Homework 6, due: Nov 24, 11:30 am
(1) The Cartesian coordinates of a point (x, y, z) in \mathbb{R}^{3} can be expressed from the spherical coordinates as follows:

$$
x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta
$$

where $r \in[0, \infty), \theta \in[0, \pi], \phi \in[0,2 \pi]$. Let $\Omega_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x, y, z>\right.$ $\left.0,1<\sqrt{x^{2}+y^{2}+z^{2}}<2\right\}, \Omega_{2}=\{(r, \theta, \phi): r \in(1,2), \theta \in(0, \pi / 2), \phi \in$ $(0, \pi / 2)\}$ and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a Borel measurable non-negative function. Prove that

$$
\begin{gathered}
\int_{\Omega_{1}} f(x, y, z) d x d y d z= \\
\int_{\Omega_{2}} f(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta) r^{2} \sin \theta d r d \theta d \phi
\end{gathered}
$$

Using this, calculate the value of the integral $\int_{\Omega_{1}} y z d x d y d z$.
(2) Prove the general version of the theorem about the substitution: if $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} is a Lebesgue measurable function with $f \in L^{1}(\lambda)$ and $G: \Omega \rightarrow \mathbb{R}^{n}$ is a C^{1} diffeomorphism where Ω is open then

$$
\int_{G(\Omega)} f(x) d \lambda(x)=\int_{\Omega} f \circ G\left|\operatorname{det} D_{x} G\right| d \lambda(x)
$$

