Measure theory notes

0.1. Vitali’s theorem.

Definition 0.1. We say that a function p is a natural total measure on R if p :
P(R) — [0, 00] and
(1) for every collection Ay, As,--- C R of pairwise disjoint sets we have

p(lJ An) = w4,

(2) for every z € R and every A C R we have pu(z + A) = u(A),
(3) for every z,y € R with z <y

W[z, ) =y — =
Theorem 0.2. There is no natural total measure on R.

Proof. Suppose towards contradiction that p is such a measure. Notice first that
Property |1| implies monotonicity, that is, if A C B then u(A) < u(B): indeed,

w(B) = u(B\ A) + p(A) = p(A).
Now we define a relation ~ on [0, 1] as follows: let z ~ y if and only if z —y € Q.
It is easy to check that ~ is an equivalence relation:
e x ~ux,sincex —x € Q,
e x ~ y implies y ~ z, since y — x = —(x — y),
o if x ~yand y ~ z then z ~ 2, since z — 2z = (x — y) + (y — 2) and the sum
of two rational numbers is rational.

Let V' C [0, 1] be a set that intersects each equivalence class at exactly one point.
Notice that if 71,7, are distinct rationals then V + 7 NV 4+ ro = (: otherwise,
v1 + 11 = vg + ro was true for some distinct v1,v2 € V, 50 v1 —vg € Q, 1. €., v1 ~ vy
contradicting the choice of V.

Note that if z € [0,1] then there exists a v € V with z ~ v, in other words,
x —v € Q (note also that z,v € [0,1] implies x — v € [—1,1]), therefore each
x € [0,1] is covered by some of the sets (V + 7),cqn[—1,1]- Thus,

01c |J Vv+rcl-12]
reQn[—1,1]
where the last containment follows for V' C [0, 1].

So, using the fact that the sets (V + 1),cq are disjoint translates of V' and the
monotonicity of u, we obtain

L=p(0,1)<pu | V+r)<u(-12)=3
reQn[—1,1]
and by the countability of Q we get
1< Y p(V+r)<s.
reQn[—1,1]

Hence, 1 < 372, (V) < 3, thus on the one hand Y ;= (V) is bounded by 3, so
w(V) =0, on the other hand the sum is non-zero, a contradiction.
(]
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0.2. Product of g-algebras. It is not hard to see that if X is a set, £ C P(X),
that is, £ is a family of subsets of X, then there exists a smallest o-algebra con-
taining £. We call this set the o-algebra generated by £ and denote it by M(E).

Definition 0.3. Suppose that M; C P(X;) is a collection of o-algebras on the
sets X; for ¢ € I. We define the product of the o-algebras M, as the o-algebra of
subsets of [[,c; X; generated by the sets of the form {m; '(4;) : A; € M;}, where
m; denotes the projection map ”onto the ith coordinate” from Hie 7 Xi to X;. We
denote this o-algebra by ®;c;M;.

In particular, if I = {1,2} then the o-algebra M; ® M is generated by the sets
of the form A; x X5 and X7 x As, where A; € M7 and Ay € M.

Theorem 0.4. Suppose that the families of sets & C M; generate the o-algebras
M, for every i € I. Then the o-algebra generated by Fy = {m; *(A;) : A; € &,i €
I} is exactly ®;crM;. If moreover for every i € I we have X; € & and I is
countable then the o-algebra generated by the family Fo = {[[,c; Ai : A; € &} is
Qicr M.
Proof. We prove the first statement first. Clearly, by & C M; and the definition
of ®;erM; we have F; C ®;c1 M, therefore M(Fy) C ®;erM,.

In order to prove M(F1) D ®;c1M; it is enough to prove that M(F;) contains
a generating set of the g-algebra ®;c;M;. So we prove that
(*) M(F) D {m; (Ay) : Aj € My,i € I},

the latter is by definition a generating set of ®;c;M;. Define for every i € I the
set

i€l

A; = {A e M, : 7TZ_1(A) S M(fl)}
Obviously, A; C M; and by the definition of F; we have & C A; for every i € I.

