Polarized partitions on the second level of the projective hierarchy

Yurii Khomskii

Joint work with Jörg Brendle (Kobe University, Japan)

Amsterdam set theory workshop, 2 June 2010
Question: Let \(m_0, \ldots, m_{k-1} \) be fixed integers \(\geq 2 \). Is it true that for every partition \(\pi : \omega^k \rightarrow 2 \) there is a sequence \(H_0, \ldots, H_{k-1} \) of finite subsets of \(\omega \) with \(|H_i| = m_i \), which is homogeneous for \(\pi \), i.e., \(\pi \) is constant on \(\prod_{i<k} H_i \)?

Notation

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
\]
Question: Let m_0, \ldots, m_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^k \to 2$ there is a sequence H_0, \ldots, H_{k-1} of finite subsets of ω with $|H_i| = m_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
\]

Answer: Yes
Finite polarized partitions 1

Question: Let m_0, \ldots, m_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^k \to 2$ there is a sequence H_0, \ldots, H_{k-1} of finite subsets of ω with $|H_i| = m_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i<k} H_i$?

Answer: Yes, because π induces a partition of ω^k, which we identify with $[\omega]^k$.

- Notation

$$
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \to
\begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
$$
Finite polarized partitions 1

Question: Let m_0, \ldots, m_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^k \rightarrow 2$ there is a sequence H_0, \ldots, H_{k-1} of finite subsets of ω with $|H_i| = m_i$, which is *homogeneous* for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation:

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
\]

Answer: Yes, because π induces a partition of $\omega^{\uparrow k}$, which we identify with $[\omega]^k$. By the finite Ramsey theorem there is an infinite H s.t. π is constant on $[H]^k$.
Finite polarized partitions 1

Question: Let m_0, \ldots, m_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^k \rightarrow 2$ there is a sequence H_0, \ldots, H_{k-1} of finite subsets of ω with $|H_i| = m_i$, which is *homogeneous* for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
\]

Answer: Yes, because π induces a partition of $\omega^{\uparrow k}$, which we identify with $[\omega]^k$. By the finite Ramsey theorem there is an infinite H s.t. π is constant on $[H]^k$. Now let

- $H_0 :=$ first m_0 members of H,

Finite polarized partitions 1

Question: Let m_0, \ldots, m_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^k \to 2$ there is a sequence H_0, \ldots, H_{k-1} of finite subsets of ω with $|H_i| = m_i$, which is *homogeneous* for π, i.e., π is constant on $\prod_{i < k} H_i$?

Notation

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega \\
\end{pmatrix} \to \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1} \\
\end{pmatrix}
\]

Answer: Yes, because π induces a partition of $\omega^{\uparrow k}$, which we identify with $[\omega]^k$. By the finite Ramsey theorem there is an infinite H s.t. π is constant on $[H]^k$. Now let

- $H_0 :=$ first m_0 members of H,
- $H_1 :=$ next m_1 members of H, etc.
Question: Let \(m_0, \ldots, m_{k-1} \) be fixed integers \(\geq 2 \). Is it true that for every partition \(\pi : \omega^k \to 2 \) there is a sequence \(H_0, \ldots, H_{k-1} \) of finite subsets of \(\omega \) with \(|H_i| = m_i \), which is homogeneous for \(\pi \), i.e., \(\pi \) is constant on \(\prod_{i<k} H_i \)?

Answer: Yes, because \(\pi \) induces a partition of \(\omega^{\uparrow k} \), which we identify with \([\omega]^k \). By the finite Ramsey theorem there is an infinite \(H \) s.t. \(\pi \) is constant on \([H]^k \). Now let

- \(H_0 := \) first \(m_0 \) members of \(H \),
- \(H_1 := \) next \(m_1 \) members of \(H \), etc.

Then \(x \in \prod_i H_i \rightarrow \text{ran}(x) \subseteq H \), hence it is easy to see that \(\langle H_i \rangle_{i \in \omega} \) is homogeneous.
Question: Let m_0, \ldots, m_{k-1} and n_0, \ldots, n_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \prod_{i<k} n_i \to 2$ there is a sequence H_0, \ldots, H_{k-1} with $|H_i| = m_i$ and $H_i \subseteq n_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation

\[
\begin{pmatrix}
 n_0 \\
 \vdots \\
 n_{k-1}
\end{pmatrix} \to \begin{pmatrix}
 m_0 \\
 \vdots \\
 m_{k-1}
\end{pmatrix}
\]
Question: Let m_0, \ldots, m_{k-1} and n_0, \ldots, n_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \prod_{i<k} n_i \to 2$ there is a sequence H_0, \ldots, H_{k-1} with $|H_i| = m_i$ and $H_i \subseteq n_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation

$$
\left(
\begin{array}{c}
n_0 \\
\vdots \\
n_{k-1}
\end{array}
\right) \rightarrow
\left(
\begin{array}{c}
m_0 \\
\vdots \\
m_{k-1}
\end{array}
\right)
$$

Answer:

- Cannot use the finite Ramsey theorem.
Question: Let m_0, \ldots, m_{k-1} and n_0, \ldots, n_{k-1} be fixed integers ≥ 2. Is it true that for every partition $\pi : \prod_{i<k} n_i \to 2$ there is a sequence H_0, \ldots, H_{k-1} with $|H_i| = m_i$ and $H_i \subseteq n_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i<k} H_i$?

