ∪ {(γ, (aγ � |sα|, ∅))}. Note that p is full and p � α = {(γ, (aγ � |sα|, ∅))} ∈ G, so
p ∈ TOWα+1/G. Now, ι(p) = (sα, A′) where

A′ =
⋂

β∈dom( fα)

(aβ ∪ fα(β)) \ |sα|.

It follows that

A′ = (aγ ∪ fα(γ)) \ |sα| = aγ \ |sα| ⊆ aγ \ N ⊆ A.

Therefore, and by the above, sα D s, A′ ⊆ A, and sα(n) = 0 for all n ≥ |s|. So ι(p) = (sα, A′) ≤ (s, A).
We prove (2) by showing the contrapositive: Assume ι(p) = (sp

α, A) and ι(p′) = (sp′
α , A′) are compatible.

Define q as follows: dom(q) := dom(p) ∪ dom(p′). For β ∈ dom(q), let dom( f q
β ) := dom( f p

β ) ∪ dom( f p′

β )

and for ρ ∈ dom( f q
β ) let f q

β (ρ) = min( f p
β (ρ), f p′

β (ρ)) (set f p
β (ρ) = ∞, f p′

β (ρ) = ∞ if not defined). Let

sq
α := sp

α ∪ sp′
α . Let N ∈ ω be such that N ≥ |sp

β | for each β ∈ dom(p) and N ≥ |sp′

β | for each β ∈

dom(p′). Let sq
β := aβ � N for β ∈ dom(q) with β < α. The only non-trivial part in showing that q is

a condition in TOWα+1/G is verifying Definition 3.1(5) for α. We can assume without loss of generality
that sp

α E sp′
α = sq

α. Let β ∈ dom( f q
α ), n ≥ f q

α (β), and sq
α(n) = 1. We have to show that aβ(n) = 1. In

case f q
α (β) = f p′

α (β), we get that aβ(n) = 1 because p′ is a condition in the quotient. So let us assume
that f q

α (β) = f p
α (β) < f p′

α (β). If n < |sp
α|, then we are finished because p is a condition in the quotient. If

n ≥ |sp
α|, the compatibility of (sp

α, A) and (sp′
α , A′) implies n ∈ A. Since (sp

α, A) = ι(p), the definition of ι in
particular yields n ∈ aβ ∪ f p

α (β), so we are finished. It is straightforward to check that q ≤ p, p′.
To show (3): Let p′ ≤ p. By definition that means: sp′

α D sp
α and dom( f p′

α ) ⊇ dom( f p
α ), and f p′

α (β) ≤
f p
α (β) for β ∈ dom( f p

α ); so

A′ :=
⋂

β∈dom( f p′
α )

(aβ ∪ f p′
α (β)) \ |sp′

α | ⊆
⋂

β∈dom( f p
α )

(aβ ∪ f p
α (β)) \ |sp

α| =: A.
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Let n ≥ |sp
α| and sp′

α (n) = 1. We have to show that n ∈ A; fix β ∈ dom( f p
α ) and show that n ∈ aβ ∪ f p

α (β). If
n < f p

α (β), this is clear. If n ≥ f p
α (β), it follows that n ≥ f p′

α (β), hence sp′

β (n) = aβ(n) = 1, because p′ is a

condition in the quotient. This shows that ι(p′) = (sp′
α , A′) ≤ (sp

α, A) = ι(p). �

As a side result, let us mention that Hechler’s forcing for adding a tower is σ-centered:

Corollary 3.6. If λ ≤ c, then TOWλ is σ-centered.

Proof. Since Mathias forcing with respect to a filter is always σ-centered (see the remark after Defi-
nition 2.1) and TOWα+1/TOWα is densely embeddable into such a forcing by the above lemma, also
TOWα+1/TOWα is σ-centered.

