
PROJECTIVE WELL ORDERS AND COANALYTIC WITNESSES

JEFFREY BERGFALK, VERA FISCHER, AND COREY BACAL SWITZER

Abstract. We further develop a forcing notion known as Coding with Perfect Trees

and show that this poset preserves, in a strong sense, definable P -points, definable tight
MAD families and definable selective independent families. As a result, we obtain a
model in which a = u = i = @1 < 2@0 = @2, each of a, u, i has a ⇧1

1 witness and there
is a �1

3 well-order of the reals. Note that both the complexity of the witnesses of the
above combinatorial cardinal characteristics, as well as the complexity of the well-order
are optimal. In addition, we show that the existence of a �1

3 well-order of the reals is
consistent with c = @2 and each of the following: a = u < i, a = i < u, a < u = i, where
the smaller cardinal characteristics have co-analytic witnesses.

Our methods allow the preservation of only su�ciently definable witnesses, which
significantly di↵ers from other preservation results of this type.

1. Introduction

In recent literature an important line of research on the border between combinatorial
and descriptive set theory has developed by looking at various combinatorial sets of reals
of optimal projective complexity. Beginning with Miller’s seminal [15], this includes the
study of witnesses to various cardinal characteristics defined as the maximal set of reals
with such and such property; see also [2], [6]. Another important example is the study of
the possible complexity of well-orderings of reals; see [4] and the references therein.

In the present article we contribute to this project by exhibiting a model where a
number of di↵erent combinatorial sets of reals all have optimal projective complexity
simultaneously. Specifically our main theorem is as follows.

Main Theorem 1.1. It is consistent that a = u = i = @1 < 2@0 = @2, u, a, i have ⇧1
1

(and hence optimal) witnesses of cardinality @1 and there is a �1
3 well-order of the reals

(also optimal).

The main techniques involved in proving Main Theorem 1.1 are the forcing from [4] for
forcing 2@0 = @2 alongside a�1

3 well-order and the study of stronger versions of maximality
for almost disjoint families, filter bases and independent families and proving preservation
theorems relating to these which can be used in our context. An interesting feature of our
analysis is that, while preservation theorems for these classes already existed, we often had
to modify them, and restrict to “definable” witnesses in order to preserve any maximal
set along our intended iterations. A by-product of our analysis is that we can also arrange
a variety of cardinal characteristic constellations to hold alongside optimal witnesses.

2000 Mathematics Subject Classification. 03E17, 03E35, 03E50.
Acknowledgements: The authors would like to thank the Austrian Science Fund (FWF) for the generous
support through grant number Y1012-N35.

1



2 BERGFALK, FISCHER, AND SWITZER

Main Theorem 1.2. The following cardinal characteristic constellations are consistent
with a �1

3 well-order of the reals, 2@0 = @2 and all cardinal characteristics of size @1 below
having ⇧1

1 witnesses:

(1) a = u < i = c,
(2) a = i < u = c,
(3) a < u = i = c.

The study of the three cardinals i, u and a involves studying various witnesses wherein
the maximality condition is strengthened in such a way that it can be preserved by count-
able support iterations of S-proper posets for a suitably chosen stationary S ✓ !1. It
seems that our methods only preserve witnesses of this type that are su�ciently defin-
able, a circumstance which is, to our knowledge, di↵erent from that of other preservation
theorems of this sort.

The rest of this paper is organized as follows. In the next section we review the main
forcing from [4] and modify it slightly in a manner important for our purposes. Sections
3-5 contain our preservation theorems leading into Section 6 where applications, including
the proof of Main Theorem 1.1, are given. Section 7 concludes the paper with some
remarks, open questions and lines for future research.

2. The Fischer-Friedman Forcing to Add a �1
3-Well Order

In this section we record a slight variation on the main forcing from [4]. This forcing,
which is defined over L, adds �1

3-well order of the reals, forces 2
@0 = @2 and has the Sacks

property. Moreover, it is flexible in the sense that other proper forcing notions can be
“woven in” along the iteration resulting in various constellations of cardinal characteristics.
See [4, Section 6] for several theorems of this form. Here, for the most part, we go over the
main attributes of this forcing for the convenience of the reader. Most proofs are left out
and we refer the reader to [4] for a more detailed discussion of this poset. However, for our
preservation theorems in Sections 3-5 we will need to slightly augment the definition of
the Sacks coding iterand (Subsection 2.3 below) and this augmentation will be discussed
in more detail.

There are three ingredients that go into the Fischer-Friedman forcing and we take them
one at a time. Throughout the rest of the paper, following [4] we say that a transitive

model M is suitable if !M
2 exists and !

M
2 = !

L
M

2 . The forcing notion we define will be a
countable support iteration P!2 of forcing notions and each iterand will be defined in some
L[G⇤] where G

⇤ is generic for some forcing notion P
⇤
2 L in which cofinalities (and hence

cardinals) have not been changed. Consequently we assume when making definitions in
this section that V = L[G⇤] and the cofinalities of V are the same as those of L.

2.1. Localization. Let X ✓ !1 and '(!1, X) be a ⌃1 sentence with parameters !1 and
X which is true in all suitable models which contain !1 and X as elements. The first
forcing notion we will need to define P!2 is the following.

Definition 2.1 (Localization Forcing). Let L(') be the partial order consisting of all
functions r : |r| ! 2 where |r| is a countable limit ordinal and the following hold.

(1) If � < |r| then � 2 X if and only if r(2�) = 1.
(2) If �  |r| and M is a countable, suitable model containing r � � as an element

and � = !
M
1 then M |= '(�, X \ �).
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The extension relation is end extension.

Observe that if r 2 L(') then the even part of r codes X \ |r|. The following facts from
[4] are relevant for our discusssion.

Fact 2.2. The following hold.

(1) ([4, Lemma 1]) For all � < !1 the set of conditions r 2 L(') so that �  |r| is
dense.

(2) ([4, Lemma 2]) Let G ✓ L(') be generic over V and let Y =
S
G. If M is a

suitable model containing Y � !M
1 as an element then M |= '(!M

1 , X \ !
M
1 ).

(3) ([4, Lemmas 3 and 4]) L(') has a �-closed dense subset and therefore is proper
and adds no reals.

2.2. Club Shooting. Given a stationary, co-stationary set S ✓ !1 recall the forcing Q(S)
for shooting a club through the complement of S. NamelyQ(S) consists of countable closed
subsets of !1 \ S ordered by end-extension. The following is well-known, see [14].

Fact 2.3. For any stationary, co-stationary S ✓ !1 the forcing Q(S) is !-distributive and
!1 \ S-proper.

Here, a forcing notion Q is T -proper for some stationary T ✓ !1 if for any su�ciently
large ✓ and countable elementary submodel M � H✓ such that M \ !1 2 T , every p 2 Q

extends to a q  p which is (M,Q)-generic. It is well known that most iteration and
preservation theorems for countable support iterations of proper notions apply mutatis
mutandis to countable support iterations of T -proper forcing notions.

We will need a special sequence of stationary sets S for which the forcings of the form
Q(S) will appears as iterands in P!2 . We describe these now.

Lemma 2.4 (See Lemma 14 of [4]). Assume V = L. There is a function F : !2 ! L!2

which is ⌃1 definable over L!2 and a sequence ~S = hS� | � < !2i of almost disjoint
stationary subsets of !1 which is ⌃1-definable over L!2 with parameter !1 so that F�1(a)
is unbounded in !2 for every a 2 L!2 and whenever M and N are suitable models so that
!
M
1 = !

N
1 then F

M and ~S
M agree with F

N and ~S
N on !

N
2 \ !

M
2 . In addition, if M is

suitable and !
M
1 = !1 then F

M and ~S
M equal the restrictions of F and ~S to the !2 of

M.

From now on, fix an F and ~S as described in Lemma 2.4.