Notation

\[
\begin{pmatrix}
 n_0 \\
 \vdots \\
 n_{k-1}
\end{pmatrix}
\to
\begin{pmatrix}
 m_0 \\
 \vdots \\
 m_{k-1}
\end{pmatrix}
\]

Answer:

- Cannot use the finite Ramsey theorem.
- False if the n_i are too small, e.g.: $\left(\begin{array}{c} 2 \\ 2 \end{array} \right) \not\to \left(\begin{array}{c} 2 \\ 2 \end{array} \right)$.

Yuri Khomskii (University of Amsterdam)
Question: Let \(m_0, \ldots, m_{k-1} \) and \(n_0, \ldots, n_{k-1} \) be fixed integers \(\geq 2 \). Is it true that for every partition \(\pi : \prod_{i<k} n_i \to 2 \) there is a sequence \(H_0, \ldots, H_{k-1} \) with \(|H_i| = m_i \) and \(H_i \subseteq n_i \), which is homogeneous for \(\pi \), i.e., \(\pi \) is constant on \(\prod_{i<k} H_i \)?

Answer:
- Cannot use the finite Ramsey theorem.
- False if the \(n_i \) are too small, e.g.: \(\left(\begin{array}{c} 2 \\ 2 \end{array} \right) \not\to \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \).
- However, by induction we can compute the \(n_i \)'s from the \(m_i \)'s so that the partition holds.
Finite polarized partitions 2

\[(?) \rightarrow (m_0)\]
Finite polarized partitions 2

\[(2m_0) \rightarrow (m_0)\]
Finite polarized partitions 2

\[
\begin{pmatrix}
2m_0 \\
\? \\
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
m_1 \\
\end{pmatrix}
\]

If \((n_0 \cdot \cdot n_k - 1) \rightarrow (m_0 \cdot \cdot m_k - 1)\) holds and \(m_k\) is given, then by defining \(n_k := 2 \cdot m_k \cdot \prod_{i < k} (n_i m_i)\) the partition \((n_0 \cdot \cdot n_k) \rightarrow (m_0 \cdot \cdot m_k)\) holds as well.
Finite polarized partitions 2

\[\left(\begin{array}{c} 2m_0 \\ 2m_1 \end{array} \right) \left(\begin{array}{c} 2m_0 \\ m_0 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \]
\[
\left(\begin{array}{c}
2m_0 \\
2m_1 \binom{2m_0}{m_0}
\end{array} \right) \rightarrow \left(\begin{array}{c}
m_0 \\
m_1
\end{array} \right)
\]

e tc...
Finite polarized partitions 2

\[
\begin{pmatrix}
2m_0 \\
2m_1 \left(\begin{smallmatrix} 2m_0 \\ m_0 \end{smallmatrix} \right)
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
m_1
\end{pmatrix}
\]

etc. . .

If

\[
\begin{pmatrix}
n_0 \\
\vdots \\
n_{k-1}
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_{k-1}
\end{pmatrix}
\]

holds and \(m_k \) is given, then by defining

\[
n_k := 2 \cdot m_k \cdot \prod_{i<k} \binom{n_i}{m_i}
\]

the partition

\[
\begin{pmatrix}
n_0 \\
\vdots \\
n_k
\end{pmatrix} \rightarrow \begin{pmatrix}
m_0 \\
\vdots \\
m_k
\end{pmatrix}
\]

holds as well.
Now let’s extend this to infinite dimensions.
Now let’s extend this to infinite dimensions.

Question: Let $\langle m_i \rangle_{i \in \omega}$ be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^\omega \rightarrow 2$ there is a sequence $\langle H_i \rangle_{i \in \omega}$ with $|H_i| = m_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i \in \omega} H_i$?

Notation

$$
\begin{pmatrix}
\omega \\
\vdots
\end{pmatrix} \rightarrow
\begin{pmatrix}
m_0 \\
m_1 \\
\vdots
\end{pmatrix}
$$

Answer: By AC, cannot be true for all partitions. If π is analytic, then the partition holds by Silver’s theorem (all analytic sets are Ramsey).
Infinite polarized partitions 1

Now let’s extend this to infinite dimensions.

