MATH6280 A - Measure Theory
 Midterm Examination

November 3, 2016
(1) Let (X, \mathcal{M}, μ) be a measure space and A_{1}, A_{2}, \ldots be a countable collection of sets in \mathcal{M} with the property that for every distinct $i, j \in \mathbb{N}^{+}$we have $\mu\left(A_{i} \cap A_{j}\right)=0$. Show that $\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)$.
Solution. The inequality $\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \geq \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)$ is true for any countable collection of sets from \mathcal{M}, so it is enough to prove $\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \leq$ $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)$. Let $N=\bigcup_{i \neq j} A_{i} \cap A_{j}$. Then $\mu(N) \leq \sum_{i \neq j} \mu\left(A_{i} \cap A_{j}\right)=0$. Now note that the sets $A_{i}^{\prime}=A_{i} \backslash N$ are pairwise disjoint. Clearly, $\mu\left(A_{i}^{\prime}\right) \leq \mu\left(A_{i}\right)$ and $\mu\left(A_{i}^{\prime}\right)=\mu\left(A_{i}^{\prime}\right)+\mu(N) \geq \mu\left(A_{i}\right)$. Thus, $\mu\left(A_{i}\right)=\mu\left(A_{i}^{\prime}\right)$ for every $i \in \mathbb{N}$. So by the additivity of μ we get

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geq \mu\left(\bigcup_{i=1}^{\infty} A_{i}^{\prime}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}^{\prime}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

(2) (a) Define the notion of an outer measure!

Solution. If X is a set, an outer measure on X is a function ρ : $\mathcal{P}(X) \rightarrow[0, \infty]$ with the following properties:
(i) $\rho(\emptyset)=0$,
(ii) for every $A, B \subset X$ with $A \subset B$, we have $\rho(A) \leq \rho(B)$
(iii) for every $A_{1}, A_{2}, \cdots \subset X$ we have $\left.\rho\left(\bigcup_{i=1}^{\infty} A_{i}\right)\right) \leq \sum_{i=1}^{\infty} \rho\left(A_{i}\right)$.
(b) Let λ^{*} be the outer measure associated to the Lebesgure measure, i. e., for $A \subset \mathbb{R}$ define $\lambda^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \lambda\left(A_{i}\right): A_{i}\right.$ are open intervals, $A \subset$ $\left.\bigcup_{i=1}^{\infty} A_{i}\right\}$. Prove that for every $A \subset \mathbb{R}$ there exists a G_{δ} set B such that $A \subset B$ and $\lambda^{*}(A)=\lambda^{*}(B)$.
Solution. By the definition of λ^{*} for every $n \in \mathbb{N}^{+}$there exists a countable collection of open intervals $A_{1}^{n}, A_{2}^{n}, \ldots$ such that $A \subset$ $\bigcup_{i=1}^{\infty} A_{i}^{n}$ and $\lambda^{*}(A)+\frac{1}{n} \geq \sum_{i=1}^{\infty} \lambda\left(A_{i}^{n}\right)$. Let $B_{n}=\bigcup_{i=1}^{\infty} A_{i}^{n}$ and define $B=\bigcap_{n=1}^{\infty} B_{n}$.
Clearly, $A \subset B_{n}$ for each n, so $A \subset B$ as well. Thus, by the monotonicity of an outer measure we get $\lambda^{*}(A) \leq \lambda^{*}(B)$.
On the other hand $B \subset B_{n}$ where the latter set is the union of the intervals $\left(A_{i}^{n}\right)_{i=1}^{\infty}$. So $\lambda^{*}(B) \leq \sum_{i=1}^{\infty} \lambda\left(A_{i}^{n}\right)$ for every n, hence $\lambda^{*}(B) \leq$ $\lambda^{*}(A)+\frac{1}{n}$ holds for every n, which shows that $\lambda^{*}(A)=\lambda^{*}(B)$.
(3) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a Borel measurable function and consider the set $S=\{(x, y): 0 \leq y \leq f(x)\}$. Show that
(a) S is $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ measurable,
(b) $(\lambda \times \lambda)(S)=\int_{\mathbb{R}} f d \lambda$.

Solution.

(a) Since all rectangles with Borel sides are in the σ-algebra $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ and $S \subset\{(x, y): y \geq 0\}$, it is enough to prove that $T=\{(x, y): y \geq 0\} \backslash S$ can be expressed as a countable union of such rectangles. We will show that $T=\bigcup_{q \in \mathbb{Q}} f^{-1}([0, q]) \times(q, \infty)$, note that as f is Borel measurable the sets $f^{-1}([0, q])$ are in $B_{\mathbb{R}}$ so the sets $f^{-1}([0, q]) \times(q, \infty)$ are in $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.

Now for every (x, y) with $y \geq 0$ we have

$$
(x, y) \in T \Longleftrightarrow(x, y) \notin S \Longleftrightarrow f(x)<y \Longleftrightarrow
$$

there exists a rational number q with $f(x)<q<y \Longleftrightarrow$

$$
(x, y) \in \bigcup_{q \in \mathbb{Q}} f^{-1}([0, q]) \times(q, \infty)
$$

which shows the desired equality.
(b) By Fubini's theorem and the measurability of S we get

$$
\begin{gathered}
(\lambda \times \lambda)(S)=\int_{\mathbb{R}} \lambda\left(S_{x}\right) d \lambda(x) \\
\text { but } S_{x}=[0, f(x)] \text { and } \lambda([0, f(x)])=f(x), \text { so } \\
(\lambda \times \lambda)(S)=\int_{\mathbb{R}} \lambda\left(S_{x}\right) d \lambda(x)=\int_{\mathbb{R}} f(x) d \lambda(x)
\end{gathered}
$$

(4) Let (X, \mathcal{M}, μ) be a measure space, $f: X \rightarrow[0, \infty)$ be measurable with $\int_{X} f d \mu<\infty$ and $\varepsilon>0$. Prove that there exists a $\delta>0$ such that for every $B \in \mathcal{M}$ with $\mu(B)<\delta$ we have $\int_{B} f d \mu<\varepsilon$.
Solution. By the definition of $\int_{X} f d \mu=\sup \left\{\int_{X} \phi d \mu: 0 \leq \phi \leq\right.$ f, ϕ is a simple function $\}$. Since $\int_{X} f$ is finite, there exists a simple function ϕ with $0 \leq \phi \leq f$ such that $\int f d \mu<\int \phi d \mu+\frac{\varepsilon}{2}$. Note that so for every measurable set B we have

$$
\int_{B} f d \mu-\int_{B} \phi d \mu=\int_{B} f-\phi d \mu \leq \int_{X} f-\phi d \mu<\frac{\varepsilon}{2}
$$

where the first inequality holds because $f-\phi \geq 0$.
ϕ is simple and nonnegative, so it can be expressed in the form $\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ for some measurable sets E_{1}, \ldots, E_{n} and nonnegative reals a_{1}, \ldots, a_{n}. Let $K=1+\max \left\{a_{i}: 1 \leq i \leq n\right\}$ and $\delta<\frac{\varepsilon}{2 K}$. If B is an arbitrary measurable set with $\mu(B)<\delta$ then $\int_{B} \phi d \mu \leq K \mu(B)<K \frac{\varepsilon}{2 K}=\frac{\varepsilon}{2}$. Thus, using this and $\left(^{*}\right)$ yields

$$
\int_{B} f d \mu<\int_{B} \phi d \mu+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