2.3. Coding with Perfect Trees. The third component of P!2 is the only one which
adds reals. It is a variation of Sacks forcing called the coding with perfect trees forcing,
denoted by C(Y ). To define it, we assume that V = L[Y ] where Y ✓ !1 is generic for
some forcing in L which does not change cofinalities. Fix a sequence ~µ = hµi | i < !1i

defined inductively so that µi >
S

j<i
µj is for each i < !1 a countable ordinal which is

least with the property that Lµi [Y \ i] is ⌃1
5 elementary in L!1 [Y \ i] and is a model of

ZF�+“! is the largest cardinal”. Note that this is slightly di↵erent than the definition of
~µ given in [4], which requires no elementarity whatsoever. However, requiring a degree of
elementarity at any fixed level of the projective hierarchy does not change the fact that
the sequence ~µ is definable in L!1 [Y ], and this is all that matters for their arguments.

Remark 1. The use of ⌃1
5 as opposed to say, ⌃1

6, ⌃
1
25 or ⌃1

35469 is inconsequential. All that
matters is that we fix a finite level of the projective hierarchy ahead of time and restrict our
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arguments to statements at that level or below. The witnesses we will be considering in
this paper are mostly ⇧1

1 (and occasionally ⌃1
2) and it takes two to three more quantifiers

to write down the relevant properties of them, hence the choice of 5. However, if we were
interested in preserving, e.g., ⇧1

5 witnesses then ⌃1
9 (9 = 5 + 4) would su�ce. Since the

exact level does not matter, in the interests of this paper’s readability we won’t count
quantifiers too closely, regarding this sort of analysis as essentially routine. Rather we
will refer, somewhat excessively, to “elementarity”, simply, and leave the details to the
particularly exacting reader.

The conditions of C(Y ) will be perfect trees T ✓ 2<!. For T a perfect tree let |T | be
the least i with T 2 Lµi [Y \ i]. Let us also denote Ai := Lµi [Y \ i] for each i. A real r
codes Y below i if and only if j 2 Y if and only if Aj [r] |= ZF�, for all j < i.

Definition 2.5. The forcing notion C(Y ) is the set of all perfect trees T so that each
branch of T codes Y below |T |. The order is inclusion.

We need some standard notation concerning trees. Recall that if T ✓ 2<! (or !<!) is
a tree then a node t 2 T is called splitting if it has more than one immediate sucessor.
Denote by Split(T ) the set of splitting nodes in T . For n < ! we say that t 2 T is
n-splitting if it is splitting and has exactly n � 1 predecessors which are splitting. We
denote by Splitn(T ) the set of n-splitting nodes. Note Split(T ) =

S
n<!

Splitn(T ). Given
conditions p, q 2 C(Y ) we say that p n q if p  q and Splitn(p) = Splitn(q).

Fact 2.6. The following hold.

(1) ([4, Lemma 5]) If T 2 C(Y ) and |T |  i < !1 then there is a T
0
 T so that

|T
0
| = i.

(2) ([4, Lemma 7]) C(Y ) is proper.
(3) ([4, Lemma 6]) If G ✓ C(Y ) is generic over V and R =

T
G is a real and R codes

Y . In other words for all j < !1 we have j 2 Y if and only if Lµj [Y \j, R] |= ZF�.

Moving forward the following strategy will be used frequently to find new conditions.
We will begin with some condition q so that |q| = � for some � < !1. Note that q 2 A� by
definition. By the definition of the forcing C(Y ), every branch through q will code Y up
to �. If q0 ✓ q is a perfect subtree of 2<! which is in A� then q

0
2 C(Y ). This is because,

since q0 2 A�, |q0|  � and, since every branch of q and hence of q0 code Y up to � we must
have that q0 is a condition. This type of argument is essential in many of our results.

In order to facilitate our discussion later we prove a fact about C(Y ) now that will be
useful in Sections 3-5. If Ẋ is a C(Y )-name, p 2 C(Y ) and p � Ẋ ✓ ! then the outer hull
of Ẋ with respect to p, denoted Xp, is the set {m | p 1 m̌ /2 Ẋ}. If t 2 Split(p) then we
let Xp

t
denote the outer hull of Ẋ with respect to pt. A condition p is preprocessed for Ẋ

if for each n < ! and each n split node t we have that pt decides Ẋ \ ň.

Lemma 2.7. For every Ẋ the set of conditions preprocessed for Ẋ is dense in C(Y ). In
fact, for every i < !1 and every p 2 C(Y ) there is a j > i and a q  p so that q 2 Aj and
for all x 2 [q] x codes Y below j. Moreover Aj contains the function i : Split(q) ! [!]<!

defined by letting i(t) be, for each n < ! and t 2 Splitn(q), the set at such that qt forces
Ẋ \ ň = ǎt.

Proof. Fix p and Ẋ. Let M � L!2 [Y ] be countable containing p, Ẋ and let M̄ be its
transitive collapse. As explained in [4] if � = (!1)M̄ then M̄ 2 A� (and hence p, Ẋ 2
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A�). Since A� thinks that � is countable, but M̄ does not, there is a countable, strictly
increasing, cofinal sequence of ordinals ~� := h�n | n < !i 2 A� whose supremum is � and
~� ✓ M̄ . Now in M̄ it’s clear that we can find, for each n < ! and each r 2 C(Y ) a
condition r

0
n r so that |r

0
| � �n and for each n split node t of r0 we have that (r0)t

decides Ẋ\ ň. Applying this observation iteratively from the point of view of A� yields a a
fusion sequence p = p0 �1 p1 �2 p2 �3 p3... so that, letting p! =

T
n<!

pn 2 C(Y )\A�, we
have |p!|  �, each branch of p! codes Y below � and for each n < ! and each n-splitting
node t of p!, (p!)t decides Ẋ \ ň. Moreover, since M̄ knows which finite set each (p!)t
decides for Ẋ \ ň, Aj can record this data during the construction of the fusion sequence
and hence define i. ⇤
2.4. Putting it All Together. We’re now ready to define P!2 . Recall we fixed F and
~S as in Lemma 2.4. Assume V = L and fix an S ✓ !1 which is almost disjoint from
every T 2 ~S. Our countable support iteration hP↵, Q̇↵ | ↵ < !2i is defined making
use of the following vocabulary and notation. We can assume that all names for reals
are nice in the sense that if ḟ is an H-name for a real for some H then ḟ has the formS

i2!{hhi, jiǐ, pi | p 2 Ai(ḟ)} where Ai(ḟ) is a maximal antichain of elements deciding

ḟ (̌i). Assume moreover that for all ↵ < � < !2 all P↵-names for reals appear before all
P�-names for reals which are note P↵-names for reals in the canonical well order <L of
L. For each ↵ < !2 define <↵ on the reals of L[G↵] (where G↵ is P↵ generic) as follows.
For each real x 2 L[G↵] let �x  ↵ least so that there is a nice P�-name �

�x
x for x and let

x <↵ y if and only if �x < �y or �x = �y = � and �
�
x <L �

�
y . If G ✓ P!2 is generic over L

then <G=
S

↵<!2
<↵ will be the desired well order. If x, y 2 L[G↵] are reals and x <↵ y

let x ⇤ y = {2n | n 2 x} [ {2n+ 1 | n 2 y}.
The iterated forcing P!2 is defined recursively as follows. Let P0 be the trivial poset.

