Some descriptive set theory related to the Lebesgue density theorem

A. Andretta¹ R. Camerlo²

¹Dipartimento di Matematica Università di Torino

²Dipartimento di Matematica Politecnico di Torino

Wien 2009/6/23

The category algebra.

Work in some perfect Polish space, e.g. $^{\omega}$ 2. $^{\mathcal{B}}$ is the collection of all sets with the property of Baire, MGR is the ideal of meager sets,

$$\mathfrak{B}/MGR \cong BOR/MGR = CAT$$

CAT is unique up-to isomorphism, i.e. it does not depend on the Polish space. The map

$$\rho \colon \mathsf{CAT} \to \mathsf{RO}$$

is a selector, and Cat can be identified with the collection of all regular open sets.

CAT is a Polish space.

The measure algebra.

 μ a continuous probability Borel measure on some perfect Polish space, e.g. the usual Lebesgue measure on $^{\omega}2$. MEAS is the collection of all sets measurable sets, NULL is the ideal of measure-zero sets,

$$Meas/Null \cong Bor/Null = Malg$$

MALG is unique up-to isomorphism, i.e. it does not depend on μ . MALG is a Polish space:

$$\delta([A],[B]) = \mu(A \triangle B)$$

Definition

x has density $r \in [0; 1]$ in A if

$$d_{\mathcal{A}}(x) \stackrel{\text{def}}{=} \lim_{n \to \infty} \frac{\mu\left(A \cap \mathbf{N}_{x \upharpoonright n}\right)}{\mu\left(\mathbf{N}_{x \upharpoonright n}\right)} = r.$$

Theorem (Lebesgue)

Let $A \subseteq {}^{\omega}2$ be Lebesgue measurable. Then

$$\Phi(A) = \{ x \in {}^{\omega}2 \mid x \text{ has density 1 in } A \}$$

is Lebesgue measurable, and $\mu(A \triangle \Phi(A)) = 0$. In other words: d_A agrees with χ_A almost everywhere.

If
$$\mu(A \triangle B) = 0$$
 then $\Phi(A) = \Phi(B)$, so

 $\Phi \colon MALG \to MEAS$

is a selector. This is the analogue of $\rho \colon CAT \to RO$.

Question

What is the complexity of $\Phi(A)$?

Definition

The localization of A at s is

$$A_{\lfloor s \rfloor} = \left\{ x \in {}^{\omega}2 \mid s \hat{\ } x \in A \right\}$$

Thus $s \hat{A}_{|s|} = A \cap N_s$.

Trivial observation

$$\mu\left(\mathsf{A}\triangle\mathsf{B}\right)=\mathsf{0} \Leftrightarrow \forall \mathsf{s}\in {}^{<\omega}\mathsf{2}\left(\mu(\mathsf{A}_{|\mathsf{s}|})=\mu(\mathsf{B}_{|\mathsf{s}|})\right)$$

Thus a measure class [A] is completely determined by the map $s \mapsto \mu(A_{|s|})$

Since

$$x \in \Phi(A) \Leftrightarrow \forall k \exists n \forall m \geq n \left(\mu \left(A_{\lfloor x \upharpoonright m \rfloor} \right) \geq 1 - 2^{-k-1} \right)$$

then

Proposition (Folklore)

For all measurable A

$$\Phi(A) \in \Pi_3^0$$
.

Question

Is Π_3^0 optimal?

- $\bullet \ A \subseteq B \Rightarrow \Phi(A) \subseteq \Phi(B),$
- $\Phi(A \cap B) = \Phi(A) \cap \Phi(B),$
- $\bullet \bigcup_{i \in I} \Phi(A_i) \subseteq \Phi(\bigcup_{i \in I} A_i),$
- if A is open, then $A \subseteq \Phi(A)$.

Definition

$$\mathcal{T} = \{ A \in MEAS \mid A \subseteq \Phi(A) \}$$

is the density topology. It is finer than the usual topology.

Theorem (Scheinberg 1971, Oxtoby 1971?)

 $A = \Phi(A)$ if and only if A is open and regular in T.

$$\Phi \colon M\mathsf{ALG} \to RO_{\mathcal{T}}$$

- NULL = MGR_T (Oxtoby, 1971)
- \bullet ${\cal T}$ is neither first countable, nor second countable, nor Lindelöf, nor separable.
- T is Baire.

Recall that $\Phi(A)$ is always Π_3^0 .

Theorem

There is a closed C such that $\Phi(C)$ is complete Π_3^0

Clearly

$$Int(A) \subseteq \Phi(A) \subseteq Cl(A)$$
.

and $A = \Phi(A)$ if A is clopen.

Question

Can $\Phi(A)$ be something other than clopen or complete Π_3^0 ?

Yes!

Definition

A is Wadge reducible to B

$$A \leq_{\mathrm{W}} B$$

just in case $A = f^{-1}(B)$ for some continuous $f: {}^{\omega}2 \to {}^{\omega}2$.