We claim that A; is a o-algebra, note that by & C A; this will imply M; = A,.
Let B, By, B>, -- € A; for some 7 € I. Then, since 71';1(3) € M(F1) by definition
of A; and M(F;) being a o-algebra we get that 7; ' (X;\B) = ([1,c; Xi)\ 7 '(B) €
M(F1),s0 X;\B € A; as well, so A; is closed under taking complements. Similarly,
using 7; (U, Bn) = U,, m; '(By) we get that A; is closed under countable unions.

Hence A; = M;, but this means that for every 4; € M; we have W;l(Ai) €
M(Fy), in other words, (*) holds and we are done.

We prove now that M(Fs) = ®;c;M,;. Since X; € & we have that if A; € &;
the sets of the form Wi_l(Ai) are elements of Fy, that is, /1 C F5. Thus, from the
first part we get M(F2) D M(F1) = ®;c1M;. For the reverse just notice that for
every set of the form [, ; A; where A; € & we have

iel iel
If I is countable, then the above intersection is a countable intersection of elements

of the o-algebra ®;c; M;, thus, [[,.; Ai € ®ic1 M, 80 Fa C ®;e1M; which finishes
the proof.

icl
O

Corollary 0.5. If I is countable, then ®;c1M; is generated by the sets of the form
[Lic; Ai where A; € M;.

Proof. Let & = M; in Theorem [0.4 O



0.3. Elementary families.

Definition 0.6. Let X be a set. A collection £ of subsets of X is called an
elementary family if
(1) for every A, B € £ we have ANB € &,

(2) for every A € & there exist pairwise disjoint sets A;,...,Ar € &£ with
A=A U---UA,.

Proposition 0.7. Suppose that & is an elementary family. Let A = {A;U---UA,, :
A1, ..., Ay, are disjoint, A; € E}, that is, the collection of finite disjoint unions of
sets from &.

Proof. First we prove by induction on n that whenever A,..., A, € & then
ur,A; € A For n = 1 this is obvious, so suppose that we have proved the
statement for every natural < n.

Let Ay,..., A, Ant1 € € be arbitrary. By the inductive hypothesis

A1U"'UAnUAn+1 ZBlU'”UBkUAn_H,
for some By, ..., By € £ are disjoint. But then

B --~UBkUAn+1:

k
U (Bi N AS 1)U Apy,
S

and the sets B; N A5, (for 1 i < k) and A, are pairwise disjoint and by
Property [2| we have B; N A, | = = U;~, B; N E;, where E; are pairwise disjoint sets
from &. Therefore, Ay U---UA, UA,11 € A

Thus, since every finite union of elements of A is a finite union of elements &,
we get thatA is closed under finite unions.

To see that it is closed under taking complements let Aq,..., A, € £ pairwise
disjoint, then

(Alu.-.uAn)czﬁAg.

By Propertylfor each i < n we get sets (E )1<J<n1 € & with A; = U E; Thus,

ﬂAg: ﬂ(UE;i) = J{E},nE;,n-- NE :1<j; <n;,1 <i<n},

= i=1 j=1
which is the finite union of sets in &£, consequently, by the first part of the proof,
an element of A. O

0.4. Regularity properties of measures. As we have seen, for a measure pu
defined on a o-algebra we can define the appropriate outer measure p*, which will
be a measure on the collection of (Caratheodory-) measurable sets. Moreover, on
this collection p* is the unique measure extending p, provided that p was o-finite.
Hence, we do not lose anything if we identify p with this extension to the measurable
sets. In particular, we will call a set u-measurable, if it is measurable with respect
to the outer measure p*, and let pu(A) = p*(A) if A is measurable etc.

Theorem 0.8. Let p be a finite measure on the o-algebra of Bx for some metric
space X. Then for every p measurable set E we have



(1) w(E) =int{w(U) : U D E,U is open},
(2) w(E) =sup{u(F): F C E,F is closed}.

Proof. Let A be the collection of those p measurable sets for which the conditions
[ hold.