Assume P↵ has been defined. Let Q̇↵ = Q̇
0
↵ ⇤ Q̇

1
↵ be a P↵-name for a poset so that Q̇0

↵ is
a proper forcing notion of cardinality at most @1 and Q̇

1
↵ is defined as follows. If F (↵) is

not of the form {�
↵
x ,�

↵
y } for some x <↵ y in L[G↵], let Q̇1

↵ be a P↵ ⇤ Q̇
0
↵-name for a trivial

poset. Otherwise F (↵) = {�
↵
x ,�

↵
y } for some reals x, y 2 L[G↵]. In this case we let Q̇1

↵ be

a P↵ ⇤ Q̇
0
↵-name for a three step forcing notion K

0
↵ ⇤ K̇

1
↵ ⇤ K̇

2
↵ where

(1) K
0
↵ is a countable support iteration of forcing notions of the form Q(Si) where

i = ↵+ 2n for n 2 x ⇤ y and i = ↵+ 2n+ 1 for n /2 x ⇤ y.
(2) In V

P↵⇤Q̇0
↵⇤K0

↵ K̇
1
↵ names a localization poset L('↵) where '↵(!1, X↵) is a ⌃1

sentence, X↵ ✓ !1 codes ↵, the pair (x, y), a level of L of size  @1, and the

generic for P↵ ⇤ Q̇
0
↵ ⇤ K

0
↵ in V

P↵⇤Q̇0
↵⇤K0

↵ and '↵(!1, X↵) says that X↵ codes an
ordinal ↵̄ < !1 and a pair (x, y) so that S↵̄+2n is nonstationary for n 2 x ⇤ y and
S↵̄+2n+1 is nonstationary for n /2 x ⇤ y.

(3) By the properties of the localization forcing, in V
P↵⇤Q̇0

↵⇤K0
↵⇤K̇1

↵ the generic can be
coded by a single subset of !1, call it Y↵. Thus the ground model is of the form
L[Y↵]. Let K̇2

↵ name C(Y↵) in this model.

With this list we complete the inductive definition of P!2 .

Lemma 2.8 (Lemma 15 of [4]). P!2 is S-proper, !2-c.c. and forces 2@0 = @2.

Fact 2.9 (Lemma 3.7 of [5]). C(Y ) has the Sacks property and therefore if each Q̇
0
↵ has

the Sacks property (Laver property, !!-bounding etc) then so does P!2.
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The point is the following, which is the the first main result of [4].

Theorem 2.10 (Theorem 1 of [4]). Forcing with P!2 adds a �1
3 well-order of the reals.

Proof Sketch. Let G ✓ P!2 be generic over L and work in L[G]. In the proof of [4, Theorem
1] it is shown that the following holds:

For all reals x, y we have x <G y if and only if there is a real R such that for every
suitable, countable model M containing R there is an ordinal ↵ < !

M
2 so that SM

↵+2n is
nonstationary in M for n 2 x ⇤ y and S

M
↵+2n+1 is nonstationary in M for n not in x ⇤ y.

Counting quantifiers one can see that this definition is ⌃1
3 however, since <G is a total

order on the reals, we have that ⇥G is also ⌃1
3. ⇤

Let us note that the use of Q̇0
↵ is unnecessary for forcing the �1

3 well order. However,
this iterand represents additional forcing notions “woven into” the iteration, allowing
more flexibility in the final model, for example forcing various cardinal characteristic
inequalities.

Before moving on to the next section let us make some brief remarks about the forcing
notion P!2 . Observe that the only iterands which add reals are those of the form C(Y ) and,
potentially, Q̇0

↵. In what follows, we will be interested in proving preservation properties
for P!2 . Many times this will take the form of showing that some property holds of forcing
notions of the form C(Y ) from which, combined with the fact that the other iterands do
not add reals (or, in the case of the Q̇

0
↵’s are assumed to have some property), we will be

able to conclude the property holds of P!2 . The first such property we will consider is
that of preserving P-points.

3. Preservation of Definable P-Points

Recall that a P-point is an ultrafilter U with the property that given any countable set
A ✓ U there is an X 2 U so that X ✓

⇤
A for all A 2 A. It’s known that if V = L there

is a P-point U which has a ⇧1
1 base Û so that ZFC `“Û ✓ L” see [16]. Fix such a U .

The main result of this section is the following.

Lemma 3.1. If L[Y ] |=“U is a P-point” then the poset C(Y ) forces that U is a P-point.

Given this lemma, alongside the preservation of P-points along countable support iter-
ations of (S)-proper posets, [13, Theorem 21.11] we get the following.

Theorem 3.2. If G ✓ P!2 is generic over L then in V [G] there is a ⇧1
1 ultrafilter base

for a P-point of size @1. In particular, it’s consistent that there is a ⇧1
1-ultrafilter base for

a P-point, a �1
3 well order of the reals and u = @1 < c = @2.

Towards proving Lemma 3.1 work in L[Y ] where Y ✓ !1 was added by some forcing in
L. Note that if L↵[Y ] �⌃1

5
L!1 [Y ] then the fact that Û is an ultrafilter base for a P-point

is expressible in L↵[Y ] and will be true by ⌃1
5 (in fact ⇧1

3) elementarity. This is because
Û is a P-point base if and only if

8{Xn | n < !}[(9n < ! 8Y 2 Û Y *
⇤
Xn) _ 9Y (Y 2 Û ^ 8n < ! Y ✓

⇤
X)].

This is the type of quantifier counting we referred to in Remark 1 above.
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We need to first investigate interpretations of Ẋ, see [1, p.362] where a similar idea is
introduced for Miller forcing.

Definition 3.3. Given a condition p 2 C(Y ) a p-interpretation of Ẋ is a set Ip(Ẋ) 2 [!]!

so that for each n < ! there is a q  p forcing that Ẋ \ ň = Ǐp(Ẋ) \ ň.

Proposition 3.4. If q is preprocessed for Ẋ then there is a q-interpretation of Ẋ which
is definable from q in any A� 3 q which has the function i described in Lemma 2.7.

Proof. Fix q preprocessed and let l be the leftmost branch of q. Now define Iq(Ẋ) =T
n<!

X
q

l�n. To see this is an interpretation, fix n and let s be the n
th splitting node of q

in l. Since q is preprocessed, qs decides Ẋ \ ň, and Iq(Ẋ) \ n agrees with it on this finite
set hence qs � Ẋ \ ň = Ǐq(Ẋ) as needed.

For the definability part, note that if q 2 A� is preprocessed and constructed as in
Lemma 2.7 then Iq(Ẋ) is definable in A� since k 2 Iq(Ẋ) if and only if for the n-splitting
node t of q in l we have that k 2 i(t). ⇤

We will refer to such a q-interpretation as the leftmost interpretation of Ẋ and denote
it Lq(Ẋ).

Proposition 3.5. If q  p and I is a q-interpretation of Ẋ then I is a p-interpretation
of Ẋ. Consequently, every condition admits an interpretation of Ẋ.

Proof. The “consequently part” follows from the previous proposition plus the density of
preprocessed conditions. To see the first part, observe that if I is a q-interpretation then
for each n there is an r  q forcing Ẋ \ ň = Ǐ \ ň and hence the same is true of p as
needed. ⇤

Before turning to the proof of Lemma 3.1 we need to recall one more idea: the P-point
game, see [1, 4.4.4, p. 225].

Definition 3.6. Let V be an ultrafilter on !. The P-point game for V , denoted G(V ) is
the following two player game played in ! many rounds: at stage n player I chooses a set
An 2 V and player II responds by playing a finite an ✓ An. In the end Player I wins ifS

n<!
an /2 V .

Fact 3.7 (Galvin and Shelah, see [1], Theorem 4.4.4). For any ultrafilter V , player I has
a winning strategy for G(V ) if and only if V is not a P-point.

We now prove Lemma 3.1.