Question: Let \(\langle m_i \rangle_{i \in \omega} \) be fixed integers \(\geq 2 \). Is it true that for every partition \(\pi : \omega^\omega \rightarrow 2 \) there is a sequence \(\langle H_i \rangle_{i \in \omega} \) with \(|H_i| = m_i \), which is homogeneous for \(\pi \), i.e., \(\pi \) is constant on \(\prod_{i \in \omega} H_i \)?

Notation

\[
\begin{pmatrix}
\omega \\
\vdots \\
\omega
\end{pmatrix} \rightarrow
\begin{pmatrix}
m_0 \\
m_1 \\
\vdots
\end{pmatrix}
\]

Answer:
- By AC, cannot be true for *all* partitions.
Now let’s extend this to infinite dimensions.

Question: Let $\langle m_i \rangle_{i \in \omega}$ be fixed integers ≥ 2. Is it true that for every partition $\pi : \omega^\omega \rightarrow 2$ there is a sequence $\langle H_i \rangle_{i \in \omega}$ with $|H_i| = m_i$, which is homogeneous for π, i.e., π is constant on $\prod_{i \in \omega} H_i$?

Answer:
- By AC, cannot be true for all partitions.
- If π is analytic, then the partition holds by Silver’s theorem (all analytic sets are Ramsey).
Question: Let $\langle m_i \rangle_{i \in \omega}$ and $\langle n_i \rangle_{i \in \omega}$ be fixed integers ≥ 2. Is it true that for every partition $\pi : \prod_{i \in \omega} n_i \to 2$ there is a sequence $\langle H_i \rangle_{i \in \omega}$ with $|H_i| = m_i$ and $H_i \subseteq n_i$ which is homogeneous for π?

Notation

\[
\begin{pmatrix}
 n_0 \\
 n_1 \\
 \vdots
\end{pmatrix} \to
\begin{pmatrix}
 m_0 \\
 m_1 \\
 \vdots
\end{pmatrix}
\]
Question: Let $\langle m_i \rangle_{i \in \omega}$ and $\langle n_i \rangle_{i \in \omega}$ be fixed integers ≥ 2. Is it true that for every partition $\pi : \prod_{i \in \omega} n_i \to 2$ there is a sequence $\langle H_i \rangle_{i \in \omega}$ with $|H_i| = m_i$ and $H_i \subseteq n_i$ which is homogeneous for π?

This question came under attention only recently, in works of DiPrisco, Llopis, Todorčević and Zapletal.
Analytic partitions

- DiPrisco & Todorčević, 2004: $\left(\begin{array}{c} n_0 \\ n_1 \\ \vdots \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ \vdots \end{array} \right)$ holds for analytic partitions. Bounds $\langle n_i \rangle_{i \in \omega}$ are computed from $\langle m_i \rangle_{i \in \omega}$ in terms of recursive, but not primitive-recursive algorithm.
Analytic partitions

- DiPrisco & Todorčević, 2004: \(\left(\begin{array}{c} n_0 \\ n_1 \\ \vdots \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ \vdots \end{array} \right) \) holds for analytic partitions. Bounds \(\langle n_i \rangle_{i \in \omega} \) are computed from \(\langle m_i \rangle_{i \in \omega} \) in terms of recursive, but not primitive-recursive algorithm.

Analytic partitions

- DiPrisco & Todorčević, 2004: \((\binom{n_0}{n_1}) \rightarrow (\binom{m_0}{m_1})\) holds for analytic partitions. Bounds \(\langle n_i \rangle_{i \in \omega}\) are computed from \(\langle m_i \rangle_{i \in \omega}\) in terms of recursive, but not primitive-recursive algorithm.

Our goal is to see what happens at the next level of the projective hierarchy: \(\Delta^1_2\) and \(\Sigma^1_2\).
The second level

Questions about regularity on the second level of the projective hierarchy are typically independent of ZFC.

E.g. if $V = L$, then there is a Δ^1_2 set which is non-Lebesgue measurable, there is a Δ^1_2 set which doesn't have the Baire property, and there is a Δ^1_2 set which doesn't have Ramsey property.

On the other hand, if $\forall a (\aleph_L[a] = \aleph_0)$ then all Σ^1_2 sets are Lebesgue-measurable, have the Baire property and the Ramsey property.

In fact, regularity of Σ^1_2 and Δ^1_2 sets indicates the level of transcendence over L.
The second level

Questions about regularity on the second level of the projective hierarchy are typically independent of ZFC.

E.g. if $V = L$ then
- there is a Δ^1_2 set which is non-Lebesgue measurable,
- there is a Δ^1_2 set which doesn’t have the Baire property, and
- there is a Δ^1_2 set which doesn’t have Ramsey property.
The second level

Questions about regularity on the second level of the projective hierarchy are typically independent of ZFC.

