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(1) Let (X,M, µ) be a measure space and A1, A2, . . . be a countable collection
of sets in M with the property that for every distinct i, j ∈ N+ we have
µ(Ai ∩Aj) = 0. Show that

∑∞
i=1 µ(Ai) = µ(

⋃∞
i=1Ai).

Solution. The inequality
∑∞
i=1 µ(Ai) ≥ µ(

⋃∞
i=1Ai) is true for any count-

able collection of sets from M, so it is enough to prove
∑∞
i=1 µ(Ai) ≤

µ(
⋃∞
i=1Ai). Let N =

⋃
i6=j Ai ∩ Aj . Then µ(N) ≤

∑
i 6=j µ(Ai ∩ Aj) = 0.

Now note that the sets A′i = Ai \ N are pairwise disjoint. Clearly,
µ(A′i) ≤ µ(Ai) and µ(A′i) = µ(A′i) + µ(N) ≥ µ(Ai). Thus, µ(Ai) = µ(A′i)
for every i ∈ N. So by the additivity of µ we get

µ(

∞⋃
i=1

Ai) ≥ µ(

∞⋃
i=1

A′i) =

∞∑
i=1

µ(A′i) =

∞∑
i=1

µ(Ai).

(2) (a) Define the notion of an outer measure!
Solution. If X is a set, an outer measure on X is a function ρ :
P(X)→ [0,∞] with the following properties:

(i) ρ(∅) = 0,
(ii) for every A,B ⊂ X with A ⊂ B, we have ρ(A) ≤ ρ(B)
(iii) for every A1, A2, · · · ⊂ X we have ρ(

⋃∞
i=1Ai)) ≤

∑∞
i=1 ρ(Ai).

(b) Let λ∗ be the outer measure associated to the Lebesgure measure, i. e.,
for A ⊂ R define λ∗(A) = inf{

∑∞
i=1 λ(Ai) : Ai are open intervals, A ⊂⋃∞

i=1Ai}. Prove that for every A ⊂ R there exists a Gδ set B such
that A ⊂ B and λ∗(A) = λ∗(B).
Solution. By the definition of λ∗ for every n ∈ N+ there exists
a countable collection of open intervals An1 , A

n
2 , . . . such that A ⊂⋃∞

i=1A
n
i and λ∗(A) + 1

n ≥
∑∞
i=1 λ(Ani ). Let Bn =

⋃∞
i=1A

n
i and define

B =
⋂∞
n=1Bn.

Clearly, A ⊂ Bn for each n, so A ⊂ B as well. Thus, by the mono-
tonicity of an outer measure we get λ∗(A) ≤ λ∗(B).
On the other hand B ⊂ Bn where the latter set is the union of the
intervals (Ani )∞i=1. So λ∗(B) ≤

∑∞
i=1 λ(Ani ) for every n, hence λ∗(B) ≤

λ∗(A) + 1
n holds for every n, which shows that λ∗(A) = λ∗(B).

(3) Let f : R → [0,∞) be a Borel measurable function and consider the set
S = {(x, y) : 0 ≤ y ≤ f(x)}. Show that
(a) S is BR ⊗ BR measurable,
(b) (λ× λ)(S) =

∫
R fdλ.

Solution.
(a) Since all rectangles with Borel sides are in the σ-algebra BR ⊗BR and

S ⊂ {(x, y) : y ≥ 0}, it is enough to prove that T = {(x, y) : y ≥ 0}\S
can be expressed as a countable union of such rectangles. We will show
that T =

⋃
q∈Q f

−1([0, q])× (q,∞), note that as f is Borel measurable

the sets f−1([0, q]) are in BR so the sets f−1([0, q]) × (q,∞) are in
BR ⊗ BR.
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Now for every (x, y) with y ≥ 0 we have

(x, y) ∈ T ⇐⇒ (x, y) 6∈ S ⇐⇒ f(x) < y ⇐⇒
there exists a rational number q with f(x) < q < y ⇐⇒

(x, y) ∈
⋃
q∈Q

f−1([0, q])× (q,∞),

which shows the desired equality.
(b) By Fubini’s theorem and the measurability of S we get

(λ× λ)(S) =

∫
R
λ(Sx) dλ(x)

but Sx = [0, f(x)] and λ([0, f(x)]) = f(x), so

(λ× λ)(S) =

∫
R
λ(Sx) dλ(x) =

∫
R
f(x) dλ(x).

(4) Let (X,M, µ) be a measure space, f : X → [0,∞) be measurable with∫
X
fdµ <∞ and ε > 0. Prove that there exists a δ > 0 such that for every

B ∈M with µ(B) < δ we have
∫
B
fdµ < ε.

Solution. By the definition of
∫
X
f dµ = sup{

∫
X
φ dµ : 0 ≤ φ ≤

f, φ is a simple function}. Since
∫
X
f is finite, there exists a simple func-

tion φ with 0 ≤ φ ≤ f such that
∫
f dµ <

∫
φ dµ + ε

2 . Note that so for
every measurable set B we have

(*)

∫
B

f dµ−
∫
B

φ dµ =

∫
B

f − φ dµ ≤
∫
X

f − φ dµ < ε

2
,

where the first inequality holds because f − φ ≥ 0.
φ is simple and nonnegative, so it can be expressed in the form∑n
i=1 aiχEi for some measurable sets E1, . . . , En and nonnegative reals

a1, . . . , an. Let K = 1 + max{ai : 1 ≤ i ≤ n} and δ < ε
2K . If B is an arbi-

trary measurable set with µ(B) < δ then
∫
B
φ dµ ≤ Kµ(B) < K ε

2K = ε
2 .

Thus, using this and (*) yields∫
B

f dµ <

∫
B

φ dµ+
ε

2
<
ε

2
+
ε

2
= ε.