Proof of Lemma 3.1. We work in L[Y ], where Y ✓ !1 is generic over L for some forcing
notion and assume that L[Y ] |=“U is a P-point”. There are a few preliminaries to note.
First, as noted at the beginning of this section, since Û is ⇧1

1 definable in L, it is a
definable subset of L!1 [Y ] (but not an element). However L!1 [Y ] computes it correctly
in the sense that X 2 Û if and only if L!1 [Y ] |= X 2 Û . Also, being an ultrafilter base
for a P-point is expressible in L!1 [Y ] and true by assumption. Moreover these properties
are preserved downwards in the sense that for each i < !1 they all hold in L[Y \ i] since
we require enough projective elementarity. This is a consequence of the facts that Û is
provably a subset of [!]! \ L and hence unchanged in forcing extensions, the fact that
L[Y \ i] is a forcing extension because of the intermediate model theorem, and the fact
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that being an ultrafilter base for a P-point is downwards absolute: any counterexample in
a smaller model remains a counterexample in a bigger model. The same facts are all also
true of G(U ) and in particular G(U ) is definable in every Ai and each Ai knows that,
since U is a P-point, no strategy for player I is winning.

Fix p 2 C(Y ) and Ẋ a C(Y )-name so that p � Ẋ 2 [!]! .̌ We need to find a r  p so
that either r � Ẋ \ Ǎ = ; for every A 2 U or else find an A 2 Û so that r � Ǎ ✓ Ẋ.
First we apply Lemma 2.7 to find a q  p which is preprocessed and a � < !1 so that
q 2 A� and every branch of q codes Y below �. We will describe a strategy in G(U ),
definable in A�, for player I. Before defining it we need the following.

Claim 3.8. At least one of the following holds.

(1) There is a t 2 q so that for all s 2 qt we have Lqs(Ẋ) 2 U .
(2) There is a function I : q ! [!]! definable in A� so that for all t 2 q, I(t) is a

qt-interpretation of Ẋ and I(t) /2 U .

Proof. Assume 1 fails. Then for each t 2 q there is an s 2 qt so that Lqs(Ẋ) /2 U . This fact
is moreover definable in A� by elementarity plus the fact that the leftmost interpretation
is definable. We now define (in A�) I(t) to be Lqs(Ẋ) where s 2 qt is of least in the
lexicographic ordering so that Lqs(Ẋ) /2 U . Clearly this satisfies the requirements. ⇤

There are now two cases corresponding to whether 1 or 2 holds above. Let q
0 = qt if

case 1 holds and q
0 = q if case 2 holds. Note that either way q

0
2 A�, is preprocessed

and has the properties we listed of q. Assume first that case 1 holds. The strategy is
defined as follows. Player I builds the sequence {An}n<! ✓ U as needed for the game,
and on the side they also build a sequence of conditions {qn | n < !} and a sequence of
strictly increasing natural numbers {mn}n<! so that qn+1 n qn for all n < !. This is
done recursively as follows: at stage 0 we let q0 = q

0 and, for both 0-splitting nodes t0

and t1 we have that both the q
0
t0
-leftmost interpretation, call it I0 and the q

0
t1

leftmost
interpretation call it I1 are in U . Let A0 = I0 \ I1. Now, player II plays a finite set
a0 ✓ A0. Let m0 = max(a0) + 1. Let l0 be the m

th
0 -splitting node in lq0t0

and l1 be the

same for lq0t1
. By the way the left most interpretation was defined, we have that for both

i = 0 and i = 1 q
0
li
� ǎ0 ✓ Ẋ. Let q1 = q

0
l0
[ q

0
l1
. It follows that q1 � ǎ0 ✓ Ẋ. Also,

note that by the assumption that we’re in case 1 of the claim, q1 has the property that
for every t 2 q1, the (q1)t leftmost interpretation is in U .

Now suppose we have defined mn, qn and An. Assume moreover that {mj}j<n+1 is
a strictly increasing sequence so that mj > j for all j < n + 1 and qj+1 j qj for all
j < n. Let An+1 =

S
t2Splitn+1(qn)

L(qn)t(Ẋ). Note that since this is the intersection of

finitely many sets from U , it too is in U . Now player II plays some an+1 ✓ An. Let
mn+1 = max{max(an+1),mn} + 1. Note that mn+1 > mn � n + 1. Now for each n + 1
splitting node t of qn let st be the m

th
n+1 splitting node of (qn)t in its leftmost branch.

Finally let qn+1 =
S

t2Splitn+1(qn)
(qn)st . Observe that again qn+1 � ǎn+1 ✓ Ẋ \ m̌n+1.

This completes the description of the strategy. This strategy is definable in A� since all
we needed to know was about the trees we define, their leftmost branches and the function
i described in Lemma 2.7. Since Û generates a P-point, there is a play where player I
follows this strategy and still loses. Moreover, by elementarity such a play is in A�. Let
B =

S
n<!

an be the union of the elements player II plays in this play. Then B 2 A� \U .
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Let q! =
T

n<!
qn where the qn’s are the fusion sequence player I built during this play.

It follows that q! 2 A� and hence q! 2 C(Y ) and q! � B̌ ✓ Ẋ so we’re done.
We now turn to case 2. Fix a function I as described in case 2. The proof is now the

same as in case 1, except we use I(t) in lieu of Lqt(Ẋ) and we take the intersection of the
complements of each I(t). The result will be that q! � B̌ \ Ẋ = ;. ⇤

It was observed in [16] that there is a �1
2 base for a Ramsey ultrafilter R which provably

consists of only constructible reals and moreover, but that this is of optimal complexity
for a Ramsey ultrafilter, i.e. there is no coanalytic base for a Ramsey ultrafilter [16,
Theorem 1.4]. Since P!2 is !

!-bounding, it follows from [13, Lemma 21.12], combined
with the arguments presented in this section that (assuming enough elementarity of the
µi sequence) this Ramsey ultrafilter base is preserved. It follows that we have shown the
following.

Corollary 3.9. It is consistent with the existence of a �1
3 well-order of the reals that

2@0 = @2 and there are a ⇧1
1 ultrafilter base for a P-point and a (properly) �1

2 ultrafilter
base for a Ramsey ultrafilter both of which are of size @1 (and of optimal complexity).

4. Preservation of Definable Tight MAD Families

We now turn our attention to MAD families and the cardinal characteristic a. Recall
that an almost disjoint family A ✓ [!]! is tight if for each {Xn | n < !} ✓ I(A)+ there is
a B 2 I(A) so that for all n |B \Xn| = @0. Note that tightness implies maximality. We
will show that there is a ⇧1

1 tight MAD family in the model with the �1
3 well-order of [4].

To begin we need a tight MAD family in L similar to the ultrafilter U we preserved in the
previous section. Towards this we need a coding lemma akin to Miller’s coding lemma for
the existence of a ⇧1

1 MAD family, [15, Lemma 8.24]. A version of this lemma was first
discussed in [11] where it was proved for eventually di↵erent sets of functions.

Lemma 4.1 (Coding Lemma). Suppose that X is a countable almost disjoint family
containing a computable, infinite partition of ! into infinite sets, say {An | n < !} and
B is a countable family of infinite sets in I(A)+. Let Z 2 [!]! be arbitrary. Then there
is an X which is almost disjoint from every element of X , has infinite intersection with
every element of B and computes Z. Moreover X can be found computably in the data.

Proof. Fix X , {An | n < !}, B and Z as in the statement of the lemma. We define X

recursively so that for each n, X \ An is even if and only if n 2 Z. Enumerate B as
{Bn | n < !} so that each element appears infinitely often and let X \ {An | n < !} =
{Xn | n < !}

Step 0: Let X0 be the minimal element of A0 if 0 /2 Z and the minimal two elements of
A0 if 0 2 Z.
Step n+1: Suppose Xn has been constructed, is finite, intersects each B0, ..., Bn�1 and for
all i < n+ 1, Xn \An is even if and only if n 2 Z. Now, there are two further cases.
Case 1: n+1 2 Z and Xn \An+1 is even or n+1 /2 Z and Xn \An+1 is odd. In this case
let l be the minimum element of Bn \ (

S
l<n+1Xl [

S
l<n+2Al).

