
Homework 1, due: Sep 22, 11:30 am

(1) Prove that the set of intervals {[a, b) : a, b ∈ R} generates the Borel σ-
algebra BR.

(2) Let X,Y be sets, A ⊂ P(X) and B ⊂ P(Y ) be σ-algebras. If f : X → Y
is a function let f−1(B) = {f−1(S) : S ∈ B} and f(A) = {f(S) : S ∈ A}
and f∗A = {S : f−1(S) ∈ A}. Decide whether the following statements
are true or false. Justify your answer!
(a) for every f the set f−1(B) is a σ-algebra on X,
(b) for every f the set f(A) is a σ-algebra on Y ,
(c) for every f the set f∗A is a σ-algebra on Y ,
(d) for every surjective f the set f(A) is a σ-algebra on Y .
Solution. First we show that for every collection of sets B0, B1, · · · ⊂ Y
we have f−1(

⋃
i∈NBi) =

⋃
i∈N f

−1(Bi). Indeed, for every x ∈ X we have

x ∈
⋃
i∈N

f−1(Bi) ⇐⇒ f(x) ∈
⋃
i∈N

Bi ⇐⇒ x ∈ f−1(
⋃
i∈N

Bi).

A similar calculation shows that f−1(Y \B0) = X \ f−1(B0).
(a) Yes. Obviously ∅ ∈ f−1(B), we check that f−1(B) is closed under

countable unions. Let A0, A1, . . . a countable collection of sets in
f−1(B). By definition there exist B0, B1, . . . with f−1(Bi) = Ai.
Then, by the above observation we have

⋃
i∈NAi =

⋃
i∈N f

−1(Bi) =

f−1(
⋃
i∈NBi). But, as B is a σ algebra we get that

⋃
i∈NBi ∈ B, which

shows that f−1(B) is closed under countable unions. The fact that it
is closed under complements can be shown similarly.

(b) No. Let f : R → R be a constant map and A = B = BR. Then
Y 6∈ f(A), so this family is not a σ-algebra (actually, any non-surjective
function would be suitable).

(c) Yes. Again, ∅ ∈ f∗A, so we check that f∗A is closed under countable
unions. Let B0, B1, . . . f

∗(A). Then, by definition f−1(Bi) ∈ A for
every i ∈ N. Thus, using the above observation we get f−1(

⋃
i∈NBi) =⋃

i∈N f
−1(Bi) and the latter set is the element of A, which shows that⋃

i∈NBi ∈ f∗A holds. The case of the complements can be proved
similarly.

(d) No. Let X = [−1, 1], Y = [0, 1], f(x) = x2, and A =
{∅, [−1, 1], [0, 1], [−1, 0)}. Then f is surjective, A is a σ-algebra and
f(A) = {∅, [0, 1], (0, 1]}, which is not a σ algebra, as [0, 1] \ (0, 1] =
{0} 6∈ f(A).

(3) Show that every closed subset of the reals is Gδ.
Solution. Let F ⊂ R be a closed set. Consider the set G = R \ F . It is
enough to express G as a countable union of closed sets (in other words,
show that G is Fσ), since then F will be the intersection of the complements
of these sets.

Clearly, G is open hence it can be expressed as a countable union of
bounded open intervals (ai, bi) for i ∈ N. For every i we can find a natural
number Ni so large that ai + 1

Ni
< bi − 1

Ni
. It is not hard to see that for

1



2

each i we have

(ai, bi) =
⋃
n≥Ni

[ai +
1

n
, bi +

1

n
].

Thus, G =
⋃
i∈N(ai, bi) =

⋃
i∈N

⋃
n≥Ni

[ai + 1
n , bi + 1

n ], showing that G is
indeed an Fσ set.

(4) Prove that the cardinality of a σ-algebra is either finite or at least c.
Solution. Suppose that A ⊂ P(X) is an infinite σ-algebra. Then there
exists a pairwise distinct collection A1, A2, . . . of sets in A. For each x ∈ X
let

Bx =
⋂
x∈Ai

Ai ∩
⋂
x 6∈Ai

Aci .

We claim that for every x, y ∈ X either Bx = By, or Bx ∩ By = ∅.
Indeed, if Bx 6= By then there exists some i with x ∈ Ai and y 6∈ Ai or
x 6∈ Ai and y ∈ Ai (otherwise all sets in the two intersections would be
the same). If x ∈ Ai and y 6∈ Ai (and similarly in the other case) then by
definition Bx ⊂ Ai while By ⊂ Aci , so these sets are disjoint.

Now we prove that the set {Bx : x ∈ X} is infinite. Suppose the contrary.
Clearly, x ∈ Bx for every x, moreover, if x ∈ Ai for some i, then Ai ⊃ Bx.
Consequently, Ai =

⋃
x∈Ai

Bx, in other words, every Ai can be expressed

as a union of the sets of type Bx. If the collection {Bx : x ∈ X} was finite,
the number of possible distinct unions would be finite as well, contradicting
the assumption the sets (Ai) are pairwise different.

Thus, we can find x0, x1, . . . with Bx0
, Bx1

, . . . pairwise disjoint. Finally,
to every subset A of N we assign the set SA =

⋃
k∈ABxk

. Clearly, the sets
SA are all inA, and as |P(N)| = c it is enough to show that the map A 7→ SA
is injective. But this is easy: if A 6= A′ then there is some l ∈ A \ A′ or
l ∈ A′ \ A. Let l ∈ A \ A′ (the other case is similar) then xl ∈ Bxl

⊂ SA
but

Bxl
∩ SA′ = Bxl

∩ (
⋃
k∈A′

Bxk
) =

⋃
k∈A′

Bxl
∩Bxk

= ∅.

So xl ∈ SA \ SA′ which shows that SA 6= SA′ , thus finishing the proof.