So TOWλ is a finite support iteration of σ-centered forcings of length at most c. As a matter of
fact, the finite support iteration of σ-centered forcings of length strictly less than c+ is σ-centered (the
result was mentioned without proof in [Tal94, proof of Lemma 2]; for a proof, see [Bla11] or [Gui19,
Lemma 5.3.8]). �

3.3. The filters are B-Canjar. Finally, we show that Hechler’s forcing TOWλ preserves the unbounded-
ness of countably directed unbounded families B. More precisely, let V be the ground model over which
we force with TOWλ, and let B ∈ V be a countably directed unbounded family of reals; we want to show
that B is still unbounded in the extension by TOWλ. Since there always exists an unbounded family B of
size b which is countably directed, TOWλ does not increase the bounding number b (for more details, see
Section 5; in fact, we argue there that we even get b = ω1 whenever we force with TOWλ).

In Section 3.2, we have defined filters Fα for α < λ and have shown that TOWλ is equivalent to the
finite support iteration of the Mathias forcings M(Fα). So we can finish the proof by showing that the
filters Fα are B-Canjar (and M(Fα) therefore preserves the unboundedness of B), and using Theorem 2.6
at limits. In fact, we show the following:

Theorem 3.7. LetB be a countably directed unbounded family. Then TOWλ preserves the unboundedness
of B. More precisely,

(1) TOWα preserves the unboundedness of B for each α ≤ λ,
(2) Fα is B-Canjar for each α < λ.

Proof. First note that B is countably directed in the extension by TOWα for each α ≤ λ, since TOWα

has the c.c.c. (and thus all countable sets of ground model objects are covered by a countable set of the
ground model).

We prove (1) and (2) by (simultaneous) induction on α < λ. Suppose (1) and (2) hold for all α′ < α.

Proof of (1):

In case α = α′ + 1 is a successor ordinal, use the fact that (1) holds for α′ by induction, so B is
unbounded in the extension by TOWα′ ; recall that, by Lemma 3.5, TOWα = TOWα′ ∗M(Fα′); since (2)
holds for α′ by induction, M(Fα′) preserves the unboundedness of B, hence the same is true for TOWα,
as desired.

In case α is a limit ordinal, we use the fact that TOWα is the finite support iteration of c.c.c. forcings,
as well as that (1) holds for each α′ < α; so we can apply Theorem 2.6 to conclude (1) for α.
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Proof of (2):

In case cf(α) ≤ ω, just note that Fα is countably generated; so, by Lemma 2.4, Fα is B-Canjar, as
desired.

In case cf(α) > ω, we proceed as follows (this is going to be the main technical part of the proof): in
order to show that Fα is B-Canjar, it is sufficient to establish the hypothesis of Lemma 2.5.

Let W be the extension of V by TOWα; note that Fα, which is generated by the Fréchet filter and
{aβ | β < α}, lies in W. Now observe that we have already proven (1) for α (without having used (2)
for α), i.e., we know that B is unbounded in W.

Now suppose that 〈Xn | n ∈ ω〉 ⊆ (Fα<ω)+ is given. We will find 〈sn | n ∈ ω〉 and V ′ with V ⊆ V ′ ⊆ W
such that Lemma 2.5(1)–(3) hold. Since the Xn’s are essentially reals, the forcing TOWα has the c.c.c.,
and cf(α) > ω, we can fix γ < α such that 〈Xn | n ∈ ω〉 belongs to the extension of V by TOWγ; let V ′ be
the extension by TOWγ+1; clearly, V ⊆ V ′ ⊆ W.

For each n ∈ ω, we have aγ \ n ∈ Fα and Xn ∈ (Fα<ω)+; therefore, for each n, there exists an s ∈ Xn

such that s ⊆ aγ \ n. The same holds in V ′ since Xn ∈ V ′ for each n and aγ ∈ V ′. Since 〈Xn | n ∈ ω〉 ∈ V ′,
we can pick a sequence 〈sn | n ∈ ω〉 ∈ V ′ such that sn ∈ Xn and sn ⊆ aγ \ n for every n.

It remains to show that Lemma 2.5(3) holds true. So fix D ∈ [ω]ω ∩ V ′; we have to prove that each
element of Fα contains (as a subset) an sn for some n ∈ D, i.e., that the following holds for each β < α:

(1) ∀k ∈ ω ∃n ∈ D sn ⊆ aβ \ k.