Case 2: n + 1 2 Z and Xn \ An+1 is odd or n + 1 /2 Z and Xn \ An+1 is even. Let k be
the minimum of An+1 \ Xn. Then, let l be as before, i.e., l is the minimum element of
Bn \ (

S
l<n+1Xl [

S
l<n+2Al).
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In both cases let Xn+1 be Xn [ {l} or Xn+1 be Xn [ {k, l} depending on the case.
Finally letting X =

S
n<!

Xn we finish the lemma. The verification that X is as needed
is immediate. ⇤

From this we get the following.

Lemma 4.2. If V = L then there is a ⇧1
1 tight MAD family A with the property that

ZFC ` “A ✓ L”.

Proof. Assume V = L and let L be the definable global well-order of L restricted to the
reals. Note that this relation is �1

2. We will define a tight MAD family A = {A↵ | ↵ < !1}

by induction. First fix a countable, computable partition of ! into infinite sets {An | n <

!}. Now suppose that {A⇠ | ⇠ < ↵} has been defined for an infinite ↵. Let B be the
<L-least countable set of elements of I({A⇠ | ⇠ < ↵})+. Let A↵ be the X computed in the
coding lemma for the A⇠’s and B and let Z a real coding L↵. This completes the recursive
definition. Clearly this can be defined by a formula in the language of set theory. Let
'(x) be this formula. Let A = {A↵ | ↵ < !1}. It’s clear that A is tight. It remains to see
that it is ⇧1

1.
To see this, let us say that a set X 2 [!]! codes a structure L↵ if the set Z, where n 2 Z

if and only if X \ An, codes a countable structure (!, E) isomorphic to (L↵,2). Observe
that to say X codes a structure L↵ is ⇧1

1 in the codes. Now X 2 A if and only if X codes
a structure L↵ and L↵+! |= '(X). This is because, from L↵ and '(x) we can retrieve X

(in this case) so we must have that X 2 L↵+! and everything else is su�ciently absolute.
The point is this is ⇧1

1 since satisfaction is arithmetic for a fixed formula. ⇤
From now on fix such a tight MAD family A. We will show that if G ✓ P!2 is generic

over L then A is still tight (and hence MAD) in V [G].

Lemma 4.3. If G ✓ P!2 is generic over L then in L[G] we have that A is still tight.

The main thrust of this proof involves the notion of a (M,P,A, B)-generic condition.
Given

• a forcing notion P,
• a tight MAD family A,
• a condition p 2 P,
• a countable model M � H✓ so that P, p,A 2 M , and
• a B 2 I(A) for which |B \X| = @0 for all X 2 I(A)+ \M ,

a condition q  p is said to be an (M,P,A, B)-generic condition if q is (M,P)-generic and
q � 8Ż 2 (I(A)+ \M [Ġ]) (|Ż \ B| = @0). The proof of Lemma 4.3 is by induction on �

applied to the forcing notions P� . The limit case actually follows from the preservation
theorem for strongly preserving tightness of a tight MAD family in [12, Proposition 31].
Indeed what is shown there is more local than what is stated. The proof actually shows
the following.

Lemma 4.4 (Essentially Proposition 31 of [12]). Let hQ� , Ṙ� | �  ↵i be a countable
support iteration of (S)-proper forcing notions for some limit ordinal � and p 2 Q�. For
every ✓ su�ciently large, M � H✓ countable with p,Q� , � 2 M and B 2 I(A) so that B
has infinite intersection with every X 2 M \I(A)+\M if for all ↵ < � with ↵ 2 M there
is a (M,Q↵,A, B)-master condition extending p � ↵ then there is a (M,Q� ,A, B)-master
condition extending p.
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We also note that the successor case preserves this property as well.

Lemma 4.5 (Lemma 30 of [12]). Assume p0,Q0,A 2 M � H✓, B 2 I(A) has infinite
intersection with every X 2 I(A)+\M and q0  p0 is an (M,Q0,A, B) generic condition.
Assume moreover that Q̇1 2 M is a P name for a forcing notion, ṗ1 2 M is a Q0 name
for a condition in Q̇1 and p0 forces that q̇1 is a (M [Ġ], Q̇1,A, B)-generic condition. Then
(q0, q̇1) is a (M,Q1 ⇤ Q̇1,A, B)-generic condition.

Given these two results we can now prove Lemma 4.3.

Proof. Assume first that V = L and fix a tight MAD family A which is ⇧1
1 and provably

(in ZFC) consists only of constructible reals. Given a countable transitive model of a
su�cient fragment of set theory, M̄ , let A(M̄) be the L-least B 2 I(A) so that for all
C 2 M̄\I(A)+ we have that C\B is infinite. Note that this function is �1

3 definable since
(M̄,B) 2 A if and only if M̄ models a su�cient fragment of ZFC (arithmetic), B 2 I(A)
(⌃1

2) has infinite intersection with every C 2 A \ M̄ (⇧1
1) and for all B0 if B0

2 I(A)
has infinite intersection with every C 2 A \ M̄ then B L B

0 (⇧1
2). Since the image of

any real under the Mostowski collapse is itself we will frequently refer to the image of
an arbitrary countable model M under A by which we mean the image of M ’s transitive
collapse. We prove by induction on � < !2 that if M � L!2 is countable, M \ !1 2 S,
p 2 P� , �, p, P� 2 M then there is a (M,P� ,A, A(M))-generic condition q  p. Observe
that this implies that for each � we have �� “ Ǎ is tight” and hence in V

P!2 A is tight.
The result follows.

In light of Lemmas 4.4 and 4.5 it su�ces to restrict our attention to iterands of the form
C(Y ). For the rest of the proof assume V = L[Y ] for Y ✓ !1 added by forcing over L. Fix
M , (p, q̇0) 2 P� ⇤ Ċ(Y ), etc. as in the inductive statement with M \!1 = � 2 S. Let M̄ be
the transitive collapse of M . Note that M̄ = L↵ for some ↵. We use the convention that if
x 2 M then we let x̄ be its image under the Mostowski collapse in M̄ . Let B = A(M̄). By
assumption, there is an r  p which is a (M,P� ,A, B)-generic condition. Let r 2 G be P�

generic over L. Because of how the forcing is defined, alongside the inductive assumption
and the fact that P� is S-proper, we have that L[G] = L[Y ] for some Y ✓ !1 and in L[Y ]
M̄ [Y \ �] � L!2 [Y ], B has infinite intersection with each X 2 I(A)+ \ M̄ [Y \ �] and

!
M̄ [Y \�]
1 = � 2 S (which of course is still stationary). This set up is the application of the

inductive assumption. From now on we work in L[Y ].
Let M \!1 = � 2 S. It follows that M̄, M̄ [Y \ �] 2 A�. Moreover, by �1

3-correctness of
A�, we get that B 2 A�. Working in A� fix a countable, cofinal sequence {�n | n < !} 2 A�

so that for all n < ! we have �n 2 M̄ [Y \ �]. The fact that this sequence is an element
(and not just a subset) of A� (though not M̄ [Y \ �]) is crucial. Let q 2 M [Y ] be the
evaluation of q̇ in M [Y ] and let q̄ be its image in M̄ [Y \ �]. The goal is to find a q1  q

which is an (M [Y ], C(Y ),A, B)-generic condition in A�(!!).
Now, let {D̄k | k < !} be an enumeration in A� of the dense subsets of ¯C(Y ) in M̄ [Y \�]

and let {Żn | n < !} be an enumeration in A� of all ¯C(Y )-names for subsets of ! in M̄

which are forced to be in I(A)+ so that each name appears infinitely often. We will
inductively define in A� a sequence {q̄n | n < !} so that the following conditions hold:

(1) q̄ = q̄0

(2) For all n < ! we have q̄n+1 n q̄n

(3) For all n < ! q̄n+1 � D̄n \ M̄ \ Ġ 6= ;
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(4) For all n < ! we have |q̄n+1| � �n.
(5) For all n < ! q̄n+1 � 9m > ňm 2 Żn \ B̌

Assuming we can do this, let q1 be the fusion of the sequence. Note that since the
sequence is in A�, so is q itself. In this case we have that |q|  � by condition 4 and
every branch of q codes Y up to � and is therefore a condition. Given this, the fact that
it witnesses the lemma is obvious.