E.g. if $V = L$ then
- there is a Δ^1_2 set which is non-Lebesgue measurable,
- there is a Δ^1_2 set which doesn’t have the Baire property, and
- there is a Δ^1_2 set which doesn’t have Ramsey property.

On the other hand, if $\forall a \ (\aleph_1^{L[a]} = \aleph_0)$ then all Σ^1_2 sets are Lebesgue-measurable, have the Baire property and the Ramsey property.
Questions about regularity on the second level of the projective hierarchy are typically independent of ZFC.

E.g. if $V = L$ then

- there is a Δ^1_2 set which is non-Lebesgue measurable,
- there is a Δ^1_2 set which doesn’t have the Baire property, and
- there is a Δ^1_2 set which doesn’t have Ramsey property.

On the other hand, if $\forall a (\aleph_1^{L[a]} = \aleph_0)$ then all Σ^1_2 sets are Lebesgue-measurable, have the Baire property and the Ramsey property.

In fact, regularity of Σ^1_2 and Δ^1_2 sets indicates the level of transcendent over L.
Examples

- Judah & Shelah, 1989: the following are equivalent:
 1. all Δ^1_2 sets are Lebesgue-measurable,
 2. for all $a \in \omega^\omega$ there is a random real over $L[a]$.

- Brendle & Löwe, 1999: the following are equivalent:
 1. all Δ^1_2 sets are Sacks-measurable (Marczewski-measurable)
 2. all Σ^1_2 sets are Sacks-measurable,
 3. for all $a \in \omega^\omega$ there is a real not in $L[a]$.

Same for Miller-measurable (super-perfect trees) & unbounded reals, and Laver-measurable & dominating reals.
Examples

- Judah & Shelah, 1989: the following are equivalent:
 1. all Δ^1_2 sets are Lebesgue-measurable,
 2. for all $a \in \omega^\omega$ there is a random real over $L[a]$.

- Same for Baire property & Cohen reals.
Examples

- Judah & Shelah, 1989: the following are equivalent:
 1. all Δ^1_2 sets are Lebesgue-measurable,
 2. for all $a \in \omega^\omega$ there is a random real over $L[a]$.

- Same for Baire property & Cohen reals.

- Brendle & Löwe, 1999: the following are equivalent:
 1. all Δ^1_2 sets are Sacks-measurable (Marczewski-measurable)
 2. all Σ^1_2 sets are Sacks-measurable,
 3. for all $a \in \omega^\omega$ there is a real not in $L[a]$.
Examples

Judah & Shelah, 1989: the following are equivalent:
1. all Δ^1_2 sets are Lebesgue-measurable,
2. for all $a \in \omega^\omega$ there is a random real over $L[a]$.

Same for Baire property & Cohen reals.

Brendle & Löwe, 1999: the following are equivalent:
1. all Δ^1_2 sets are Sacks-measurable (Marczewski-measurable)
2. all Σ^1_2 sets are Sacks-measurable,
3. for all $a \in \omega^\omega$ there is a real not in $L[a]$.

Same for Miller-measurable (super-perfect trees) & unbounded reals, and Laver-measurable & dominating reals.
Examples 2

- Ikegami, 2008: for a wide class of forcings \mathbb{P}, one can canonically define \mathbb{P}-measurability and a notion of \mathbb{P}-transcendence, such that the following are equivalent:
 1. all Δ^1_2 sets are \mathbb{P}-measurable,
 2. for all $a \in \omega^\omega$ there is a \mathbb{P}-transcendent real over $L[a]$.

Advantage: we can control regularity on the second level by iterated forcing constructions over $L[a]$.
Ikegami, 2008: for a wide class of forcings P, one can canonically define P-measurability and a notion of P-transcendence, such that the following are equivalent:

1. all Δ^1_2 sets are P-measurable,
2. for all $a \in \omega^\omega$ there is a P-transcendent real over $L[a]$.

Advantage: we can control regularity on the second level by iterated forcing constructions over L.
Comparing regularities

Traditionally one has investigated the strength of various regularity properties on the second level by comparing them with each other:
Comparing regularities

Traditionally one has investigated the strength of various regularity properties on the second level by comparing them with each other:

- Bartoszyński, 1984; Raisonnier & Stern, 1985: if all Σ^1_2 sets are Lebesgue measurable then all Σ^1_2 sets have the Baire property (but not vice versa.)
Comparing regularities

Traditionally one has investigated the strength of various regularity properties on the second level by comparing them with each other:

- Bartoszyński, 1984; Raisonnier & Stern, 1985: if all Σ^1_2 sets are Lebesgue measurable then all Σ^1_2 sets have the Baire property (but not vice versa.)
- Judah & Shelah, 1989: The following implications hold, and none other.