A contains every closed set: indeed, if F is closed, then [2]is obvious. To see that
holds, use that F' is G5 (which can be proved very similarly to the case X = R),
so F = ﬂoo U, where U, is open. Letting V}, = ﬂn 1 Uy the sets Vj, are open
and form a decreasmg sequence, with F' = ﬂn 1 Vn, by the finiteness and hence
the continuity of p we have pu(V,,) — u(F') as n — oo.

A is a o-algebra. HW

Thus, we get that A D Bx. Now, let A be an arbitrary p measurable set. First
we prove that we can find a B D A with B € Bga and pu(B) = p(A): By the
definition p* for every m € N there exists sets A" € Bga such that A C [J;2 | A”
and p(A4) > p(Uo2, AT — m+1 By the ﬁnlteness of p we get that

m m 1
UA )\ A) = UA - <

n=1

Let B={_;U,~; A" Then B € A and B D A and for every m € N we have

> 1
B) — u(A) < A — p(A) <
w(B) = p(A) < p(|J A7) = w(A) < =,
so 1u(B) = p(A).
Thus, we can find B € Bga such that B D A and u(A) = u(B). Let € > 0. Using
that B, B¢ € A we get an open set U D B D A and an open set V' O B¢ such that

(*) p(U) < p(B) +e=p(A) +e,
and

u(V) < w(B) +e.
Using that p is finite and letting F' = X \ V we get

p(F) = p(X\V) = u(X) = u(V) 2 p(X) = (u(B°) +¢) =

w(X) = (WX) = u(B) +€) = u(B) —e = p(4) —&.
The fact that ¢ was arbitrary and the last equation show that 2| holds for A, while
(*) shows that 1| is also true. O

Corollary 0.9. Suppose that u is a measure on Bg which is finite on every bounded
set. Then u is Borel reqular. In particular, every Lebesgue-Stieltjes measure is Borel
reqular.

Proof. Let E C R be a u measurable set and fix € > 0. For each n € Z the interval
[n,n + 1] is a metric space (with the usual metric) and the measure pf, ,,41] is @
finite Borel measure (note that for a set B C [n,n + 1] we have in B € B, n4q)
iff B € Bg and also B is p|[p ,41-measurable iff B is py-measurable). Thus, by
Theorem [0.8| it is regular, so there exist closed sets (in [n,n 4 1] as a metric space)
F, C EN[n,n+ 1) such that

wEN[n,n+1)) < p(F,) +e-27M=2,
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Note that (using that the intervals [n,n + 1] are closed in R) the sets F,, and hence

the set F' = UnEZ F,, are closed in R, F' C E and
W) = S BN+ 1) < S (u(F) +e-27112) < u(F) + e
nez nez

This shows that Pl holds.
The proof of outer regularity is similar: find a U,, open subset in each (n—1,n+1)
such that U,, D EN[n,n+ 1) and

w(Uy) < w(EN[n,n+1))+e-27M=2,

Then (again, by the fact that the intervals (n — 1,n + 1) are open) the set U =
Unez Un is open in R, U O E and

p(U) <7 u(Un) < S (u(E N fnyn+ 1)) +2-271172) < pu(B) +e,
nez nez

so we are done. O

0.5. Riemann integral and Lebesgure integral. For an interval I we denote
by |I| the length of I.

Let f : [a,b] — R be a bounded function. A sequencea =1xg <21 < -+ <z, =0>
is called a partition of the interval [a,b]. The upper and lower sums corresponding
to the partition P = (x;)!_, are defined as follows:

n

UPH=Y swp  f)(wi—wii),

i—1 T€[Ti—1,7]

and
L(P, f) = Z e[inf ]f(x)(xi —xi-1).
i=1 i—1,%q
Let
b
f(z)dz = inf{U(P, f) : P is a partition of [a,b]},
and

b
/ f(z)dxz = sup{L(P, f) : P is a partition of [a, b]}.

a

We say that f is Riemann integrable if flff(x)dx = f;f(x)dx

A sequence of partitions P, = (2F), is called infinitely refining, if
max<;<p(z¥ — 2% ) — 0 as k — oco. It is not hard to show that f is Riemann
integrable if and only if for every infinitely refining partition sequence P, = (z¥),

we have that
lim U(Py, f) = lim L(Py, f).
k—o0 k—o0

Theorem 0.10. (Lebesgue’s criterion of integrability) Let f : [a,b] — R be a
function. f is Riemann integrable if and only if [ is bounded and the set {z €
[a,b] : f is not continuous at x} has Lebesgue measure zero.