 $\textbf{\textit{A}} \equiv_W \textbf{\textit{B}} \text{ iff } \textbf{\textit{A}} \leq_W \textbf{\textit{B}} \wedge \ \textbf{\textit{B}} \leq_W \textbf{\textit{A}}.$

The equivalence classes $[A]_{W}$ are called Wadge degrees.

Theorem

$$\forall \textit{A} \in \Pi^0_3 \, \exists \textit{C} \in \Pi^0_1 \, (\Phi(\textit{C}) \equiv_{\mathrm{W}} \textit{A})$$

Recall that $d_A(x) = 0, 1$ for almost all x.

Definition

A set A is dualistic (or Manichæan) if $d_A(x) = 0, 1$ for all x.

 $\ensuremath{\mathcal{M}}$ is the Boolean algebra of all dualistic sets.

Clearly being dualistic depends on the equivalence class of A, so

$$A \in \mathcal{M} \Leftrightarrow \Phi(A) \in \mathcal{M}$$
.

Fact

 $A = \Phi(A)$ is dualistic iff A is \mathcal{T} -clopen, i.e.,

$$\mathcal{M} \cap \text{ran}(\Phi) = \Delta_1^0 - \mathcal{T}$$

Proposition

$$\forall \textit{A} \in \text{Meas } (\textit{A} \in \mathcal{M} \, \Rightarrow \, \Phi(\textit{A}) \in \Delta_2^0).$$

Theorem

$$\forall A \in \Delta_2^0 \, \exists C \in \Pi_1^0 \, (\Phi(C) \equiv_{\mathrm{W}} A \, \wedge \, \Phi(C) \in \mathcal{M}).$$

Proposition

 Φ is Borel (as a map from MALG to the set of codes for Π_3^0 sets).

Sketch of the proof for Π_3^0 completeness

- T a pruned tree such that [T] has positive measure and empty interior. Thus $\neg [T] = \bigcup_n \mathbf{N}_{t_n}$.
- $n < m \Rightarrow lh(t_n) < lh(t_m)$ and $\exists^{\infty} n(lh(t_n) + 1 < lh(t_{n+1}))$.
- For all $t \in T$ there is a shortest $s \supset t$ such that $s \notin T$. s is the target of t.
- Let $\tau(t) = \text{lh}(\text{target of } t) \text{lh}(t), \ \tau \colon T \to \omega \setminus \{0\}.$
- For $x \in [T]$,

$$x \in \Phi([T]) \Leftrightarrow \lim_{n \to \infty} \tau(x \upharpoonright n) = \infty.$$

Sketch of the proof for Π_3^0 completeness, ctd.

The set

$$P = \left\{ z \in {}^{\omega \times \omega} 2 \mid \forall m \; \forall^{\infty} n \, z(n, m) = 0 \right\}.$$

is complete Π_3^0 .

Given a: $n \times n \rightarrow 2$ construct a node $\varphi(a) \in T$ so that

$$a \subset b \Rightarrow \varphi(a) \subset \varphi(b),$$

and

$$^{\omega \times \omega}$$
2 \rightarrow [T], $z \mapsto \bigcup_{n} \varphi(z \upharpoonright n \times n)$

witnesses $P \leq_{\mathrm{W}} \Phi([T])$.

Sketch of the proof for Π_3^0 completeness, ctd.

Let $a: (n+1) \times (n+1) \to 2$. (Say n=4)

Case 1:

a _{0,4}	a _{1,4}	a _{2,4}	<i>a</i> _{3,4}	0
a _{0,3}	a _{1,3}	a _{2,3}	a _{3,3}	0
a _{0,2}	a _{1,2}	a _{2,2}	<i>a</i> _{3,2}	0
a _{0,1}	a _{1,1}	a _{2,1}	<i>a</i> _{3,1}	0
a _{0,0}	a _{1,0}	<i>a</i> _{2,0}	<i>a</i> _{3,0}	0

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$\tau(t) \geq \max\{n+1, \tau(\varphi(a \upharpoonright n \times n))\}.$$

Sketch of the proof for Π_3^0 completeness, ctd.

Let $a: (n+1) \times (n+1) \to 2$. (Say n=4)

Case 2:

a _{0,4}	a _{1,4}	a _{2,4}	a _{3,4}	a 4,4
<i>a</i> _{0,3}	<i>a</i> _{1,3}	a _{2,3}	<i>a</i> _{3,3}	a 4,3
a _{0,2}	a _{1,2}	a _{2,2}	<i>a</i> _{3,2}	a 4,2
a _{0,1}	a _{1,1}	a _{2,1}	<i>a</i> _{3,1}	0
a _{0,0}	<i>a</i> _{1,0}	<i>a</i> _{2,0}	<i>a</i> _{3,0}	0

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$\tau(t) = 3.$$

The Wadge hierarchy on $^{\omega}2$.

- A set A (or degree) is self dual if $A \equiv_{W} \neg A$. Otherwise it is non-self-dual.
- Self-dual and non-self-dual pairs alternate.
- At all limit levels there is a non-self-dual pair.