Σ^1_2(Ramsey) \rightarrow Σ^1_2(Baire) \rightarrow $\Sigma^1_2(K_\sigma$-regularity)
Comparing regularities

\[
\forall a \ (\mathcal{N}_1^{L[a]} = \mathcal{N}_0) \iff \Sigma^1_2(E) = \Sigma^4_2(D)
\]

\[
\Sigma^1_2(R) = \Delta^1_2(R) \quad \Sigma^1_2(C) = \Delta^1_2(D) \quad \Delta^1_2(E) \quad \Delta^1_2(B)
\]

\[
\Sigma^1_2(L) = \Delta^1_2(L) \quad \Delta^1_2(C) \quad \Sigma^1_2(V) \quad \Delta^1_2(V)
\]

\[
\forall a \ (\omega^\omega \cap L[a] \neq \omega^\omega) \iff \Sigma^1_2(S) = \Delta^1_2(S)
\]

Diagram: Brendle & Löwe, *Eventually different functions and inaccessible cardinals*
Back to the polarized partitions.

What can we say about the statements \((\omega \omega \rightarrow m_0 m_1)\) holds for \(\Sigma_{1/2} / \Delta_{1/2}\) partitions" and \((n_0 n_1 \rightarrow m_0 m_1)\) holds for \(\Sigma_{1/2} / \Delta_{1/2}\) partitions?"
Back to the polarized partitions. What can we say about the statements

- \[\left(\begin{array}{c} \omega \\ \omega \\ . \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ . \end{array} \right) \] holds for \(\Sigma^1_2/\Delta^1_2 \) partitions” and

- \[\left(\begin{array}{c} n_0 \\ n_1 \\ . \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ . \end{array} \right) \] holds for \(\Sigma^1_2/\Delta^1_2 \) partitions”? \]
Results

Easy to see:

1. If \(\binom{n_0}{n_1} \to \binom{m_0}{m_1} \) holds for \(\Sigma^1_2/\Delta^1_2 \) partitions, then \(\omega \omega \to \omega \omega \) holds on the same level.

2. If all \(\Sigma^1_2/\Delta^1_2 \) sets are Ramsey then \(\omega \omega \to \omega \omega \) holds for \(\Sigma^1_2 \) partitions.

Theorem (Brendle)

If \(\omega \omega \to \omega \omega \) holds for \(\Delta^1_2 \) partitions, then for all \(a \in \omega \omega \) there is an eventually different real over \(L[a] \).
Results

Easy to see:

1. If \(\left(\begin{array}{c} n_0 \\ n_1 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \) holds for \(\Sigma_2^1 / \Delta_2^1 \) partitions, then
\(\left(\begin{array}{c} 3 \\ 3 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \) holds on the same level.

2. If all \(\Sigma_2^1 / \Delta_2^1 \) sets are Ramsey then \(\left(\begin{array}{c} 3 \\ 3 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \) holds for \(\Sigma_2^1 \) partitions.
Results

Easy to see:

1. If \(\binom{n_0}{n_1} \rightarrow \binom{m_0}{m_1} \) holds for \(\Sigma^1_2/\Delta^1_2 \) partitions, then \(\binom{3}{3} \rightarrow \binom{m_0}{m_1} \) holds on the same level.

2. If all \(\Sigma^1_2/\Delta^1_2 \) sets are Ramsey then \(\binom{3}{3} \rightarrow \binom{m_0}{m_1} \) holds for \(\Sigma^1_2 \) partitions.
Results

Easy to see:

1. If \(\left(\begin{array}{l} n_0 \\ n_1 \end{array} \right) \rightarrow \left(\begin{array}{l} m_0 \\ m_1 \end{array} \right) \) holds for \(\Sigma^1_2/\Delta^1_2 \) partitions, then \(\left(\begin{array}{l} 3 \\ 3 \\ \vdots \end{array} \right) \rightarrow \left(\begin{array}{l} m_0 \\ m_1 \end{array} \right) \) holds on the same level.

2. If all \(\Sigma^1_2/\Delta^1_2 \) sets are Ramsey then \(\left(\begin{array}{l} 3 \\ 3 \\ \vdots \end{array} \right) \rightarrow \left(\begin{array}{l} m_0 \\ m_1 \end{array} \right) \) holds for \(\Sigma^1_2 \) partitions.

Theorem (Brendle)

If \(\left(\begin{array}{l} 3 \\ 3 \\ \vdots \end{array} \right) \rightarrow \left(\begin{array}{l} m_0 \\ m_1 \end{array} \right) \) holds for \(\Delta^1_2 \) partitions, then for all \(a \in \omega^\omega \) there is an eventually different real over \(L[a] \).
Results

Easy to see:

1. If \(\binom{n_0}{n_1} \rightarrow \binom{m_0}{m_1} \) holds for \(\Sigma^1_2/\Delta^1_2 \) partitions, then
 \(\binom{3}{3} \rightarrow \binom{m_0}{m_1} \) holds on the same level.

