Cardinal invariants of analytic quotients

Jörg Brendle

Kobe University on sabbatical leave at Bonn University

June 16, 2009

Jörg Brendle Cardinal invariants of analytic quotients

Classical cardinal invariants

2 Cardinal invariants of analytic quotients

- Analytic ideals
- Basic results for F_{σ} quotients
- Consistency results for F_{σ} quotients

What are cardinal invariants of the continuum?

Cardinal invariants of the continuum are cardinals which typically lie between \aleph_1 and $\mathfrak{c} = 2^{\omega}$ and which describe the combinatorial structure of the real line.

Many of the classical cardinal invariants (introduced in the 70's and 80's) are defined in terms of $\mathcal{P}(\omega)/\text{Fin}$.

The quotient $\mathcal{P}(\omega)/\text{Fin}$

For $A, B \subseteq \omega$:

 $A \subseteq^* B$ (A is almost contained in B) $\iff A \setminus B$ is finite

A = B iff $A \subseteq B$ and $B \subseteq A$ defines an equivalence relation. $\mathcal{P}(\omega)/\text{Fin}$ is the collection of equivalence classes, ordered by

$$[A] \leq [B] \Longleftrightarrow A \subseteq^* B$$

where [A] is the class of A.

For simplicity we forget about equivalence classes and work with $([\omega]^{\omega}, \subseteq^*)$ while meaning $(\mathcal{P}(\omega)/\mathrm{Fin}, \leq)$.

Splitting and reaping: the classical case

Cardinal invariants: an example

For $A, B \in [\omega]^{\omega}$:

A splits
$$B \iff |A \cap B| = |B \setminus A| = \aleph_0$$

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *splitting* if every member of $[\omega]^{\omega}$ is split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *unsplit* (or *unreaped*) if no member of $[\omega]^{\omega}$ splits all members of \mathcal{F} , i.e.

$$orall A \in [\omega]^{\omega} \ \exists B \in \mathcal{F} \ (|A \cap B| < \aleph_0 \ ext{or} \ B \subseteq^* A)$$

 $\begin{aligned} \mathfrak{s} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is splitting}\}, \text{ the splitting number.} \\ \mathfrak{r} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is unsplit}\}, \text{ the reaping number.} \end{aligned}$

Splitting and reaping 2: the classical case

 $\mathfrak{b}:=\min\{|\mathcal{F}|:\mathcal{F} ext{ is unbounded in } (\omega^{\omega},\leq^*)\},$

the bounding number. $\mathfrak{d} := \min\{|\mathcal{F}| : \mathcal{F} \text{ is cofinal in } (\omega^{\omega}, \leq^*)\}, \text{ the dominating number.}$ All these cardinal invariants are uncountable (diagonal argument!).

Proposition

 $\mathfrak{b} \leq \mathfrak{r} \text{ and } \mathfrak{s} \leq \mathfrak{d}.$

The order-relationship of \mathfrak{b} and \mathfrak{s} is not decidable. The consistency of $\mathfrak{s} < \mathfrak{b}$ is easy.

Theorem (Shelah; Blass and Shelah)

 $\mathfrak{b} < \mathfrak{s}$ and $\mathfrak{r} < \mathfrak{d}$ are consistent.

$\mathcal{P}(\omega)/\mathrm{Fin}$ as a forcing notion

We may also consider $(\mathcal{P}(\omega)/\operatorname{Fin}, \leq)$ as a forcing notion. Maximal antichains correspond to *maximal almost disjoint families*: $\mathcal{A} \subseteq [\omega]^{\omega}$ is *almost disjoint* if

 $|A \cap B| < \aleph_0$

for distinct A and B from A. A is maximal almost disjoint (mad) if it is almost disjoint and for all $C \in [\omega]^{\omega}$ there is $A \in A$ with

 $|A \cap C| = \aleph_0$

 $\mathfrak{a} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is mad}\}, \text{ the almost-disjointness number.}$

Proposition

 $\mathfrak{b} \leq \mathfrak{a}$.

$\mathcal{P}(\omega)/\mathrm{Fin}$ as a forcing notion 2

 $\mathfrak{h} := \min\{|\mathcal{D}| : \mathcal{D} \text{ is a family of open dense sets in } \mathcal{P}(\omega)/\mathrm{Fin} \\ \text{and } \bigcap \mathcal{D} \text{ is not dense}\}, \text{ the distributivity number.}$

 \mathfrak{h} describes forcing-theoretic properties of $\mathcal{P}(\omega)/\mathrm{Fin}$:

Observation

 $\mathfrak{h} = \min\{\kappa : \mathcal{P}(\omega) / \text{Fin adds a new function from } \kappa \text{ to } V\}.$

So $\mathcal{P}(\omega)/\operatorname{Fin}$ preserves all cardinals $\leq \mathfrak{h}$ and $> \mathfrak{c}$. Everything in between is collapsed:

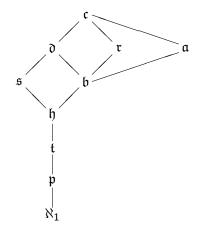
Theorem (Balcar, Pelant and Simon)

 $\mathcal{P}(\omega)/\mathrm{Fin} \text{ forces } \mathfrak{c} = \mathfrak{h}^V.$

Proposition

 $\aleph_1 \leq \mathfrak{h} \leq \min\{\mathfrak{b},\mathfrak{s}\}.$

ZFC-inequalities: the classical case



Classical cardinal invariants

2 Cardinal invariants of analytic quotients

Analytic ideals

- Basic results for F_{σ} quotients
- Consistency results for F_{σ} quotients

Quotients by ideals

Let \mathcal{I} be an ideal on ω with $\operatorname{Fin} \subseteq \mathcal{I}$. Consider the quotient $\mathcal{P}(\omega)/\mathcal{I}$. Define cardinal invariants of this quotient in analogy to the classical cardinal invariants of $\mathcal{P}(\omega)/\operatorname{Fin}$.

