
Measure theory notes

0.1. Vitali’s theorem.

Definition 0.1. We say that a function µ is a natural total measure on R if µ :
P(R)→ [0,∞] and

(1) for every collection A1, A2, · · · ⊂ R of pairwise disjoint sets we have

µ(

∞⋃
n=1

An) =

∞∑
n=1

µ(An),

(2) for every x ∈ R and every A ⊂ R we have µ(x+A) = µ(A),
(3) for every x, y ∈ R with x < y

µ([x, y]) = y − x.

Theorem 0.2. There is no natural total measure on R.

Proof. Suppose towards contradiction that µ is such a measure. Notice first that
Property 1 implies monotonicity, that is, if A ⊂ B then µ(A) ≤ µ(B): indeed,

µ(B) = µ(B \A) + µ(A) ≥ µ(A).

Now we define a relation ∼ on [0, 1] as follows: let x ∼ y if and only if x−y ∈ Q.
It is easy to check that ∼ is an equivalence relation:

• x ∼ x, since x− x ∈ Q,
• x ∼ y implies y ∼ x, since y − x = −(x− y),
• if x ∼ y and y ∼ z then x ∼ z, since x− z = (x− y) + (y− z) and the sum

of two rational numbers is rational.

Let V ⊂ [0, 1] be a set that intersects each equivalence class at exactly one point.
Notice that if r1, r2 are distinct rationals then V + r1 ∩ V + r2 = ∅: otherwise,
v1 + r1 = v2 + r2 was true for some distinct v1, v2 ∈ V , so v1−v2 ∈ Q, i. e., v1 ∼ v2
contradicting the choice of V .

Note that if x ∈ [0, 1] then there exists a v ∈ V with x ∼ v, in other words,
x − v ∈ Q (note also that x, v ∈ [0, 1] implies x − v ∈ [−1, 1]), therefore each
x ∈ [0, 1] is covered by some of the sets (V + r)r∈Q∩[−1,1]. Thus,

[0, 1] ⊂
⋃

r∈Q∩[−1,1]

V + r ⊂ [−1, 2],

where the last containment follows for V ⊂ [0, 1].
So, using the fact that the sets (V + r)r∈Q are disjoint translates of V and the

monotonicity of µ, we obtain

1 = µ([0, 1]) ≤ µ(
⋃

r∈Q∩[−1,1]

V + r) ≤ µ([−1, 2]) = 3

and by the countability of Q we get

1 ≤
∑

r∈Q∩[−1,1]

µ(V + r) ≤ 3.

Hence, 1 ≤
∑∞
i=1 µ(V ) ≤ 3, thus on the one hand

∑∞
i=1 µ(V ) is bounded by 3, so

µ(V ) = 0, on the other hand the sum is non-zero, a contradiction.
�
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0.2. Product of σ-algebras. It is not hard to see that if X is a set, E ⊂ P(X),
that is, E is a family of subsets of X, then there exists a smallest σ-algebra con-
taining E . We call this set the σ-algebra generated by E and denote it by M(E).

Definition 0.3. Suppose that Mi ⊂ P(Xi) is a collection of σ-algebras on the
sets Xi for i ∈ I. We define the product of the σ-algebras Mi as the σ-algebra of
subsets of

∏
i∈I Xi generated by the sets of the form {π−1i (Ai) : Ai ∈ Mi}, where

πi denotes the projection map ”onto the ith coordinate” from
∏
i∈I Xi to Xi. We

denote this σ-algebra by ⊗i∈IMi.

In particular, if I = {1, 2} then the σ-algebraM1⊗M2 is generated by the sets
of the form A1 ×X2 and X1 ×A2, where A1 ∈M1 and A2 ∈M2.