Thus it remains to show that the sequence can be constructed in A�. This is done by
induction. The case n = 0 is clear. Assume we have constructed {q̄l | l  n} for some
n < ! and that the sequence is in A� and A� inductively thinks that all of the items 1
- 5 hold. We will show there is a q̄n+1 as needed in A�. This will su�ce since then we
can choose the least such one relative to the global well ordering and this will give us a
definition in A� so that the whole sequence will be defined.

First, let q̄
0
n n q̄n be a condition satisfying 2 - 4. That this is possible follows from

the proof that C(Y ) is proper; see [4, Lemma 7]. Now let {ti | i < 2n} enumerate the
splitting nodes of q̄0n. Second, for each i < 2n let Zi,n be {m < ! | (p̄0n)ti 1 m̌ /2 Żn}. It’s
known that each Zi,n 2 I(A)+. As a result |B \ Zi,n| = @0 and therefore we can find for
each i an extension q̄

0
n,i

 (q̄0n)ti and an m > n so that q̄
0
n,i

� m̌ 2 B̌ \ Żn. Finally let
q̄n+1 =

S
i<2n q̄

0
n,i
. This clearly works and so completes the construction and hence the

lemma.
⇤

As a result of these lemmas we get the following.

Theorem 4.6. If G ✓ P!2 is generic over L then in V [G] there is a ⇧1
1 tight MAD family

of size @1. In particular, it’s consistent that there is a ⇧1
1-tight MAD family, a �1

3 well
order of the reals and a = @1 < c = @2.

5. Preservation of Definable Selective Independent Families

In this section we study the preservation of selective independent families. Recall that
a family I ✓ [!]! is independent if for all finite, disjoint A,B 2 [I]<! the set

T
A \

S
B

is infinite. Such a family is a maximal independent family if it is maximal with these
properties with respect to inclusion. The cardinal characteristic i is the least size of a
maximal independent family. The following notation will facilitate our work below.

Notation 1. For I ✓ [!]!,

(1) let FF(I) denote the set of finite partial functions h from I to {0, 1}, and
(2) for h 2 FF(I) write I

h for
\

{A | A 2 dom(h) and h(A) = 1} \
\

{!\A | A 2 dom(h) and h(A) = 0}.

In this terminology, a family I ✓ [!]! is independent if I
h is infinite for all h 2

FF(I) and an independent family I is maximal if 8X 2 [!]! 9h 2 FF(I) such that Ih
\

X or Ih
\X is finite. Such an I is densely maximal if 8X 2 [!]! and h

0
2 FF(I) 9h ◆

h
0 in FF(I) such that Ih

\X or Ih
\X is finite.

The density ideal of I, denoted id(I), is

{X ✓ ! | 8h
0
2 FF(I) 9h ◆ h

0 in FF(I) such that Ih
\X is finite}.
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Dual to the density ideal of I is the density filter of I, denoted fil(I) and defined as

{X ✓ ! | 8h
0
2 FF(I) 9h ◆ h

0 in FF(I) such that Ih
\X is finite}.

The key definition for this section is the following.

Definition 5.1. An independent family I is called selective if it is densely maximal and
fil(I) is Ramsey.

It was shown in [2] that if V = L, then there is a ⌃1
2 selective independent family

completely contained in L and, moreover, the existence of a ⌃1
2 maximal independent

family implies the existence of a ⇧1
1-maximal independent family. It follows that preserving

a fixed ⌃1
2 selective independent family contained in L will allow us to obtain the existence

of a ⇧1
1 maximal independent family. Let us fix a ⌃1

2 selective independent family contained
in L, say I, for the rest of this section. We will show the following.

Theorem 5.2. If G ✓ P!2 is generic over L then in L[G] we have that I is selective
(and hence maximal). Consequently the existence of a �1

3 well-order is consistent with a
coanalytic maximal independent family of size @1 < 2@0 = @2.

The centerpiece of the proof of this theorem is the application of a preservation result
of Shelah from [17] to a proof of the fact that C(Y ) preserves the selectivity of su�ciently
definable selective independent families. Towards this we need some more on independent
families.

Observe first that I ✓ [!]! is independent if and only if id(I) and fil(I) are a proper
ideal and proper filter, respectively, on !; such an I is then densely maximal if and only
if P (!) = fil(I)[ id(I) and, hence, if and only if fil(I) is an ultrafilter. Observe also that
for an infinite independent family I, none of the above definitions’ meanings change if we
replace the word “finite” with “empty”.

In our discussion of dense independence, we will make use of the following Lemma. The
equivalence of (1) and (2) can be found in [9, Lemma 31], the of (2) and (3) implicitly
appears in [8, Theorem 29], as well as [17]. See also [10, Lemma 2]. For completeness, we
give a detailed proof.

Lemma 5.3. The following are equivalent:

(1) I is a densely maximal independent family.
(2) For all h 2 FF(I) and all X ✓ I

h either I
h
\X 2 id(I) or there is h

0
2 FF(I)

such that h0 ◆ h and I
h
0
✓ I

h
\X.

(3) For each X 2 P(!) there is h 2 FF(I) such that X ✓ !\I
h.

Proof. To show that (1) implies (2), consider h 2 FF(I) and X ✓ I
h. Suppose I

h
\X /2

id(I). Thus, there is h
0
2 FF(I) such that for all h00 ◆ h

0 the set I
h
00
\ (Ih

\X) is non-
empty. Note that if h ? h

0, then I
h
0
\ (Ih

\X) = ;, which is a contradiction. Therefore
h 6? h

0. Without loss of generality h
0
◆ h and so for all h00 ◆ h

0, Ih
00
\X 6= ;. Since the

family I is densely maximal, there is h00 ◆ h
0 such that Ih

00
\X = ;. Thus, Ih

00
✓ I

h
\X.

To see that (2) implies (3) consider any Z /2 fil(I). Then !\Z /2 id(I) and so there is
h 2 FF(I) such that h

0
◆ h, and |I

h
0
\ (!\Z)| = |I

h
0
\Z| = !. Let Y = I

h
\Z. Thus,

Y ✓ I
h. By part (2) either I

h
\Y 2 id(I) or there is h

0
◆ h such that I

h
0
✓ I

h
\Y .

Suppose I
h
\Y 2 id(I). Then there is h

0
◆ h such that I

h
0
\ (Ih

\Y ) = I
h
0
\Y = ;.

However, Ih
0
\Y = I

h
0
\ Z = ; and so Z ✓ !\I

h
0
and we are done. If 9h0 ◆ h such that
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I
h
0
✓ I

h
\Y = I

h
\ Z, then I

h
0
\ (!\Z) = I

h
0
\Z = ;, which is a contradiction to the

choice of h.
Next, we show that (3) implies (2). Let X ✓ I

h for some h 2 FF(I). Consider
Y = I

h
\X. If !\Y 2 fil(I), then Y = I

h
\X 2 id(I). Otherwise there is h

⇤ such that
!\Y ✓ !\I

h
⇤
, which implies that Ih

⇤
✓ Y ✓ I

h
\X. Note that if h ? h

⇤, then for some
C 2 I we have (without loss of generality) that Ih

⇤
✓ C and I

h
✓ !\C, which contradicts

I
h
⇤
✓ I

h. Thus h⇤ 6? h and so I
h⇤[h

✓ I
h
⇤
✓ I

h
\X.

