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What are cardinal invariants of the continuum?

Cardinal invariants of the continuum are cardinals which typically
lie between ℵ1 and c = 2ω and which describe the combinatorial
structure of the real line.

Many of the classical cardinal invariants (introduced in the 70’s
and 80’s) are defined in terms of P(ω)/Fin.

Jörg Brendle Cardinal invariants of analytic quotients



Classical cardinal invariants
Cardinal invariants of analytic quotients

The quotient P(ω)/Fin

For A,B ⊆ ω:

A ⊆∗ B (A is almost contained in B) ⇐⇒ A \ B is finite

A =∗ B iff A ⊆∗ B and B ⊆∗ A defines an equivalence relation.
P(ω)/Fin is the collection of equivalence classes, ordered by

[A] ≤ [B] ⇐⇒ A ⊆∗ B

where [A] is the class of A.

For simplicity we forget about equivalence classes and work with
([ω]ω,⊆∗) while meaning (P(ω)/Fin,≤).
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Splitting and reaping: the classical case

Cardinal invariants: an example

For A,B ∈ [ω]ω:

A splits B ⇐⇒ |A ∩ B| = |B \ A| = ℵ0

F ⊆ [ω]ω is splitting if every member of [ω]ω is split by a member
of F .
F ⊆ [ω]ω is unsplit (or unreaped) if no member of [ω]ω splits all
members of F , i.e.

∀A ∈ [ω]ω ∃B ∈ F (|A ∩ B| < ℵ0 or B ⊆∗ A)

s := min{|F| : F is splitting}, the splitting number.
r := min{|F| : F is unsplit}, the reaping number.
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Splitting and reaping 2: the classical case

b := min{|F| : F is unbounded in (ωω,≤∗)},
the bounding number.

d := min{|F| : F is cofinal in (ωω,≤∗)}, the dominating number.
All these cardinal invariants are uncountable (diagonal argument!).

Proposition

b ≤ r and s ≤ d.

The order-relationship of b and s is not decidable.
The consistency of s < b is easy.

Theorem (Shelah; Blass and Shelah)

b < s and r < d are consistent.
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P(ω)/Fin as a forcing notion

We may also consider (P(ω)/Fin,≤) as a forcing notion.
Maximal antichains correspond to maximal almost disjoint families:
A ⊆ [ω]ω is almost disjoint if

|A ∩ B| < ℵ0

for distinct A and B from A. A is maximal almost disjoint (mad)
if it is almost disjoint and for all C ∈ [ω]ω there is A ∈ A with

|A ∩ C | = ℵ0

a := min{|A| : A is mad}, the almost-disjointness number.

Proposition

b ≤ a.
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P(ω)/Fin as a forcing notion 2

h := min{|D| : D is a family of open dense sets in P(ω)/Fin
and

⋂
D is not dense}, the distributivity number.

h describes forcing-theoretic properties of P(ω)/Fin:

Observation

h = min{κ : P(ω)/Fin adds a new function from κ to V }.

So P(ω)/Fin preserves all cardinals ≤ h and > c.
Everything in between is collapsed:

Theorem (Balcar, Pelant and Simon)

P(ω)/Fin forces c = hV .

Proposition

ℵ1 ≤ h ≤ min{b, s}.
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ZFC-inequalities: the classical case
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Quotients by ideals

Let I be an ideal on ω with Fin ⊆ I. Consider the quotient
P(ω)/I. Define cardinal invariants of this quotient in analogy to
the classical cardinal invariants of P(ω)/Fin.

We address the following questions:

Can we prove similar inequalities for the new invariants as for
their classical counterparts? Similar consistency results? (E.g.,
does s ≤ d generalize to s(I) ≤ d?)

How do the new cardinals compare to the old ones? (E.g.
what is the connection between s and s(I)?)
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Definable ideals

Which ideals should we consider?

1 I should be definable
(so that it lives in any model of set theory)

2 Therefore consider only analytic ideals I
3 Ideally, I should be Fσ

(so that the quotient P(ω)/I is σ-closed)

4 We may also want to restrict to analytic P-ideals
(because we have a nice structure theory for them)
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Definable ideals 2

Via characteristic functions, identify I ⊆ P(ω) with a subset of 2ω.
Hence we may talk about I being Borel, analytic, Fσ, etc.

Observation

If I is Fσ, then P(ω)/I is σ-closed, i.e. t(I) ≥ ℵ1.

t(I) := min{κ : P(ω)/I not κ-closed}, the tower number of I.

Definition

I is a P-ideal if for all countable A ⊆ I there is B ∈ I with
A ⊆∗ B for all A ∈ A.
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Structure theory for analytic ideals

Definition

ϕ : P(ω) → [0,∞] is a lower semicontinuous submeasure if

ϕ(∅) = 0, ϕ({n}) < ∞
ϕ(X ) ≤ ϕ(Y ) for X ⊆ Y

ϕ(X ∪ Y ) ≤ ϕ(X ) + ϕ(Y )

ϕ(X ) = limn ϕ(X ∩ n)
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Structure theory for analytic ideals 2

Exh(ϕ) := {X : limn ϕ(X \ n) = 0} is an Fσδ P-ideal.
Fin(ϕ) := {X : ϕ(X ) < ∞} is an Fσ-ideal.

Theorem (Mazur; Solecki)

I is an Fσ-ideal iff I = Fin(ϕ) for some ϕ.

I is an analytic P-ideal iff I = Exh(ϕ) for some ϕ.