Theorem 0.4. Suppose that the families of sets Ei ⊂ Mi generate the σ-algebras
Mi for every i ∈ I. Then the σ-algebra generated by F1 = {π−1i (Ai) : Ai ∈ Ei, i ∈
I} is exactly ⊗i∈IMi. If moreover for every i ∈ I we have Xi ∈ Ei and I is
countable then the σ-algebra generated by the family F2 = {

∏
i∈I Ai : Ai ∈ Ei} is

⊗i∈IMi.

Proof. We prove the first statement first. Clearly, by Ei ⊂ Mi and the definition
of ⊗i∈IMi we have F1 ⊂ ⊗i∈IMi, therefore M(F1) ⊂ ⊗i∈IMi.

In order to prove M(F1) ⊃ ⊗i∈IMi it is enough to prove that M(F1) contains
a generating set of the σ-algebra ⊗i∈IMi. So we prove that

(*) M(F1) ⊃ {π−1i (Ai) : Ai ∈Mi, i ∈ I},
the latter is by definition a generating set of ⊗i∈IMi. Define for every i ∈ I the
set

Ai = {A ∈Mi : π−1i (A) ∈M(F1)}.
Obviously, Ai ⊂Mi and by the definition of F1 we have Ei ⊂ Ai for every i ∈ I.

We claim that Ai is a σ-algebra, note that by Ei ⊂ Ai this will imply Mi = Ai.
Let B,B1, B2, · · · ∈ Ai for some i ∈ I. Then, since π−1i (B) ∈ M(F1) by definition

of Ai andM(F1) being a σ-algebra we get that π−1i (Xi\B) = (
∏
i∈I Xi)\π−1i (B) ∈

M(F1), so Xi\B ∈ Ai as well, so Ai is closed under taking complements. Similarly,
using π−1i (

⋃
nBn) =

⋃
n π
−1
i (Bn) we get that Ai is closed under countable unions.

Hence Ai = Mi, but this means that for every Ai ∈ Mi we have π−1i (Ai) ∈
M(F1), in other words, (*) holds and we are done.

We prove now that M(F2) = ⊗i∈IMi. Since Xi ∈ Ei we have that if Ai ∈ Ei
the sets of the form π−1i (Ai) are elements of F2, that is, F1 ⊂ F2. Thus, from the
first part we get M(F2) ⊃M(F1) = ⊗i∈IMi. For the reverse just notice that for
every set of the form

∏
i∈I Ai where Ai ∈ Ei we have∏

i∈I
Ai =

⋂
i∈I

π−1i (Ai).

If I is countable, then the above intersection is a countable intersection of elements
of the σ-algebra ⊗i∈IMi, thus,

∏
i∈I Ai ∈ ⊗i∈IMi, so F2 ⊂ ⊗i∈IMi which finishes

the proof.
�

Corollary 0.5. If I is countable, then ⊗i∈IMi is generated by the sets of the form∏
i∈I Ai where Ai ∈Mi.

Proof. Let Ei =Mi in Theorem 0.4. �
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0.3. Elementary families.

Definition 0.6. Let X be a set. A collection E of subsets of X is called an
elementary family if

(1) for every A,B ∈ E we have A ∩B ∈ E ,
(2) for every A ∈ E there exist pairwise disjoint sets A1, . . . , Ak ∈ E with

Ac = A1 ∪ · · · ∪An.

Proposition 0.7. Suppose that E is an elementary family. Let A = {A1∪· · ·∪An :
A1, . . . , An are disjoint, Ai ∈ E}, that is, the collection of finite disjoint unions of
sets from E.

Proof. First we prove by induction on n that whenever A1, . . . , An ∈ E then
∪ni=1Ai ∈ A. For n = 1 this is obvious, so suppose that we have proved the
statement for every natural ≤ n.