Finally, we show that (2) implies (1). Let X 2 [!]!\I and let h 2 FF(I). We want to
show that there is h

0
◆ h such that either I

h
0
\ X = ; or I

h
0
\X = ;. Consider the set

Y = X \ I
h. Thus, Y ✓ I

h. If Ih
\Y 2 id(I), then I

h
\X 2 id(I) and so there is h0 ◆ h

such that I
h
0
\ (Ih

\X) = I
h
0
\X = ;. Otherwise, there is h

0
◆ h such that I

h
0
✓ I

h
\Y

and so I
h
0
\ Y = ;. However, Ih

0
\ Y = I

h
0
\ (X \ I

h) = I
h
0
\X = ;. ⇤

In particular, we obtain:

Lemma 5.4. A family I ✓ [!]! is densely maximal if and only if

P (!) = fil(I) [ h!\I
h
| h 2 FF(I)idn.

The following are easily verified.

Lemma 5.5.

(1) I ✓ I
0 implies that fil(I) ✓ fil(I 0);

(2) if  is a regular uncountable cardinal and hI↵ | ↵ < i is a continuous increasing
chain then fil(

S
↵<

I↵) =
S

↵<
fil(I↵);

(3) fil(I) =
S
{ fil(J ) | J 2 [I]!

}.

Our goal is to understand how densely maximal families behave with respect to forcing
notions of the form C(Y ). As in the previous two sections, we assume from now on, unless
explicitly stated otherwise, that V = L[Y ] for some Y ✓ !1 added by forcing over L. Our
first more substantial lemma is the following.

Lemma 5.6. Let I be an independent family. Let H be C(Y )-generic. Then fil(I)V [H] is
generated by fil(I)V . In other words, for each X 2 fil(I)V [H] there is a Z 2 fil(I)V with
Z ✓ X.

Proof of Lemma 5.6. Fix p 2 C(Y ) such that p � Ẋ 2 fil(I).

Claim 5.7. There exists a q  p and a countable J ✓ I in V such that q � Ẋ 2 fil(J ).

Proof of Claim 5.7. Fix in V an enumeration e : I ! Ord; by Lemma 5.5, p � Ẋ 2

fil(e�1(Ė)) for some countable Ė ✓ Ord. As C(Y ) is proper, there exists a q  p and
countable F in V so that q � Ė ✓ F . Let J = e

�1(F ); it follows that q � Ẋ 2 fil(J ), as
desired. ⇤

Next, identifying FF(J ) with 2<! (since J is countable and FF(J ) is the set of finite
functions on it), let Ḋ denote a C(Y )-name for the dense open subset of 2<! defined by
q � “⌧ 2 Ḋ if and only if J ⌧

\Ẋ = ;”.

Claim 5.8. Let � denote the set of p 2 C(Y ) for which there exists in V a dense K ✓ 2<!

such that p � K ✓ Ḋ. Then � is dense below q.
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The above two claims together imply that for any C(Y )-generic H, there exists in V a
dense K ✓ 2<! such that V [H] ✏ K ✓ ḊH ; such a K then entails the following:

• Z :=
S

⌧2K J
⌧ is an element of fil(I)V , and

• V [H] ✏ Z ✓ ẊH .

The proof of Claim 5.8 will therefore complete the proof of the lemma.

Proof of Claim 5.8. Let ~� = h�n | n 2 !i recursively enumerate 2<!. Fix an r  q and
a countable elementary submodel M of L!2 [Y ] containing r and C(Y ). Let � = M \ !1.
We will extend r to a condition s 2 C(Y ) with |s| = � which decides a dense subset
of Ḋ; instrumental for this purpose will be the existence of a sequence h�n | n 2 !i in
A� := Lµ� [Y \ �] which is cofinal in �. More precisely, within A� we will inductively
construct a fusion sequence ~r = hrn | n 2 !i of elements of C(Y ) \ M below r together
with a family K = {⌧n | n 2 !} of elements of 2<! such that �n ✓ ⌧n for all n 2 !.
The branches of the conditions rn will all code Y below �n; therefore, writing r1 for the
fusion of ~r, the construction will ensure that r1 = s is a condition of C(Y ) which forces
“K ✓ Ḋ”, as desired.

Begin by extending r to an r0 2 M and �0 to a ⌧0 such that |r0| � �0 and r0 forces
“⌧0 2 Ḋ”. More generally, our inductive assumption at stage n will be that we have
constructed a condition rn 2 M whose branches all code Y below �n and a ⌧n ◆ �n

such rn � ⌧n 2 Ḋ. We describe the passage to stage n + 1; all conditions arising in this
passage should be understood to be elements of M . First, choose an r

0
n n rn such that

|r
0
n| � �n+1. Let huj | j 2 2n+1

i enumerate Splitn+1(r
0
n). Since (r0n)u0 � “Ḋ is dense”

there exists an s0  (r0n)(u0) and ⌧
0
0 ◆ �n+1 such that s0 � ⌧

0
0 2 Ḋ. Similarly, there will

exist an s1  (r0n)u1 and a ⌧
0
1 ◆ ⌧

0
0 such that s1 � ⌧

0
1 2 Ḋ. Continuing in this fashion, we

construct ⌧
0
0 ✓ · · · ✓ ⌧

0
j
✓ · · · ✓ ⌧

0
2n+1�1 and conditions sj  (r0n)uj such that sj forces

“⌧ 0
j
2 Ḋ” for each j  2n+1

� 1. Let ⌧n+1 = ⌧
0
2n+1�1 and let rn+1 =

S
j<2n+1 sj . Observe

that we have conserved our induction hypothesis; letting r1 be the fusion of the conditions
rn then completes the argument in the manner described. ⇤

⇤

Recall the following preservation result, due to Shelah.

Theorem 5.9 (Shelah, See Conclusion 2.15D, pg. 305 of [18], see also [8], Theorem 27).
If hQ↵, Ṙ↵ | ↵ < �i is a countable support iteration of proper forcing notions so that for
all ↵ < � �↵ “Ṙ↵ is proper and any new dense open subset of 2<! contains an old one”
then Q� has the property that any new open sense subset of 2<! contains an old one.

We now have the following lemma.

Lemma 5.10. Let I be an independent family. For every ↵  !2, the filter fil(I)V
P↵ is

generated by fil(I)V . In other words, V P↵ ✏ 8X 2 fil(I) 9Z 2 fil(I)\V such that Z ✓ X .

Proof. Immediate from Lemma 5.6 and Theorem 5.9. ⇤

Given all of these preliminaries we arrive now to our main preservation result for inde-
pendent families. First, recall from [17, Lemma 3.2] the following result:
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Theorem 5.11. Assume CH. Let � be a limit ordinal and let hP↵, Q̇� | ↵  �,� < �i be a
countable support iteration of !

!-bounding proper posets. Let F ✓ P (!) be a Ramsey set
and let H be a subset of P (!)\hFiup. If V P↵ ✏ P (!) = hFiup [ hHidn for all ↵ < � then
V

P� ✏ P (!) = hFiup [ hHidn as well.

Remark 2. This holds even with “proper” weakened to “S-proper”; in particular, it holds
for P!2 .

Using this theorem we are almost done with the proof of Theorem 5.2. Indeed this
will cover the limit step of the preservation theorem, therefore we need to consider the
successor step.

Lemma 5.12. Assume V = L[Y ] with Y ✓ !1 added by a forcing in L. If in V we have
that I is densely maximal then �C(Y ) “Ǐ is densely maximal”.

Before beginning let us note that in L[Y ] the set fil(I) is Ramsey since, by Lemma 3.1
it is a P-point and by the fact that the forcing is !!-bounding coupled with [13, Theorem
21.12] it is a Q-point as well.

