Homework 5, due: Nov 1, 11:30 am
(1) (a) Construct an example of $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ functions, with $f_{n} \rightarrow f$ uniformly, but $\int f_{n} d \lambda \nrightarrow \int f d \lambda$.
(b) Let (X, \mathcal{M}, μ) be a finite measure space and $f_{n}: X \rightarrow \mathbb{R}$ be measurable functions, and suppose that $f_{n} \rightarrow f$ uniformly. Prove that $\int f_{n} d \lambda \rightarrow$ $\int f d \lambda$.
(2) Let $H \subset \mathbb{R}$ be measure zero. Prove that H can be translated into the irrationals, i. e., there exists an $x \in \mathbb{R}$ such that for every $h \in H$ the number $x+h$ is irrational!
(3) Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions. Show that the set $\left\{x\right.$: the sequence $\left(f_{n}(x)\right)_{n=1}^{\infty}$ converges $\}$ is $F_{\sigma \delta}$, that is, the countable intersection of F_{σ} sets.