Let A1, . . . , An, An+1 ∈ E be arbitrary. By the inductive hypothesis

A1 ∪ · · · ∪An ∪An+1 = B1 ∪ · · · ∪Bk ∪An+1,

for some B1, . . . , Bk ∈ E are disjoint. But then

B1 ∪ · · · ∪Bk ∪An+1 =

=

k⋃
i=1

(Bi ∩Acn+1) ∪An+1,

and the sets Bi ∩ Acn+1 (for 1 ≤ i ≤ k) and An+1 are pairwise disjoint and by
Property 2 we have Bi ∩ Acn+1 =

⋃m
l=1Bi ∩ El, where El are pairwise disjoint sets

from E . Therefore, A1 ∪ · · · ∪An ∪An+1 ∈ A.
Thus, since every finite union of elements of A is a finite union of elements E ,

we get thatA is closed under finite unions.
To see that it is closed under taking complements let A1, . . . , An ∈ E pairwise

disjoint, then

(A1 ∪ · · · ∪An)c =

n⋂
i=1

Aci .

By Property 2 for each i ≤ n we get sets (Eij)1≤j≤ni
∈ E with Ai = ∪ni

j=1E
i
j . Thus,

n⋂
i=1

Aci =

n⋂
i=1

(

ni⋃
j=1

Eij) =
⋃
{E1

j1 ∩ E
2
j2 ∩ · · · ∩ E

n
ln : 1 ≤ ji ≤ ni, 1 ≤ i ≤ n},

which is the finite union of sets in E , consequently, by the first part of the proof,
an element of A. �

0.4. Regularity properties of measures. As we have seen, for a measure µ
defined on a σ-algebra we can define the appropriate outer measure µ∗, which will
be a measure on the collection of (Caratheodory-) measurable sets. Moreover, on
this collection µ∗ is the unique measure extending µ, provided that µ was σ-finite.
Hence, we do not lose anything if we identify µ with this extension to the measurable
sets. In particular, we will call a set µ-measurable, if it is measurable with respect
to the outer measure µ∗, and let µ(A) = µ∗(A) if A is measurable etc.

Theorem 0.8. Let µ be a finite measure on the σ-algebra of BX for some metric
space X. Then for every µ measurable set E we have
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(1) µ(E) = inf{µ(U) : U ⊃ E,U is open},
(2) µ(E) = sup{µ(F ) : F ⊂ E,F is closed}.

Proof. Let A be the collection of those µ measurable sets for which the conditions
1-2 hold.
A contains every closed set: indeed, if F is closed, then 2 is obvious. To see that

1 holds, use that F is Gδ (which can be proved very similarly to the case X = R),

so F =
⋂∞
n=1 Un where Un is open. Letting Vk =

⋂k
n=1 Un the sets Vk are open

and form a decreasing sequence, with F =
⋂∞
n=1 Vn, by the finiteness and hence

the continuity of µ we have µ(Vn)→ µ(F ) as n→∞.
A is a σ-algebra. HW
Thus, we get that A ⊃ BX . Now, let A be an arbitrary µ measurable set. First

we prove that we can find a B ⊃ A with B ∈ BRd and µ(B) = µ(A): By the
definition µ∗ for every m ∈ N there exists sets Amn ∈ BRd such that A ⊂

⋃∞
n=1A

m
n

and µ(A) > µ(
⋃∞
n=1A

m
n )− 1

m+1 . By the finiteness of µ we get that

µ((

∞⋃
n=1

Amn ) \A) = µ(

∞⋃
n=1

Amn )− µ(A) <
1

m+ 1
.

Let B =
⋂∞
m=1

⋃∞
n=1A

m
n . Then B ∈ A and B ⊃ A and for every m ∈ N we have

µ(B)− µ(A) ≤ µ(

∞⋃
n=1

Amn )− µ(A) ≤ 1

m+ 1
,

so µ(B) = µ(A).
Thus, we can find B ∈ BRd such that B ⊃ A and µ(A) = µ(B). Let ε > 0. Using

that B,Bc ∈ A we get an open set U ⊃ B ⊃ A and an open set V ⊃ Bc such that

(*) µ(U) < µ(B) + ε = µ(A) + ε,

and

µ(V ) < µ(Bc) + ε.