Proof. Work in L[Y ] and assume for contradiction that there exists a C(Y )-name Ẋ for
such an X, together with a p 2 C(Y ) such that

p � “Ẋ /2 fil(I) and |Ẋ \ I
h
| = @0 for all h 2 FF(I)”.(1)

Applying Lemma 2.7 we can find a q  p in C(Y ) and a family x(q) := hxt | t 2 Split(q)i
such that for all t 2 Splitn(q),

qt � “xt is the characteristic function of Ẋ \ n”.

Moreover, again by Lemma 2.7, we may, if desired, also assume that x(q) 2 A� with
|q| = �.

Claim 5.13. For each t 2 Split(q), let Zt = {m 2 ! | qt 6� m 62 Ẋ}. Then

Zt =
[

swt

x
�1
s (1).

In consequence, any model A� containing q and x(q) can compute Zt, for all t 2 split(q).

Proof of Claim 5.13. If m 2
S

swt
x
�1
s (1) then xs(m) = 1 for some s w t; it then follows

from qs  qt and qs � m 2 Ẋ that m 2 Zt. To see the reverse inclusion, namely that

Zt ✓

[

swt

x
�1
s (1),

suppose that r  qt forces “m 2 Ẋ”; suppose also that t 2 Splitn(q) for some n  m

(for m < n the inclusion is clear, since m 2 Zt if and only if xt(m) = 1). Then for all
s 2 r \ Splitm+1(q), we must have xs(m) = 1. For if this were not the case for some

s then qs, and hence rs, would force “m 62 Ẋ” — but since rs  r, this would entail
contradiction. ⇤
Claim 5.14. Zt 2 fil(I) for all t 2 Split(q).

Proof of Claim 5.14. Suppose for contradiction that the lemma fails for some Zt. Then
by our inductive assumption together with Lemma 5.4, there exists an h 2 FF(I) with
I
h
\ Zt = ;. But since qt  p and qt � Ẋ ✓ Zt, this contradicts line 1 above. ⇤
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As noted before the beginning of this proof fil(I) is a P-point (this also follows im-
mediately from Lemma 5.10, together with the fact that, by construction, I has an ✓

⇤-
decreasing filterbase of ordertype !1). It then follows from Claim 5.14 that there exists
a pseudo-intersection B 2 fil(I) of {Zt | t 2 Split(q)}. Moreover, by elementarity we can
assume that such a B exists in A�.

Any such B determines a function f : ! ! ! given by

n 7! max
�
B\ \ {Zt | t 2 Splitj(q) and j  n+ 1}

�
.

Since fil(I) is a Q-point there will then exist a C ✓ B in fil(I) — and hence, again by
elementarity, a C ✓ B in fil(I) \ A� — such that if hk(n) | n 2 !i enumerates C [ {0}
then

f(k(n)) < k(n+ 1)

for all n 2 !; without loss of generality f(1) < k(1) as well.
We describe now how to construct from such a k, q, and x(q) in A� an r 2 C(Y ) below q

which forces “C ✓ Ẋ”; observe that the existence of such an r contradicts our assumptions
about Ẋ, thereby concluding the proof.

For each t 2 Split0(q) and i 2 {0, 1} extend t
_
i to a s(t, i) 2 Splitk(1)(q) forcing

“k(1) 2 Ẋ” (such exists by construction; for uniformity, here and throughout take always
the leftmost such s(t, i)). Let q1 =

S
i22 qs(t,i) and note that q1 0 q0 = q. Continue

in this fashion, at stage n choosing a s(t, i) 2 qn \ Splitk(n+1)(q) extending t
_
i, for each

t 2 Splitn(qn) and i 2 {0, 1}. Let

qn+1 =
[

(t,i)2Splitn(qn)⇥2

(qn)s(t,i)

and observe that qn+1 n qn and that the fusion r of the qns so defined forces “C 2 Ẋ”,
as desired. Observe lastly that r is constructible from k, q, and x(q), ensuring that r 2 A�

and hence that |r|  �; this ensures that r is indeed a condition of C(Y ). ⇤

Given the proof of Lemma 5.12, we can now finish the proof of Theorem 5.2.

Proof of Theorem 5.2. The proof is by induction on ↵ < !2. There are two cases, depend-
ing on whether ↵ is a limit or a successor ordinal. As noted above, fil(I) is Ramsey in
V

P↵ for all ↵  !2 so we need to ensure simply that I remains densely maximal.
Case 1: ↵ = ⇠ + 1 for some ⇠. This follows from Lemma 5.12 noting that no other step

adds reals.
Case 2: ↵ is a limit ordinal. Observe first that for all �  ↵,

V
P� ✏ “fil(I) = hfil(I) \ V iup”,

by Lemma 5.10 above. By Lemma 5.4, our inductive assumption then takes the form

V
P� ✏ P (!) = hfil(I) \ V iup [ h!\I

h
| h 2 FF(I)idn

for all � < ↵. By Theorem 5.11,

V
P↵ ✏ P (!) = hfil(I) \ V iup [ h!\I

h
| h 2 FF(I)idn

must hold as well. Again apply Lemma 5.4 to conclude that I is densely maximal in V
P↵ .

In particular, fil(I) is an ultrafilter, and thus it is Ramsey. ⇤
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6. Applications and Models

Having proved these three preservation theorems we can now turn to applications. The
first is an immediate consequence of of Theorems 3.2, 4.6 and 5.2.

Theorem 6.1. Let G ✓ P!2 be generic over L. In L[G] we have a = u = i = @1 < 2@0 =
@2, with each cardinal characteristic witnessed by a ⇧1

1 set and a �1
3 well-order.

Note that since C(Y ) has the Sacks property, in L[G] we have that cof(N ), and hence
all the cardinals in Cichoń’s diagram are @1 as well.

We can also mix and match the cardinal characteristics while still preserving coanalytic
witnesses.

Theorem 6.2. The following are consistent with 2@0 = @2 and a �1
3 well-order of the

reals.

(1) a = u = @1 < i = @2 and there are a ⇧1
1 tight MAD family of size @1 and a ⇧1

1
ultrafilter base for a P-point of size @1.

(2) a = i = @1 < u = @2 and there are a ⇧1
1 tight MAD family of size @1 and a ⇧1

1
maximal independent family of size @1.

(3) a = @1 < i = u = @2 and there is a ⇧1
1 tight MAD family.

Proof. Each of these follows from our preservation theorems alongside the right choice of
“woven in” forcing for Q̇

0
↵. For the first one we can use Miller forcing, which, since it

increases d, will force i = 2@0 . However Miller forcing preserves P-points [13, Lemma 25.5]
and strongly preserves the tightness of any MAD family [12] so the coanalytic witnesses to
a = u = @1 will be preserved. For the second model we force with Shelah’s forcing QI from
[17] alongside an appropriate bookkeeping device. This forcing will preserve a selective
independent family, strongly preserve the tightness of any tight MAD family ([3]) but
increases u. For the final model we alternate between Miller forcing and QI forcing. ⇤

7. Conclusion and Open Questions

In light of Theorem 6.1, it is reasonable to ask about whether in V
P!2 there are optimal

complexity witnesses to “maximal” sets of reals of size @2.

Question 1. What is the lowest projective complexity of a MAD family, a maximal in-
dependent family or an ultrafilter base of size @2 in V

P!2? Could there be co-analytic
witnesses for any of these? What about in the models discussed in Theorem 6.2?

We can also ask about the possibility of coanalytic witnesses to a, i and u in a model
of 2@0 > @2 alongside a �1

3 well-order. Such a model was constructed in [7].

Question 2. Is it consistent that 2@0 > @2 alongside a �1
3 well-order of the reals and

a = u = i = @1 all with coanalytic witnesses?

The model of [7] was built using finite support iteration of ccc posets, entailing that
i = 2@0 . It seems di�cult to avoid increasing i while forcing 2@0 > @2 in this way.
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