In case β ≤ γ, this is easy: fix k ∈ ω; recall that aγ ⊆∗ aβ, so we can pick n ≥ k with n ∈ D such that
aγ \ n ⊆ aβ; but then sn ⊆ aγ \ n ⊆ aβ \ k, as desired.

In case β > γ, we show (1) by induction on β: assume we have shown it for every β′ < β; we will show
it for β.

Fix k ∈ ω, and work in the extension by TOWβ (note that D belongs to the extension by TOWγ+1,
hence also to the extension by TOWβ due to β ≥ γ + 1); observe that aβ is added in the step from β to
β + 1, i.e., by the quotient forcing TOWβ+1/TOWβ (which is equivalent to M(Fβ)). We finish the proof
by showing that the set

{q ∈ TOWβ+1/TOWβ | ∃n ∈ D q
 sn ⊆ aβ \ k}

is dense. Let p ∈ TOWβ+1/TOWβ, so p(β) =: (s, f ) where f is a function with dom( f ) ⊆ β finite. Let
β′ := max(dom( f )), and note that β′ < β. Moreover, let ` be large enough such that aβ′ \ ` ⊆ aβ′′ for each
β′′ ∈ dom( f ), and let L := max(`, k, |s|). Use (1) for β′ and L to pick n ∈ D such that sn ⊆ aβ′ \ L; because
L ≥ `, it follows that sn ⊆ aβ′′ \ L for each β′′ ∈ dom( f ). Now strengthen p as follows. Extend s to s∗ in
such a way that s∗(m) = 1 if m ∈ sn and s∗(m) = 0 if m < sn and m ≥ |s| (this is legitimate, because sn is
a subset of each aβ′′ with β′′ ∈ dom( f )); then it is easy to find a condition q ∈ TOWβ+1/TOWβ such that
q ≤ p and q(β) = (s∗, f ). Note that q
 sn ⊆ aβ \ k, as desired. �

4. Hechler’s mad family forcing

In this section, we analyze Hechler’s forcing from [Hec72] to add a mad family. Again, we start with
some basic definitions: For a, b ∈ [ω]ω, we say that a and b are almost disjoint if a∩b is finite. Moreover,
we say that A ⊆ [ω]ω is an almost disjoint family if a and a′ are almost disjoint whenever a, a′ ∈ A with
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a , a′. An almost disjoint family A is maximal (called mad family) if for each b ∈ [ω]ω there exists a ∈ A
such that |b ∩ a| = ℵ0. The almost disjointness number a is the smallest size of an infinite mad family.

The definition of the forcing we are giving here is not exactly as in [Hec72], but it is easy to see that it
is equivalent. Let λ be a regular uncountable cardinal.

Definition 4.1. MADλ is defined as follows: p ∈ MADλ if p is a function with finite domain, dom(p) ⊆ λ,
and for each α ∈ dom(p), we have p(α) = (sp

α, h
p
α) = (sα, hα) where

(1) sα ∈ 2<ω,
(2) dom(hα) ⊆ dom(p) ∩ α,
(3) hα : dom(hα)→ ω,
(4) whenever β ∈ dom(hα), and n ∈ ω with n ∈ dom(sβ) ∩ dom(sα) and n ≥ hα(β), we have

sβ(n) = 0 ∨ sα(n) = 0.

The order on MADλ is defined as follows: q ≤ p (“q is stronger than p”) if

(1) dom(p) ⊆ dom(q),
(2) and for each α ∈ dom(p), we have

(a) sp
α E sq

α,
(b) dom(hp

α) ⊆ dom(hq
α) and hp

α(β) ≥ hq
α(β) for each β ∈ dom(hp

α).

Given a generic filter G for MADλ, we define, for each α < λ,

aα :=
⋃
{sp
α | p ∈ G ∧ α ∈ dom(p)}.

It is not difficult to verify that the generic object {aα | α < λ} added by MADλ is a mad family of size λ.

4.1. Complete subforcings. We will now show that Hechler’s forcing for adding a mad family of size λ
has many complete subforcings. Let us start with a useful definition:

Definition 4.2. A condition p ∈ MADλ is called full if there exists an N ∈ ω such that for all α ∈ dom(p)

(1) |sp
α| = N,

(2) N ≥ max(rng(hp
α)),

(3) ∀β ∈ dom(p) with β < α it holds that β ∈ dom(hp
α).