I is an Fσ P-ideal iff I = Exh(ϕ) = Fin(ϕ) for some ϕ.
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The quotient P(ω)/I

Instead of working with (P(ω)/I,≤), consider (I+,⊆I).
Here

A ⊆I B (A is contained in B modulo I) ⇐⇒ A \ B ∈ I

and

I+ := P(ω) \ I

denotes the I-positive sets.
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Splitting and reaping: the Fσ case

Cardinal invariants: an example

For A,B ∈ I+:

A splits B ⇐⇒ A ∩ B,B \ A ∈ I+

F ⊆ I+ is I-splitting if every member of I+ is split by a member
of F .
F ⊆ I+ is I-unsplit (or I-unreaped) if no member of I+ splits all
members of F , i.e.

∀A ∈ I+ ∃B ∈ F (A ∩ B ∈ I or B ⊆I A)

s(I) := min{|F| : F is I-splitting}, the I-splitting number.
r(I) := min{|F| : F is I-unsplit}, the I-reaping number.
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Basic results for Fσ quotients 1

From now on assume all ideals are Fσ

Proposition

b ≤ r(I) and s(I) ≤ d.

Proposition

b < s(I) and r(I) < d are consistent.

Proofs: Use I = Fin(ϕ). �

Proposition

Some A ∈ I+ forces c = h(I)V .

Proposition

t(I) ≤ h(I) ≤ min{b, s(I)}.
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Basic results for Fσ quotients 2

Proposition (Farkas and Soukup)

b ≤ a(I) for Fσ P-ideals.

Proof: Use I = Exh(ϕ). �

Is this true for Fσ-ideals in general?
No!

Theorem

a(EDfin) < b is consistent.
(In fact, this holds in the Hechler model.)

Here, EDfin is one of the eventually different ideals introduced by
Hernández and Hrušák.
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The ideal EDfin

Let

∆ = {(n, i) ∈ ω × ω : i ≤ n}

be the triangle below the diagonal.

EDfin is the ideal on ∆ generated by graphs of functions:
for A ⊆ ∆:

A ∈ EDfin ⇐⇒ ∃m ∀n (|An| ≤ m)

where An = {i : (n, i) ∈ A} is the vertical section of A at n.
This is an Fσ-ideal.
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Basic results for Fσ quotients 3

Observation

p ≤ a(I).

Proposition

a(I) can be increased by a definable σ-centered forcing P.

Corollary

a(I) > d is consistent.

Proof: Put P into Shelah’s template framework. �

... and many more.
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ZFC-inequalities: the Fσ case
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Summable ideals

Let f : ω → R+ with
∑

n f (n) = ∞.

For A ⊆ ω:

A ∈ If ⇐⇒
∑
n∈A

f (n) < ∞

If is an Fσ P-ideal.

In fact If = Fin(µf ) = Exh(µf ) where

µf (A) =
∑
n∈A

f (n)
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Splitting and reaping for summable ideals

Theorem

s(I) < s is consistent for any tall summable ideal I.
Dually r < r(I) is consistent.

Proof: I = If . Let ε � δ > 0.
Say g : ω → [ω]<ω is an ε-function if

µf (g(n)) ≥ ε for all n and lim sup
n

(min g(n)) = ∞

X ∈ [ω]ω δ-splits g if

∃∞n
(
µf (g(n) ∩ X ) ≥ ε

2
− δ and µf (g(n) \ X ) ≥ ε

2
− δ

)
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Splitting and reaping for summable ideals 2

Crucial Lemma

Let M,N be models of ZFC. Let U be an ultrafilter in M.
Assume X ∈ [ω]ω ∩ N satisfies

(?M,N
X ) : ∀f , ε, δ (X δ-splits f )

Then there is an ultrafilter V ⊇ U in N such that (?
M[G ],N[G ]
X )

holds where G is LV -generic over N
(and thus LU -generic over M).

Here LU denotes Laver forcing with U ,
i.e. forcing with Laver trees such that successor levels of splitnodes
belong to U .
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Splitting and reaping for summable ideals 3

We continue the proof sketch of the Theorem.
Start with a model V for CH.
Add ω1 many Cohen reals Xα and obtain the model W .
(The Cohen reals are intended as a witness for s(I).)
Use the crucial lemma to build a matrix-like iterated forcing

(Pα
γ : α ≤ ω1, γ ≤ ω2)

adding LUγ -generics ω2 times with finite support and

preserving (?V ,W
Xα

) along the γ-iteration.
Obtain the models V ′ and W ′.
The LUγ -generics witness s = ℵ2.

(?V ′,W ′

Xα
) shows the Cohen reals witness s(I) = ℵ1. �
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Distributivity for summable ideals

Conjecture

h(I) < h is consistent for summable I.

Conjecture

h < h(I) is consistent for summable I.
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Splitting, reaping, and distributivity for EDfin

Theorem

s(EDfin) < s and r < r(EDfin) are consistent.

Theorem

h(EDfin) < h is consistent.

Note that

h(EDfin) ≤ h,

s(EDfin) ≤ s, and

r(EDfin) ≥ r

in ZFC .
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Next RIMS meeting in Kyoto:

Combinatorial set theory and forcing theory

November 16 - 19, 2009

at Rakuyu Kaikan, Kyoto University, Japan

organized by Teruyuki Yorioka

http://www.ipc.shizuoka.ac.jp/∼styorio/rims09/
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