2. If all \(\Sigma^1_2/\Delta^1_2 \) sets are Ramsey then
 \(\binom{3}{3} \rightarrow \binom{m_0}{m_1} \) holds for \(\Sigma^1_2 \) partitions.

Theorem (Brendle)

If \(\binom{3}{3} \rightarrow \binom{m_0}{m_1} \) holds for \(\Delta^1_2 \) partitions, then for all \(a \in \omega^\omega \) there is an eventually different real over \(L[a] \).
Δ^1_2 level: diagram of implications

$\Delta^1_2(\text{Ramsey}) \implies \Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \implies \Delta^1_2(n \rightarrow m) \implies \forall a \exists \text{ ev. diff.}/L[a]$
Δ^1_2 level: diagram of implications

$\Delta^1_2(\text{Ramsey})$

$\Delta^1_2(\exists \text{ dominating}/ \mathbb{L}[a])$

$\forall a \exists \text{ dominating}/ \mathbb{L}[a]$

$\Delta^1_2(\omega \rightarrow \bar{m})$

$\Delta^1_2(\bar{n} \rightarrow \bar{m})$

$\forall a \exists \text{ ev. diff.}/ \mathbb{L}[a]$
\[\Delta^1_2 \text{ level: diagram of implications} \]

\[\Delta^1_2(\text{Ramsey}) \]
\[\Delta^1_2(\text{Laver}) \quad \forall a \ni \text{dominating/}L[a] \]
\[\Delta^1_2(\text{Miller}) \quad \forall a \ni \text{unbounded/}L[a] \]

\[\Delta^1_2(\bar{\omega} \to m) \]
\[\forall a \ni \text{ev. diff./}L[a] \]
Question: which implications cannot be reversed?
Δ^1_2 level: diagram of implications

Question: which implications cannot be reversed?
Mathias model

Theorem (Brendle-Kh)

In the ω_1-iteration of Mathias forcing starting from L, all Δ^1_2 sets are Ramsey but there is a Δ^1_2 partition which violates $\begin{pmatrix} n_0 \\ n_1 \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \end{pmatrix}$ (regardless of the values n_i, as long as they are computable from m_i).
\[\Delta^1_2 \text{ level: diagram of implications} \]

- \[\Delta^1_2(\text{Ramsey}) \]
 - \[\Delta^1_2(\text{Laver}) \]
 - \[\forall a \exists \text{dominating}/L[a] \]
 - \[\Delta^1_2(\text{Miller}) \]
 - \[\forall a \exists \text{unbounded}/L[a] \]
 - \[\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \]
 - \[\forall a \exists \text{ev. diff.}/L[a] \]
 - \[\Delta^1_2(\bar{n} \rightarrow \bar{m}) \]

False

True
Mathias model

Theorem (Brendle-Kh)

In the ω_1-iteration of Mathias forcing starting from L, all Δ^1_2 sets are Ramsey but there is a Δ^1_2 partition which violates $\left(\begin{array}{c} n_0 \\ n_1 \\ \cdot \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ \cdot \end{array} \right)$ (regardless of the values n_i, as long as they are computable from m_i).

In the proof, we use the fact that Mathias forcing satisfies the *Laver property*.
Δ^1_2 level: diagram of implications

- Δ^1_2(Ramsey)
 - $\forall \alpha \exists$ dominating/$\mathbf{L}[\alpha]$

- Δ^1_2(Laver)
 - $\forall \alpha \exists$ dominating/$\mathbf{L}[\alpha]$

- Δ^1_2(Miller)
 - $\forall \alpha \exists$ unbounded/$\mathbf{L}[\alpha]$

- $\Delta^1_2(\vec{\omega} \to \vec{m})$
 - $\forall \alpha \exists$ ev. diff./$\mathbf{L}[\alpha]$

- $\Delta^1_2(\vec{n} \to \vec{m})$
Δ^1_2 level: diagram of implications

- $\Delta^1_2 (\text{Ramsey})$
- $\Delta^1_2 (\text{Laver})$
 \[\forall a \exists \text{dominating}/L[a] \]
- $\Delta^1_2 (\text{Miller})$
 \[\forall a \exists \text{unbounded}/L[a] \]
- $\Delta^1_2 (\bar{\omega} \to \bar{m})$
 \[\forall a \exists \text{ev. diff.}/L[a] \]
- $\Delta^1_2 (\bar{n} \to \bar{m})$
Theorem (Brendle-Kh)