The set of full conditions is dense:

Lemma 4.3. For every condition p ∈ MADλ there exists a full condition q with q ≤ p and dom(q) =

dom(p). In particular the set of full conditions is dense in MADλ.

Proof. First extend p by defining hp
α(β) := |sp

α| for every α, β ∈ dom(p) with β < α for which hp
α(β) was

not defined before. It is easy to see that this extension yields a condition which fulfills (3). Now let
N ≥ max(rng(hp

α)), |sp
α| for every α ∈ dom(p). For every β ∈ dom(p) extend sp

β with 0’s to length N. It is
easy to see that this is a condition and it is full. �

For any C ⊆ λ, let MADC = {p ∈ MADλ | dom(p) ⊆ C}. In particular, for any α ≤ λ, we have
MADα = {p ∈ MADλ | dom(p) ⊆ α}. Moreover, for p ∈ MADλ, let p �� C be the condition p′ with
dom(p′) = dom(p) ∩ C, and sp′

α = sp
α, and hp′

α = hp
α � C for each α ∈ dom(p′). Clearly, p �� C is a

condition in MADC . Note that if C ⊆ λ is downward closed (i.e., if C is an ordinal), then p �� C = p � C.
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Lemma 4.4. Let C ⊆ α ≤ λ. Then MADC is a complete subforcing of MADα. Moreover, if p ∈ MADα is
a full condition, then p �� C is a reduction of p to MADC .

Before proving the lemma, let us recall that in the context of Hechler’s forcing to add a tower, we only
used a special instance of Lemma 3.4, namely that TOWβ is a complete subforcing of TOWα, whereas
here, we are going to use the more general version for sets C ⊆ α which are not ordinals. For Section 4.2,
we need again only the special case of β < α; the more general version is needed in Section 4.3. In
Section 3.3, when dealing with TOWλ, we do not need such a more general version, for the following
reason: the filter Fγ+1 is always countably generated (just because {aγ \ n | n ∈ ω} is a basis, due to the
fact that aγ ⊆∗ aβ for each β < γ), and so the analogue of the set C ⊆ α needed in Theorem 4.7 can be
replaced by any upper bound which is a successor ordinal. This is not possible when dealing with MADλ
since then Fβ is never countably generated unless β < ω1.

Proof of Lemma 4.4. We first show that MADC ⊆ic MADα, i.e., incompatible conditions from MADC are
incompatible in MADα. Let p0, p1 ∈ MADC and q ∈ MADα with q ≤ p0, p1. We have to show that there
exists a condition q′ ∈ MADC with q′ ≤ p0, p1. Let q′ := q �� C. It is very easy to check that q′ is as we
wanted.

Let p ∈ MADα. We want to define a reduction of p to MADC . Let p′ ≤ p be a full condition (see
Lemma 4.3). and let Np′ ∈ ω be such that |sp′

β | = Np′ for all β ∈ dom(p′). Let red(p) := p′ �� C. Let
q ≤ red(p) with q ∈ MADC . We have to show that q is compatible with p. To show this, we define a
witness r as follows. Let dom(r) := dom(p′) ∪ dom(q) = (dom(p′) \ C) ∪̇ dom(q). For β ∈ dom(q), let
sr
β := sq

β, and for β ∈ dom(q) ∩ dom(p′), let dom(hr
β) := dom(hq

β) ∪ dom(hp′

β ) and let hr
β(δ) := hq

β(δ) for

every δ ∈ dom(hq
β) and hr

β(δ) := hp′

β (δ) for every δ ∈ dom(hp′

β ) \ dom(hq
β), and for β ∈ dom(q) \ dom(p′),

let hr
β := hq

β. For β ∈ dom(p′) \ dom(q), let sr
β := sp′

β and hr
β := hp′

β .
The only non-trivial part in showing that r is a condition in MADα is verifying Definition 4.1(4). So

assume that β < γ, β ∈ dom(hr
γ), n ≥ hr

γ(β) and sr
γ(n) = 1. We have to show that sr

β(n) = 0 if it is defined.
In case both γ and β belong to dom(q), this just follows from the fact that q is a condition; otherwise,
both γ and β belong to dom(p′), and at least one of the two does not belong to C. If n < Np′ , we get that
sr
β(n) = 0 by definition of r and the fact that p′ is a condition. But if n ≥ Np′ , then either sr

