MATH6280 A - Measure Theory Midterm Examination, Sample

- (1) (a) Define the notion of a monotone class.
 - (b) Decide whether the following families form a monotone class: $\mathcal{A} = \{I \subset \mathbb{R} : I \text{ is a closed interval}\}$ and $\mathcal{B} = \{I \subset \mathbb{R} : I \text{ is an interval}\}.$
- (2) Let (X, \mathcal{M}, μ) be a measure space and $f : X \to \mathbb{R}$ be measurable. Prove that if for every $x \in X$ we have f(x) > 0 then $\int f d\mu > 0$.
- (3) Let $H \subset [0,1]$ be an arbitrary set. Prove that there exists a real $c \in \mathbb{R}$ such that $\lambda^*([0,c] \cap H) = \lambda^*(H)/2$.
- (4) Let $\varepsilon > 0$ and suppose that for every *n* we have a λ measurable set $E_n \subset [0,1]$ such that $\lambda(E_n) > \varepsilon$. Prove that
 - (a) for every k there exists an $x \in [0, 1]$ such that $x \in E_n$ for at least $k \in \mathbb{N}$ many n's,
 - (b) there exists an $x \in [0, 1]$ such that $x \in E_n$ for infinitely many n's.