Given $f: \omega \to \omega \setminus \{0\}$ and sets A_0, A_1, \ldots consider the set

If $\exists^{\infty} n(f(n) \geq 2)$ and the A_n s are \mathcal{T} -regular, i.e. $\Phi(A_n) = A_n$ then so is Rake $^-(f; (A_n)_n)$. Moreover

- if $A = A_0 = A_1 = \dots$ are self-dual, then Rake⁻ $(f; (A_n)_n)$ is non-self-dual and immediately above A,
- if $A_0 <_W A_1 <_W A_2 <_W \dots$ then Rake $^-(f; (A_n)_n)$ is non-self-dual and immediately above the A_n s.

Note that the rake $\operatorname{Rake}^-(f;(A_n)_n)$ has no pole, i.e., $0^{(\infty)}$ does not belong to this set. In order to construct the dual degrees we need another kind of rake, a pole and densely packed tines.

If $\lim_n f(n) = \infty$ then and the A_n s are \mathcal{T} -regular, i.e. $\Phi(A_n) = A_n$ then so is $\operatorname{Rake}^+(f; (A_n)_n)$. Moreover

$$\mathsf{Rake}^+(f;(A_n)_n) \equiv_{\mathrm{W}} \neg \mathsf{Rake}^-(f;(A_n)_n).$$

If A and B are T-regular then so is

$$A \oplus B = 0^{\land}A \cup 1^{\land}B$$
.

Arguing this way, we can climb up to Δ_2^0 .

Wadge defined two operations A^{\natural} and A^{\flat} on subsets of the *Baire space*

$$A^{\natural} = \left\{ s_0^+ \cap 0^{\smallfrown} s_1^+ \cap 0^{\smallfrown} \dots \cap s_n^+ \cap 0^{\smallfrown} x^+ \mid n \in \omega, s_i \in {}^{<\omega}\omega, x \in A \right\}$$
$$A^{\natural} = A^{\natural} \cup \left\{ x \in {}^{\omega}\omega \mid \exists^{\infty}n \ (x(n) = 0) \right\}$$

where s^+ and x^+ are the sequences obtained from s and x by adding a 1 to all entries.

The idea is that A^{\natural} is the union of ω many layers of the form

Theorem (Wadge)

If A is self-dual, then A^{\natural} and A^{\flat} form a non-self-dual pair and

$$\left\| \mathbf{A}^{\natural} \right\|_{\mathrm{W}} = \left\| \mathbf{A}^{\flat} \right\|_{\mathrm{W}} = \left\| \mathbf{A} \right\|_{\mathrm{W}} \cdot \omega_{1}.$$

The operations A^{\natural} and A^{\flat} together with the (analogs of) the Rake operations, are sufficient to construct sets of rank $<\omega_1^{\omega_1}$, i.e. the Δ_3^0 sets.

An analogue of A^+ .

- $\overline{s^{\hat{}}} = \overline{s}^{\hat{}}ii$, for $s \in {}^{<\omega}2$.
- $\overline{x} = \bigcup_n \overline{x \upharpoonright n}$, for $x \in {}^{\omega}2$.
- Replace A with $\{\overline{x} \mid x \in A\}$, but...
- Does not work, since $\{\overline{x} \mid x \in {}^{\omega}2\}$ is of measure 0!
- The cure: enlarge $\{\overline{x} \mid x \in A\}$ like Rake⁻ was enlarged to Rake⁺. The resulting set is called Plus(A).
- In fact we construct $\operatorname{Plus}(A; r)$ (with $r \in (0; 1)$) so that $\mu\left(\operatorname{Plus}(A; r)_{|\overline{s}|}\right) \geq r$ for all s.
- If A is \mathcal{T} -regular (i.e., $A = \Phi(A)$), then so is Plus(A; r).

Construct Nat(A) and Flat(A): they are the analogs of A^{\natural} and A^{\flat} , and have rank $||A||_{W} \cdot \omega_{1}$.

Using the operations Nat(A), Flat(A), Rake⁻ A, Rake⁺ A, and \oplus it is possible to construct a closed sets C such that $\Phi(C)$ is of any given Wadge degree in Δ_3^0 .

Nat(A)

Fix 0 < r < 1. Nat(A) is composed of ω -many layers

- If x settles inside a layer, then $x = s \cap \overline{y}$ and the density of x in Nat(A) will be 'similar' to the density of y in A.
- Every time we climb to a higher level, the density drops momentarily to ≤ 1/2. So if x climbs infinitely many layers, then x will not have density 1 in Nat(A).

Flat(A)

Fix $0 < r_0 < r_1 < r_2 < \cdots \rightarrow 1$. Flat(A) is the set is composed of ω -many layers

- If x settles inside a layer, then $x = s \cap \overline{y}$ and the density of x in $\operatorname{Flat}(A)$ will be 'similar' to the density of y in A.
- In the layer n, the density will always be $\geq r_n$. So if x climbs infinitely many layers, then x will have density 1 in Flat(A).