There is a model in which \(\left(\begin{array}{c} n_0 \\ n_1 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \) holds for \(\Delta^1_2 \) partitions, but not all \(\Delta^1_2 \) sets are Miller-measurable (i.e., there are no unbounded reals).
Diagram of implications

Δ_2^1(Ramsey)

Δ_2^1(Laver)
$\forall a \exists$ dominating/$L[a]$

Δ_2^1(Miller)
$\forall a \exists$ unbounded/$L[a]$

$\Delta_2^1(\bar{\omega} \rightarrow \bar{m})$

$\Delta_2^1(\bar{n} \rightarrow \bar{m})$

False

True

$\forall a \exists$ ev. diff./$L[a]$
Theorem (Brendle-Kh)

There is a model in which \(\binom{n_0}{n_1} \rightarrow \binom{m_0}{m_1} \) holds for \(\Delta^1_2 \) partitions, but not all \(\Delta^1_2 \) sets are Miller-measurable (i.e., there are no unbounded reals).

The proof uses a creature forcing \(P_{KSZ} \) due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, 2010].
Theorem (Brendle-Kh)

There is a model in which

\[
\binom{n_0}{n_1} \rightarrow \binom{m_0}{m_1}
\]

holds for \(\Delta^1_2 \) partitions, but not all \(\Delta^1_2 \) sets are Miller-measurable (i.e., there are no unbounded reals).

The proof uses a creature forcing \(P_{KSZ} \) due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, 2010].

Forcing conditions look like uniform finitely branching trees with a lower bound on the branching size. However, ordering is not simply inclusion.

\(P_{KSZ} \) adds a generic real \(x_G := \bigcup \{ \text{stem}(p) \mid p \in G \} \)
Theorem (Brendle-Kh)

There is a model in which \(\left(\begin{array}{c} n_0 \\ n_1 \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \end{array} \right) \) holds for \(\Delta^1_2 \) partitions, but not all \(\Delta^1_2 \) sets are Miller-measurable (i.e., there are no unbounded reals).

The proof uses a creature forcing \(\mathbb{P}_{KSZ} \) due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, 2010].

Forcing conditions look like uniform finitely branching trees with a lower bound on the branching size. However, ordering is not simply inclusion.

\(\mathbb{P}_{KSZ} \) adds a generic real \(x_G := \bigcup \{ \text{stem}(p) \mid p \in G \} \), but the generic filter is not determined from the generic real in the usual fashion and \(\mathbb{P}_{KSZ} \) is not in general representable as \(\mathcal{B}(\omega^\omega)/I \) for a \(\sigma \)-ideal \(I \).
Interesting fact: computations of bounds $\langle n_i \rangle_{i \in \omega}$ follows from purely forcing-theoretic considerations. Assuming all $m_i = 2$, we get:

\[
n_i := 2 \left((2 \prod_{j < i} n_j)^i \right)
\]
Δ^1_2 level: diagram of implications

$\Delta^1_2 (\text{Ramsey})$

$\Delta^1_2 (Laver)$
$\forall a \exists$ dominating/$L[a]$

$\Delta^1_2 (\text{Miller})$
$\forall a \exists$ unbounded/$L[a]$

$\Delta^1_2 (\bar{m} \rightarrow \bar{m})$

$\forall a \exists$ ev. diff./$L[a]$

$\Delta^1_2 (\vec{n} \rightarrow \vec{m})$
Δ^1_2 level: diagram of implications

$\Delta^1_2(\text{Ramsey})$ \quad $\Delta^1_2(\bar{m} \to \bar{m})$

$\Delta^1_2(\text{Laver}) \forall a \exists \text{dominating}/L[a]$

$\Delta^1_2(\text{Miller}) \forall a \exists \text{unbounded}/L[a]$

$\forall a \exists \text{ev. diff.}/L[a]$
Open question

Still open: Is the implication “$\Delta^1_2(\vec{\omega} \rightarrow \vec{m}) \rightarrow \forall a \exists$ eventually different real over $L[a]$” irreversible?
Open question

Still open: Is the implication \(\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \implies \forall a \exists \text{ eventually different real over } L[a] \) irreversible?

Conjecture

\(\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \) fails in the Random model.
Can we extend the result about \mathbb{P}_{KSZ} to Σ^1_2?
The Σ^1_2 level

Can we extend the result about \mathbb{P}_{KSZ} to Σ^1_2?

Not a priori, since \mathbb{P}_{KSZ} only adds one generic real.
Can we extend the result about \mathbb{P}_{KSZ} to Σ^1_2?

Not a priori, since \mathbb{P}_{KSZ} only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is introduced which adds a

generic product $H = \langle H_i \rangle_{i \in \omega}$ satisfying the following “*clopification property*”:

For every Borel set B in the ground model, $B \cap \prod_i H_i$ is relatively clopen in the induced topology of $\prod_i H_i$.

