Homework 1, due: Sep 22, 11:30 am
(1) Prove that the set of intervals $\{[a, b): a, b \in \mathbb{R}\}$ generates the Borel $\sigma$ algebra $\mathcal{B}_{\mathbb{R}}$.
(2) Let $X, Y$ be sets, $\mathcal{A} \subset \mathcal{P}(X)$ and $\mathcal{B} \subset \mathcal{P}(Y)$ be $\sigma$-algebras. If $f: X \rightarrow Y$ is a function let $f^{-1}(\mathcal{B})=\left\{f^{-1}(S): S \in \mathcal{B}\right\}$ and $f(\mathcal{A})=\{f(S): S \in \mathcal{A}\}$ and $f^{*} \mathcal{A}=\left\{S: f^{-1}(S) \in \mathcal{A}\right\}$. Decide whether the following statements are true or false. Justify your answer!
(a) for every $f$ the set $f^{-1}(\mathcal{B})$ is a $\sigma$-algebra on $X$,
(b) for every $f$ the set $f(\mathcal{A})$ is a $\sigma$-algebra on $Y$,
(c) for every $f$ the set $f^{*} \mathcal{A}$ is a $\sigma$-algebra on $Y$,
(d) for every surjective $f$ the set $f(\mathcal{A})$ is a $\sigma$-algebra on $Y$.

Solution. First we show that for every collection of sets $B_{0}, B_{1}, \cdots \subset Y$ we have $f^{-1}\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)=\bigcup_{i \in \mathbb{N}} f^{-1}\left(B_{i}\right)$. Indeed, for every $x \in X$ we have

$$
x \in \bigcup_{i \in \mathbb{N}} f^{-1}\left(B_{i}\right) \Longleftrightarrow f(x) \in \bigcup_{i \in \mathbb{N}} B_{i} \Longleftrightarrow x \in f^{-1}\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)
$$

A similar calculation shows that $f^{-1}\left(Y \backslash B_{0}\right)=X \backslash f^{-1}\left(B_{0}\right)$.
(a) Yes. Obviously $\emptyset \in f^{-1}(\mathcal{B})$, we check that $f^{-1}(\mathcal{B})$ is closed under countable unions. Let $A_{0}, A_{1}, \ldots$ a countable collection of sets in $f^{-1}(\mathcal{B})$. By definition there exist $B_{0}, B_{1}, \ldots$ with $f^{-1}\left(B_{i}\right)=A_{i}$. Then, by the above observation we have $\bigcup_{i \in \mathbb{N}} A_{i}=\bigcup_{i \in \mathbb{N}} f^{-1}\left(B_{i}\right)=$ $f^{-1}\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)$. But, as $\mathcal{B}$ is a $\sigma$ algebra we get that $\bigcup_{i \in \mathbb{N}} B_{i} \in \mathcal{B}$, which shows that $f^{-1}(\mathcal{B})$ is closed under countable unions. The fact that it is closed under complements can be shown similarly.
(b) No. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a constant map and $\mathcal{A}=\mathcal{B}=\mathcal{B}_{\mathbb{R}}$. Then $Y \notin f(\mathcal{A})$, so this family is not a $\sigma$-algebra (actually, any non-surjective function would be suitable).
(c) Yes. Again, $\emptyset \in f^{*} \mathcal{A}$, so we check that $f^{*} \mathcal{A}$ is closed under countable unions. Let $B_{0}, B_{1}, \ldots f^{*}(\mathcal{A})$. Then, by definition $f^{-1}\left(B_{i}\right) \in \mathcal{A}$ for every $i \in \mathbb{N}$. Thus, using the above observation we get $f^{-1}\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)=$ $\bigcup_{i \in \mathbb{N}} f^{-1}\left(B_{i}\right)$ and the latter set is the element of $\mathcal{A}$, which shows that $\bigcup_{i \in \mathbb{N}} B_{i} \in f^{*} \mathcal{A}$ holds. The case of the complements can be proved similarly.
(d) No. Let $X=[-1,1], Y=[0,1], f(x)=x^{2}$, and $\mathcal{A}=$ $\{\emptyset,[-1,1],[0,1],[-1,0)\}$. Then $f$ is surjective, $\mathcal{A}$ is a $\sigma$-algebra and $f(\mathcal{A})=\{\emptyset,[0,1],(0,1]\}$, which is not a $\sigma$ algebra, as $[0,1] \backslash(0,1]=$ $\{0\} \notin f(\mathcal{A})$.
(3) Show that every closed subset of the reals is $G_{\delta}$.