β(n) or sr
γ(n) is

not defined, and there is nothing to show. It is straightforward to check that r ≤ q and r ≤ p′ ≤ p. �

4.2. Iteration via filtered Mathias forcings. For α < λ, MADα is a complete subforcing of MADα+1 by
Lemma 4.4, so we can form the quotient MADα+1/MADα. For a generic filter G for MADα, the quotient
is defined by MADα+1/MADα = {p ∈ MADα+1 | ∀q ∈ G p 6⊥ q}. Note that using Lemma 4.4 a full
condition p ∈ MADα+1 belongs to MADα+1/MADα if and only if p � α ∈ G.

Moreover, because conditions in MADλ have finite domain,

MADα =
⋃
δ<α

MADδ

for each limit ordinal α ≤ λ; in other words, MADα is the direct limit of the forcings MADδ for δ < α. So
MADλ is forcing equivalent to the finite support iteration of the quotients MADα+1/MADα for α < λ.

Recall that M(F ) denotes Mathias forcing with respect to the filter F (see Definition 2.1). We are now
going to show that MADα+1/MADα is forcing equivalent to M(Fα) for a filter Fα. Work in an extension
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by MADα, and note that, for each β < α, a set aβ has been added by MADα. Let

Fα := 〈{ω \ aβ | β < α}〉Fréchet,

i.e., Fα is the filter generated by (the Fréchet filter and) the complements of the members of the almost
disjoint family {aβ | β < α} added by MADα.

The quotient MADα+1/MADα adds the set aα. The following lemma will provide a dense embedding
fromMADα+1/MADα toM(Fα) which preserves (the finite approximations of) the generic real aα. There-
fore, aα is also the generic real for M(Fα). Recall that the generic real for M(F ) is a pseudo-intersection
of F , and the definition of Fα ensures that a pseudo-intersection of it is almost disjoint from aβ for each
β < α, as it is the case for the real aα.

Lemma 4.5. MADα+1/MADα is densely embeddable into M(Fα).

Proof. We work in a fixed extension by MADα. The embedding ι is defined as follows: ι(p) := (sp
α, A)

where
A :=

⋂
β∈dom(hp

α)

((ω \ aβ) ∪ hp
α(β)) \ |sp

α|.

To see that it is a dense embedding, we have to check the following conditions:

(1) (Density) For every condition (s, A) ∈ M(Fα) there exists a condition p such that ι(p) ≤ (s, A).
(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p) and ι(p′).
(3) (Order preserving) If p′ ≤ p then ι(p′) ≤ ι(p).

To show (1): Let (s, A) ∈ M(Fα). Since A ∈ Fα, there exist finitely many {βi | i < m} ⊆ α and N ∈ ω
such that

⋂
i<m(ω \ aβi) \ N ⊆ A. Extend s with 0’s to sα such that |sα| = max(|s|,N) and define hα by

dom(hα) = {βi | i < m} and hα(βi) = |sα| for each i < m. Let p := {(α, (sα, hα))} ∪ {(βi, (〈〉, ∅)) | i < m}.
Clearly, p � α belongs to any generic filter for MADα, and therefore p ∈ MADα+1/MADα. Now,
ι(p) = (sα, A′) where

A′ =
⋂

β∈dom(hα)

((ω \ aβ) ∪ hα(β)) \ |sα|.

It follows that
A′ =

⋂
β∈dom(hα)

(ω \ aβ) \ |sα| ⊆
⋂
i<m

(ω \ aβi) \ N ⊆ A.

Therefore, and by the above, sα D s, A′ ⊆ A, and sα(n) = 0 for all n ≥ |s|. So ι(p) = (sα, A′) ≤ (s, A).
We prove (2) by showing the contrapositive: Assume ι(p) = (sp

α, A) and ι(p′) = (sp′
α , A′) are compatible.