Theorem (Brendle-Kh)

An ω_1-iteration of any (proper) forcing notion satisfying the clopification property yields a model where $(n_0 \cdot \cdot \cdot n) \to (m_0 \cdot \cdot \cdot m)$ holds for Σ^1_2 partitions.
The Σ^1_2 level

Can we extend the result about \mathbb{P}_{KSZ} to Σ^1_2?

Not a priori, since \mathbb{P}_{KSZ} only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is introduced which adds a

generic product $H = \langle H_i \rangle_{i \in \omega}$ satisfying the following “clopification property”:

For every Borel set B in the ground model,
$B \cap [\prod_i H_i]$ is relatively clopen in the induced topology of $\prod_i H_i$.
Can we extend the result about \mathbb{P}_{KSZ} to Σ^1_2?

Not a priori, since \mathbb{P}_{KSZ} only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is introduced which adds a \textit{generic product} $H = \langle H_i \rangle_{i \in \omega}$ satisfying the following \textit{“clopification property”}:

For every Borel set B in the ground model, $B \cap [\prod_i H_i]$ is relatively clopen in the induced topology of $\prod_i H_i$.

\textbf{Theorem (Brendle-Kh)}

An ω_1-iteration of any (proper) forcing notion satisfying the clopification property yields a model where $\left(\begin{array}{c} n_0 \\ \vdots \end{array}\right) \rightarrow \left(\begin{array}{c} m_0 \\ \vdots \end{array}\right)$ holds for Σ^1_2 partitions.
The Σ^1_2 level

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.
The Σ^1_2 level

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with \mathcal{P}_{KSZ},
The Σ^1_2 level

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with P_{KSZ}, to produce a new creature forcing P
Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with \mathbb{P}_{KSZ}, to produce a new creature forcing \mathbb{P} which is still proper and ω^ω-bounding.
The Σ^1_2 level

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with P_{KSZ}, to produce a new creature forcing P which is still proper and ω^ω-bounding, but instead of adding a real, adds a product of reals with the clopification property.
Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is ω^ω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with P_{KSZ}, to produce a new creature forcing P which is still proper and ω^ω-bounding, but instead of adding a real, adds a product of reals with the clopification property.

Corollary

There is a model in which

$$\begin{pmatrix} n_0 \\ n_1 \\ \vdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \vdots \end{pmatrix}$$

holds for Σ^1_2 partitions but $\Sigma^1_2(Miller)$ fails.
Computation of bounds

Some final words on the computation of $\langle n_i \rangle_{i \in \omega}$ from $\langle m_i \rangle_{i \in \omega}$:

1. Finite partitions: $n_i := 2m_i \cdot \prod_{j < i} (n_j m_j)$.
2. For Borel and analytic sets: $n_i := 2(2 \prod_{j < i} n_j)^i$.
3. For Δ^1_2 sets: same as above.
4. For Σ^1_2 sets: currently much higher: non-primitive recursive.
Some final words on the computation of $\langle n_i \rangle_{i \in \omega}$ from $\langle m_i \rangle_{i \in \omega}$:

1. Finite partitions: $n_i := 2 \cdot m_i \cdot \prod_{j < i} \binom{n_j}{m_j}$.

Yuri Khomskii (University of Amsterdam)
Some final words on the computation of \(\langle n_i \rangle_{i \in \omega} \) from \(\langle m_i \rangle_{i \in \omega} \):

1. **Finite partitions:** \(n_i := 2 \cdot m_i \cdot \prod_{j<i} \binom{n_j}{m_j} \).

2. **For Borel and analytic sets:** \(n_i := 2 \left(\left(\prod_{j<i} n_j \right)^i \right) \).
Some final words on the computation of $\langle n_i \rangle_{i \in \omega}$ from $\langle m_i \rangle_{i \in \omega}$:

1. Finite partitions: $n_i := 2 \cdot m_i \cdot \prod_{j<i} \binom{n_j}{m_j}$.

2. For Borel and analytic sets: $n_i := 2^{\left(\left(2 \prod_{j<i} n_j\right)^i\right)}$.

3. For Δ^1_2 sets: same as above.
Some final words on the computation of $\langle n_i \rangle_{i \in \omega}$ from $\langle m_i \rangle_{i \in \omega}$:

1. **Finite partitions:** $n_i := 2 \cdot m_i \cdot \prod_{j < i} \left(\frac{n_j}{m_j} \right)$.

2. **For Borel and analytic sets:** $n_i := 2 \left(\left(2 \prod_{j < i} n_j \right)^i \right)$.

3. **For Δ^1_2 sets:** same as above.

4. **For Σ^1_2 sets:** currently much higher: non-primitive recursive.
Thank you!

Yurii Khomskii

yurii@deds.nl