Using that µ is finite and letting F = X \ V we get

µ(F ) = µ(X \ V ) = µ(X)− µ(V ) ≥ µ(X)− (µ(Bc) + ε) =

µ(X)− (µ(X)− µ(B) + ε) ≥ µ(B)− ε = µ(A)− ε.
The fact that ε was arbitrary and the last equation show that 2 holds for A, while
(*) shows that 1 is also true. �

Corollary 0.9. Suppose that µ is a measure on BR which is finite on every bounded
set. Then µ is Borel regular. In particular, every Lebesgue-Stieltjes measure is Borel
regular.

Proof. Let E ⊂ R be a µ measurable set and fix ε > 0. For each n ∈ Z the interval
[n, n + 1] is a metric space (with the usual metric) and the measure µ|[n,n+1] is a
finite Borel measure (note that for a set B ⊂ [n, n + 1] we have in B ∈ B[n,n+1]

iff B ∈ BR and also B is µ|[n,n+1]-measurable iff B is µ-measurable). Thus, by
Theorem 0.8 it is regular, so there exist closed sets (in [n, n+ 1] as a metric space)
Fn ⊂ E ∩ [n, n+ 1) such that

µ(E ∩ [n, n+ 1)) < µ(Fn) + ε · 2−|n|−2.
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Note that (using that the intervals [n, n+ 1] are closed in R) the sets Fn and hence
the set F =

⋃
n∈Z Fn are closed in R, F ⊂ E and

µ(E) =
∑
n∈Z

µ(E ∩ [n, n+ 1)) <
∑
n∈Z

(µ(Fn) + ε · 2−|n|−2) < µ(F ) + ε.

This shows that 2 holds.
The proof of outer regularity is similar: find a Un open subset in each (n−1, n+1)

such that Un ⊃ E ∩ [n, n+ 1) and

µ(Un) < µ(E ∩ [n, n+ 1)) + ε · 2−|n|−2.

Then (again, by the fact that the intervals (n − 1, n + 1) are open) the set U =⋃
n∈Z Un is open in R, U ⊃ E and

µ(U) ≤
∑
n∈Z

µ(Un) <
∑
n∈Z

(µ(E ∩ [n, n+ 1)) + ε · 2−|n|−2) < µ(E) + ε,

so we are done. �

0.5. Riemann integral and Lebesgure integral. For an interval I we denote
by |I| the length of I.

Let f : [a, b]→ R be a bounded function. A sequence a = x0 < x1 < · · · < xn = b
is called a partition of the interval [a, b]. The upper and lower sums corresponding
to the partition P = (xi)

n
i=0 are defined as follows:

U(P, f) =

n∑
i=1

sup
x∈[xi−1,xi]

f(x)(xi − xi−1),

and

L(P, f) =

n∑
i=1

inf
x∈[xi−1,xi]

f(x)(xi − xi−1).

Let ∫ b

a

f(x)dx = inf{U(P, f) : P is a partition of [a, b]},

and ∫ b

a

f(x)dx = sup{L(P, f) : P is a partition of [a, b]}.

We say that f is Riemann integrable if
∫ b
a
f(x)dx =

∫ b
a
f(x)dx.

A sequence of partitions Pk = (xki )ni=0 is called infinitely refining, if
max1≤i≤n(xki − xki−1) → 0 as k → ∞. It is not hard to show that f is Riemann

integrable if and only if for every infinitely refining partition sequence Pk = (xki )ni=0

we have that

lim
k→∞

U(Pk, f) = lim
k→∞

L(Pk, f).

Theorem 0.10. (Lebesgue’s criterion of integrability) Let f : [a, b] → R be a
function. f is Riemann integrable if and only if f is bounded and the set {x ∈
[a, b] : f is not continuous at x} has Lebesgue measure zero.