Define q as follows: dom(q) := dom(p)∪ dom(p′). For β ∈ dom(q), let sq
β := sp

β ∪ sp′

β (set sp
β = 〈〉, sp′

β = 〈〉

if not defined), dom(hq
β) := dom(hp

β) ∪ dom(hp′

β ) and for ρ ∈ dom(hq
β) let hq

β(ρ) = min(hp
β(ρ), hp′

β (ρ)) (set

hp
β(ρ) = ∞, hp′

β (ρ) = ∞ if not defined). Similar to the proof of (2) in Lemma 3.5, it follows that q is a
condition in the quotient and q ≤ p, p′.

To show (3): Let p′ ≤ p. By definition that means: sp′
α Dsp

α and dom(hp′
α ) ⊇ dom(hp

α), and hp′
α (β) ≤ hp

α(β)
for β ∈ dom(hp

α); so

A′ :=
⋂

β∈dom(hp′
α )

((ω \ aβ) ∪ hp′
α (β)) \ |sp′

α | ⊆
⋂

β∈dom(hp
α)

((ω \ aβ) ∪ hp
α(β)) \ |s| =: A.
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Let n ≥ |sp
α| and sp′

α (n) = 1. We have to show that n ∈ A; fix β ∈ dom(hp
α) and show that n ∈ (ω\aβ)∪hp

α(β).
If n < hp

α(β), this is clear. If n ≥ hp
α(β), it follows that n ≥ hp′

α (β), hence aβ(n) = 0, because p′ is a condition
in the quotient. This shows that ι(p′) = (sp′

α , A′) ≤ (sp
α, A) = ι(p). �

As a side result, let us mention that Hechler’s forcing for adding a mad family is σ-centered:

Corollary 4.6. If λ ≤ c, then MADλ is σ-centered.

Proof. The proof is completely analogous to the proof of Corollary 3.6. �

4.3. The filters are B-Canjar. Finally, as we did in Section 3.3 for Hechler’s tower forcing TOWλ,
we show that Hechler’s forcing MADλ preserves the unboundedness of countably directed unbounded
families B. More precisely, let V be the ground model over which we force with MADλ, and let B ∈ V be
a countably directed unbounded family of reals; we want to show thatB is still unbounded in the extension
by MADλ. Since there always exists an unbounded family B of size b which is countably directed, MADλ
does not increase the bounding number b (for more details, see Section 5; in fact, we argue there that we
even get b = ω1 whenever we force with MADλ).

In Section 4.2, we have defined filters Fα for α < λ and have shown that MADλ is equivalent to the
finite support iteration of the Mathias forcings M(Fα). So we can finish the proof by showing that the
filters Fα are B-Canjar (and M(Fα) therefore preserves the unboundedness of B), and using Theorem 2.6
at limits. In fact, we show the following:

Theorem 4.7. Let B be a countably directed unbounded family. Then MADλ preserves the unbounded-
ness of B. More precisely,

(1) MADα preserves the unboundedness of B for each α ≤ λ,
(2) Fα is B-Canjar for each α < λ.

Proof. First note that B is countably directed in the extension by MADα for each α ≤ λ, since MADα
has the c.c.c. (and thus all countable sets of ground model objects are covered by a countable set of the
ground model).

We prove (1) and (2) by (simultaneous) induction on α < λ. Suppose (1) and (2) hold for all α′ < α.

Proof of (1):

In case α = α′ + 1 is a successor ordinal, use the fact that (1) holds for α′ by induction, so B is
unbounded in the extension by MADα′ ; recall that, by Lemma 4.5, MADα = MADα′ ∗M(Fα′); since (2)
holds for α′ by induction, M(Fα′) preserves the unboundedness of B, hence the same is true for MADα,
as desired.

In case α is a limit ordinal, we use the fact that MADα is the finite support iteration of c.c.c. forcings,
as well as that (1) holds for each α′ < α; so we can apply Theorem 2.6 to conclude (1) for α.