Before we begin the proof of the theorem we need a definition.
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Definition 0.11. The oscillation of f on the interval I, w(I), is defined by
wr(I) =sup f(x) — inf f(x).
xel xel
Whereas the oscillation of f at a point x¢, wi(zo) is defined by

w(zg) = iii%wf((xo —&,x9 +€)).

Lemma 0.12. (1) f is continuous at a point xo if and only if wy(xe) =0,
(2) if c € R, the set {zx : w¢(x) > c} is closed in [a,b)].
Proof. HW ]

Proof. Thus, using our new notations, we have to proof that f is Riemann integrable
if and only if f is bounded and the set {« : w¢(z) > 0} has measure zero.

(=) Suppose first that f is Riemann integrable. Then by the definition of the
existence of the integral f is bounded, hence it is enough to prove that for every
m € NT the set Dy, = {x : wy(z) > L} has A-measure zero. Thus, let m € N* and
g > 0 be given. By the definition of integrability there exists a partition P = (z;)7,
such that U(P, f) — L(P, f) < =. By the definition of U and L we get:

n

() S>UPN-LPH=3 sw fa@)- it @)@ -n)=

i1 TE€lwio1,mi) T€[Ti—1,74]

n
1
- wf([xi—laxi})(xi 7Ii—1) > *(1172 71’1_1)
; [wil,xi%Dm#(ﬂ m
where the last inequality follows from the fact that whenever in an interval
[;_1,2;] there exists a point p from D,,, the oscillation w([z;—1,2;]) > wy(p) >
%. Obviously, D,, is covered by the collection of intervals [z;_1,x;] for which
[zi—1,2;]N Dy, # 0. But multiplying the two sides of (*) by m we get that the total
length of these intervals is less then &, thus A(D,,) < €. Since ¢ was arbitrary, this
finishes the proof of this direction.
(<) Suppose now that the points of discontinuity form a measure zero set and f
is bounded. Fix an € > 0 and let K be such that |f(z)| < K for each x € [a,b].
We will construct a partition of P with U(P, f) — L(P, f) < e. By Lemma the
set {x : wy(x) > ﬁ} is closed and, as the subset of [a,b] it is compact, while
by our assumption it is measure zero. Thus, there exists a finite collection of open
intervals Iy,..., I such that 25:1 [1;] < 5% and {z: wy(z) > ﬁ} C U?Zl I;.

Now the set K = [a, b] \U;?:1 I; is also closed and bounded, hence compact, and
13

for every z € K we have wy(x) < 3(—q)- But then, using the definition of wy(x)

for each = € K there exists an open interval U around z such that w¢(U) < ﬁ.

Again, we can find a cover of K by finitely many such open intervals. Intersecting
these intervals with K and I1,...,I; and taking the endpoints we get a partition
a=2x9 <z < <z, =0 with the following property: for each i we have that

[@;—1,2;] C I; for some j, or we([@i—1,2;]) < 3%—ay- Lhus,

n

UP f)=LPP,f)=>( sup flx)— inf f@))(@i—zi1)=

‘=7 wElrio1,mi] w€[z;—1,3]



= wa([%‘—hl‘i])(ﬂfi — 1) <
< Z wi(lzim1, z))(@i—xi—1)+ Z wi([zim1, z))(@wi—xim1) <

[xi—1,2s]CI; wf([wi71,x¢])<ﬁ
for some j
r € € €
<2K |+ =———0b—0a)<2K—+ - =¢,
= ;' R e Uy B
which finishes the proof of the theorem.
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