Before we begin the proof of the theorem we need a definition.
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Definition 0.11. The oscillation of f on the interval I, ωf (I), is defined by

ωf (I) = sup
x∈I

f(x)− inf
x∈I

f(x).

Whereas the oscillation of f at a point x0, ωf (x0) is defined by

ωf (x0) = lim
ε→0

ωf ((x0 − ε, x0 + ε)).

Lemma 0.12. (1) f is continuous at a point x0 if and only if ωf (x0) = 0,
(2) if c ∈ R, the set {x : ωf (x) ≥ c} is closed in [a, b].

Proof. HW �

Proof. Thus, using our new notations, we have to proof that f is Riemann integrable
if and only if f is bounded and the set {x : ωf (x) > 0} has measure zero.
(⇒) Suppose first that f is Riemann integrable. Then by the definition of the
existence of the integral f is bounded, hence it is enough to prove that for every
m ∈ N+ the set Dm = {x : ωf (x) > 1

m} has λ-measure zero. Thus, let m ∈ N+ and
ε > 0 be given. By the definition of integrability there exists a partition P = (xi)

n
i=0

such that U(P, f)− L(P, f) < ε
m . By the definition of U and L we get:

(*)
ε

m
> U(P, f)− L(P, f) =

n∑
i=1

( sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x))(xi − xi−1) =

=

n∑
i=1

ωf ([xi−1, xi])(xi − xi−1) ≥
∑

[xi−1,xi]∩Dm 6=∅

1

m
(xi − xi−1)

where the last inequality follows from the fact that whenever in an interval
[xi−1, xi] there exists a point p from Dm, the oscillation ωf ([xi−1, xi]) ≥ ωf (p) ≥
1
m . Obviously, Dm is covered by the collection of intervals [xi−1, xi] for which
[xi−1, xi]∩Dm 6= ∅. But multiplying the two sides of (*) by m we get that the total
length of these intervals is less then ε, thus λ(Dm) < ε. Since ε was arbitrary, this
finishes the proof of this direction.
(⇐) Suppose now that the points of discontinuity form a measure zero set and f
is bounded. Fix an ε > 0 and let K be such that |f(x)| < K for each x ∈ [a, b].
We will construct a partition of P with U(P, f)−L(P, f) < ε. By Lemma 0.12 the
set {x : ωf (x) ≥ ε

2(b−a)} is closed and, as the subset of [a, b] it is compact, while

by our assumption it is measure zero. Thus, there exists a finite collection of open

intervals I1, . . . , Ik such that
∑k
j=1 |Ij | <

ε
4K and {x : ωf (x) ≥ ε

2(b−a)} ⊂
⋃k
j=1 Ij .

Now the set K = [a, b] \
⋃k
j=1 Ij is also closed and bounded, hence compact, and

for every x ∈ K we have ωf (x) < ε
2(b−a) . But then, using the definition of ωf (x)

for each x ∈ K there exists an open interval U around x such that ωf (U) < ε
2(b−a) .

Again, we can find a cover of K by finitely many such open intervals. Intersecting
these intervals with K and I1, . . . , Ik and taking the endpoints we get a partition
a = x0 < x1 < · · · < xn = b with the following property: for each i we have that
[xi−1, xi] ⊂ Ij for some j, or ωf ([xi−1, xi]) <

ε
2(b−a) . Thus,

U(P, f)− L(P, f) =

n∑
i=1

( sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x))(xi − xi−1) =
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=

n∑
i=1

ωf ([xi−1, xi])(xi − xi−1) ≤

≤
∑

[xi−1,xi]⊂Ij
for some j

ωf ([xi−1, xi])(xi−xi−1)+
∑

ωf ([xi−1,xi])<
ε

2(b−a)

ωf ([xi−1, xi])(xi−xi−1) ≤

≤ 2K

k∑
j=1

|Ij |+
ε

2(b− a)
(b− a) ≤ 2K

ε

4K
+
ε

2
= ε,

which finishes the proof of the theorem.
�
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