Proof of (2):

In case α < ω1, just note that Fα is countably generated; so, by Lemma 2.4, Fα is B-Canjar, as desired.
In case α ≥ ω1, we proceed as follows (this is going to be the main technical part of the proof): in

order to show that Fα is B-Canjar, it is sufficient to establish the hypothesis of Lemma 2.5.
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Let W be the extension of V by MADα; note that Fα, which is generated by the Fréchet filter and
{ω \ aβ | β < α}, lies in W. Now observe that we have already proven (1) for α (without having used (2)
for α), i.e., we know that B is unbounded in W.

Now suppose that 〈Xn | n ∈ ω〉 ⊆ (Fα<ω)+ is given. We will find 〈sn | n ∈ ω〉 and V ′ with V ⊆ V ′ ⊆ W
such that Lemma 2.5(1)–(3) hold. Since the Xn’s are essentially reals and the forcingMADα has the c.c.c.,
we can pick a countable “support” C ⊆ α, i.e., a set C such that 〈Xn | n ∈ ω〉 belongs to the extension
by MADC (which is a complete subforcing of MADα by Lemma 4.4); let V ′ be the extension by MADC;
clearly, V ⊆ V ′ ⊆ W.

Enumerate C by {γ` | ` < ω} and let c` := ω \ aγ` for each ` ∈ ω. For each n ∈ ω, we have
⋂
`≤n c` \ n ∈

Fα and Xn ∈ (Fα<ω)+; therefore, for each n, there exists an s ∈ Xn such that s ⊆
⋂
`≤n c` \ n. The same

holds in V ′ since Xn ∈ V ′ for each n and c` ∈ V ′ for each `. Since 〈Xn | n ∈ ω〉 ∈ V ′ and 〈c` | ` ∈ ω〉 ∈ V ′,
we can pick a sequence 〈sn | n ∈ ω〉 ∈ V ′ such that sn ∈ Xn and sn ⊆

⋂
`≤n c` \ n for every n.

It remains to show that Lemma 2.5(3) holds true. So fix D ∈ [ω]ω ∩ V ′; we have to prove that each
element of Fα contains (as a subset) an sn for some n ∈ D, i.e., that the following holds for each finite
sequence 〈βi | i < N〉 ⊆ α:

(2) ∀k ∈ ω ∃n ∈ D sn ⊆
⋂
i<N

(ω \ aβi) \ k.

We first observe that (2) holds in case that {βi | i < N} ⊆ C: fix k ∈ ω, and note that there is m ∈ ω such
that for each n ≥ m, we have

sn ⊆
⋂
`≤n

c` \ n ⊆
⋂
i<N

(ω \ aβi) \ k,

hence there is such an n in the infinite set D, as desired.
We now show (2) for arbitrary {βi | i < N} ⊆ α, using a genericity argument. Let NC := {i ∈ N | βi ∈ C},

and Nα\C := {i ∈ N | βi < C}, so N = NC ∪̇Nα\C .
Fix k ∈ ω, and work in V ′, the extension by MADC (note that D ∈ V ′); observe that the aβi’s for

i ∈ Nα\C are added by the quotient forcing MADα/MADC . We finish the proof by showing that the set

{q ∈ MADα/MADC | ∃n ∈ D q
 sn ⊆
⋂
i<N

(ω \ aβi) \ k}

is dense. Let p ∈ MADα/MADC; we can assume that βi ∈ dom(p) for each i ∈ N. For i ∈ Nα\C , let
p(βi) =: (sp

βi
, hp

βi
). Let L := max({k} ∪ {|sp

βi
| | i ∈ Nα\C}). Since (2) holds for βi’s in C (as shown above),

we can pick n ∈ D such that

sn ⊆
⋂
i∈NC

(ω \ aβi) \ L.

Now extend p to q by extending all the sp
βi

with i ∈ Nα\C with 0’s up to the maximum of sn (recall that we
can always3 extend with 0’s, because this does not harm the requirement related to almost disjointness).