Solution. Let $F \subset \mathbb{R}$ be a closed set. Consider the set $G=\mathbb{R} \backslash F$. It is enough to express $G$ as a countable union of closed sets (in other words, show that $G$ is $F_{\sigma}$ ), since then $F$ will be the intersection of the complements of these sets.

Clearly, $G$ is open hence it can be expressed as a countable union of bounded open intervals $\left(a_{i}, b_{i}\right)$ for $i \in \mathbb{N}$. For every $i$ we can find a natural number $N_{i}$ so large that $a_{i}+\frac{1}{N_{i}}<b_{i}-\frac{1}{N_{i}}$. It is not hard to see that for
each $i$ we have

$$
\left(a_{i}, b_{i}\right)=\bigcup_{n \geq N_{i}}\left[a_{i}+\frac{1}{n}, b_{i}+\frac{1}{n}\right]
$$

Thus, $G=\bigcup_{i \in \mathbb{N}}\left(a_{i}, b_{i}\right)=\bigcup_{i \in \mathbb{N}} \bigcup_{n \geq N_{i}}\left[a_{i}+\frac{1}{n}, b_{i}+\frac{1}{n}\right]$, showing that $G$ is indeed an $F_{\sigma}$ set.
(4) Prove that the cardinality of a $\sigma$-algebra is either finite or at least $\mathfrak{c}$.

Solution. Suppose that $\mathcal{A} \subset \mathcal{P}(X)$ is an infinite $\sigma$-algebra. Then there exists a pairwise distinct collection $A_{1}, A_{2}, \ldots$ of sets in $\mathcal{A}$. For each $x \in X$ let

$$
B_{x}=\bigcap_{x \in A_{i}} A_{i} \cap \bigcap_{x \notin A_{i}} A_{i}^{c}
$$

We claim that for every $x, y \in X$ either $B_{x}=B_{y}$, or $B_{x} \cap B_{y}=\emptyset$. Indeed, if $B_{x} \neq B_{y}$ then there exists some $i$ with $x \in A_{i}$ and $y \notin A_{i}$ or $x \notin A_{i}$ and $y \in A_{i}$ (otherwise all sets in the two intersections would be the same). If $x \in A_{i}$ and $y \notin A_{i}$ (and similarly in the other case) then by definition $B_{x} \subset A_{i}$ while $B_{y} \subset A_{i}^{c}$, so these sets are disjoint.

Now we prove that the set $\left\{B_{x}: x \in X\right\}$ is infinite. Suppose the contrary. Clearly, $x \in B_{x}$ for every $x$, moreover, if $x \in A_{i}$ for some $i$, then $A_{i} \supset B_{x}$. Consequently, $A_{i}=\bigcup_{x \in A_{i}} B_{x}$, in other words, every $A_{i}$ can be expressed as a union of the sets of type $B_{x}$. If the collection $\left\{B_{x}: x \in X\right\}$ was finite, the number of possible distinct unions would be finite as well, contradicting the assumption the sets $\left(A_{i}\right)$ are pairwise different.

Thus, we can find $x_{0}, x_{1}, \ldots$ with $B_{x_{0}}, B_{x_{1}}, \ldots$ pairwise disjoint. Finally, to every subset $A$ of $\mathbb{N}$ we assign the set $S_{A}=\bigcup_{k \in A} B_{x_{k}}$. Clearly, the sets $S_{A}$ are all in $\mathcal{A}$, and as $|\mathcal{P}(\mathbb{N})|=\mathfrak{c}$ it is enough to show that the map $A \mapsto S_{A}$ is injective. But this is easy: if $A \neq A^{\prime}$ then there is some $l \in A \backslash A^{\prime}$ or $l \in A^{\prime} \backslash A$. Let $l \in A \backslash A^{\prime}$ (the other case is similar) then $x_{l} \in B_{x_{l}} \subset S_{A}$ but

$$
B_{x_{l}} \cap S_{A^{\prime}}=B_{x_{l}} \cap\left(\bigcup_{k \in A^{\prime}} B_{x_{k}}\right)=\bigcup_{k \in A^{\prime}} B_{x_{l}} \cap B_{x_{k}}=\emptyset
$$

So $x_{l} \in S_{A} \backslash S_{A^{\prime}}$ which shows that $S_{A} \neq S_{A^{\prime}}$, thus finishing the proof.