3This technical part of the genericity argument is easier than in case of the tower forcing, because it is enough to extend the
s’s by 0’s. In the case of tower forcing, on the other hand, we have to add 1’s, which needs some preparation.
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So we get that q forces m ∈ ω \ aβi for all i ∈ Nα\C and all m ∈ sn, and hence

q
 sn ⊆
⋂

i∈Nα\C

(ω \ aβi) ∩
⋂
i∈NC

(ω \ aβi) \ L ⊆
⋂
i∈N

(ω \ aβi) \ k,

as desired. �

5. Conclusion

In this section, we present some facts about cardinal characteristics which easily follow from our ana-
lysis of TOWλ and MADλ.

First note that any unbounded scale, i.e., any unbounded set B = { fi | i < κ} such that fi ≤∗ f j for i ≤ j,
is countably directed, because its length κ has uncountable cofinality. Therefore, by Theorem 3.7 and
Theorem 4.7, any unbounded scale of the ground model remains unbounded in the extension by TOWλ

and MADλ, respectively. It is easy to see that there exists always an unbounded scale of length b. Assume
V |= “b = κ”. Then VTOWλ |= “there exists an unbounded scale of length κ and there exists a tower
of length λ”. In particular, this implies that VTOWλ |= “b ≤ κ”. The same argument works for MADλ,
therefore VMADλ |= “b ≤ κ and there exists an unbounded scale of length κ and a mad family of size λ”.

Note that the above shows that b = ω1 holds in the extension by TOWλ (or MADλ) provided that
b = ω1 holds in the ground model. But in fact the following argument shows that no assumption about
b in the ground model is necessary for this conclusion. The forcing TOWλ can be decomposed into
TOWω1 ∗ (TOWλ/TOWω1). By Section 3.2, TOWω1 is equivalent to an iteration of length ω1 of Mathias
forcings with respect to countably generated filters, therefore it is equivalent to the Cohen forcing which
adds ω1 many Cohen reals. Since these ω1 many Cohen reals form an unbounded family, it follows that
VTOWω1 |= “b = ω1”. In VTOWω1 , let B be an unbounded family of size ω1 which is countably directed.
The quotient TOWλ/TOWω1 is equivalent to a finite support iteration of Mathias forcings with respect to
filters which are B-Canjar (which follows as in the proof of Theorem 3.7), therefore B is unbounded in
VTOWλ , thus, using that t ≤ b, we get the following:

Corollary 5.1. Let λ be a regular uncountable cardinal. Then the following holds in VTOWλ:

(1) t = b = ω1.
(2) There exist towers4 of length ω1 and of length λ.
(3) There exist unbounded scales of length ω1 and of length bV (and of any length κ for which there

exists an unbounded scale in the ground model V).

The analogous argument works for MADλ, so we get the following:

Corollary 5.2. Let λ be a regular uncountable cardinal. Then the following holds in VMADλ:

(1) t = b = ω1.
(2) There exists5 a mad family of size λ.
(3) There exist unbounded scales of length ω1 and of length bV (and of any length κ for which there

exists an unbounded scale in the ground model V).

4The generic object added by TOWω1 is a tower of length ω1 in VTOWω1 , but it is clearly not a tower in VTOWλ any more.
5Of course, there also exists a tower of length ω1, as in VTOWλ .
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6. Questions

Finally, let us list a few questions, which the anonymous referee suggested to add to the paper. Note
that TOWλ and MADλ are forcing equivalent in case λ ≤ ω1, because in this case both can be written
(see Section 3.2 and Section 4.2) as finite support iterations of Mathias forcings with respect to countably
generated filters (which are just Cohen forcing). We strongly conjecture, however, that this is not the case
for larger λ:

Question 6.1. Are TOWλ and MADλ forcing equivalent for λ > ω1?

The above question could be settled by showing that MADλ adds an object which is not added by
TOWλ, or vice versa:

Question 6.2. Let λ > ω1. Does TOWλ add a mad family of size λ? DoesMADλ add a tower of length λ?

For regular uncountable λ, both TOWλ and MADλ force t = b = ω1 (see Corollary 5.1 and Corol-
lary 5.2).

Question 6.3. Does TOWλ force a = ω1? Does MADλ force a = ω1?

Acknowledgments. We want to thank Osvaldo Guzmán for his inspiring tutorial at the Winter School
2020 in Hejnice about B-Canjar filters, as well as the anonymous referee for several helpful suggestions,
which improved the presentation of the paper.
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