We address the following questions:

- Can we prove similar inequalities for the new invariants as for their classical counterparts? Similar consistency results? (E.g., does $\mathfrak{s} \leq \mathfrak{d}$ generalize to $\mathfrak{s}(\mathcal{I}) \leq \mathfrak{d}$?)
- How do the new cardinals compare to the old ones? (E.g. what is the connection between \mathfrak{s} and $\mathfrak{s}(\mathcal{I})$?)

Definable ideals

Which ideals should we consider?

- I should be definable
 (so that it lives in any model of set theory)
- **2** Therefore consider only analytic ideals $\mathcal I$
- Ideally, *I* should be F_σ (so that the quotient *P*(ω)/*I* is σ-closed)
- We may also want to restrict to analytic *P*-ideals (because we have a nice structure theory for them)

Definable ideals 2

Via characteristic functions, identify $\mathcal{I} \subseteq \mathcal{P}(\omega)$ with a subset of 2^{ω} . Hence we may talk about \mathcal{I} being Borel, analytic, F_{σ} , etc.

Observation

If
$$\mathcal{I}$$
 is F_{σ} , then $\mathcal{P}(\omega)/\mathcal{I}$ is σ -closed, i.e. $\mathfrak{t}(\mathcal{I}) \geq \aleph_1$.

 $\mathfrak{t}(\mathcal{I}) := \min\{\kappa : \mathcal{P}(\omega)/\mathcal{I} \text{ not } \kappa\text{-closed}\}, \text{ the tower number of } \mathcal{I}.$

Definition

 \mathcal{I} is a *P-ideal* if for all countable $\mathcal{A} \subseteq \mathcal{I}$ there is $B \in \mathcal{I}$ with $A \subseteq^* B$ for all $A \in \mathcal{A}$.

Analytic ideals Basic results for F_{σ} quotients Consistency results for F_{σ} quotients

Structure theory for analytic ideals

Definition

 $arphi:\mathcal{P}(\omega)
ightarrow [0,\infty]$ is a lower semicontinuous submeasure if

- $\varphi(\emptyset) = 0, \varphi(\{n\}) < \infty$
- $\varphi(X) \leq \varphi(Y)$ for $X \subseteq Y$

•
$$\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$$

•
$$\varphi(X) = \lim_{n} \varphi(X \cap n)$$

Structure theory for analytic ideals 2

 $\begin{aligned} \operatorname{Exh}(\varphi) &:= \{X : \lim_n \varphi(X \setminus n) = 0\} \text{ is an } F_{\sigma\delta} \text{ P-ideal.} \\ \operatorname{Fin}(\varphi) &:= \{X : \varphi(X) < \infty\} \text{ is an } F_{\sigma}\text{-ideal.} \end{aligned}$

Theorem (Mazur; Solecki)

- \mathcal{I} is an F_{σ} -ideal iff $\mathcal{I} = Fin(\varphi)$ for some φ .
- \mathcal{I} is an analytic P-ideal iff $\mathcal{I} = \operatorname{Exh}(\varphi)$ for some φ .
- \mathcal{I} is an F_{σ} *P*-ideal iff $\mathcal{I} = \operatorname{Exh}(\varphi) = \operatorname{Fin}(\varphi)$ for some φ .

Classical cardinal invariants

2 Cardinal invariants of analytic quotients

- Analytic ideals
- Basic results for F_{σ} quotients
- Consistency results for F_{σ} quotients

Analytic ideals Basic results for F_{σ} quotients Consistency results for F_{σ} quotients

The quotient $\mathcal{P}(\omega)/\mathcal{I}$

Instead of working with $(\mathcal{P}(\omega)/\mathcal{I}, \leq)$, consider $(\mathcal{I}^+, \subseteq_{\mathcal{I}})$. Here

 $A \subseteq_{\mathcal{I}} B \quad (A \text{ is contained in } B \text{ modulo } \mathcal{I}) \Longleftrightarrow A \setminus B \in \mathcal{I}$

and

$$\mathcal{I}^+ := \mathcal{P}(\omega) \setminus \mathcal{I}$$

denotes the \mathcal{I} -positive sets.

Splitting and reaping: the F_{σ} case

Cardinal invariants: an example

For $A, B \in \mathcal{I}^+$:

A splits $B \iff A \cap B, B \setminus A \in \mathcal{I}^+$

 $\mathcal{F} \subseteq \mathcal{I}^+$ is \mathcal{I} -splitting if every member of \mathcal{I}^+ is split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq \mathcal{I}^+$ is \mathcal{I} -unsplit (or \mathcal{I} -unreaped) if no member of \mathcal{I}^+ splits all members of \mathcal{F} , i.e.

$$\forall A \in \mathcal{I}^+ \exists B \in \mathcal{F} (A \cap B \in \mathcal{I} \text{ or } B \subseteq_{\mathcal{I}} A)$$

 $\mathfrak{s}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \text{ is } \mathcal{I}\text{-splitting}\}, \text{ the } \mathcal{I}\text{-splitting number.}$ $\mathfrak{r}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \text{ is } \mathcal{I}\text{-unsplit}\}, \text{ the } \mathcal{I}\text{-reaping number.}$

Basic results for F_{σ} quotients 1

From now on assume all ideals are F_{σ}

Proposition

 $\mathfrak{b} \leq \mathfrak{r}(\mathcal{I}) \text{ and } \mathfrak{s}(\mathcal{I}) \leq \mathfrak{d}.$

Proposition

 $\mathfrak{b} < \mathfrak{s}(\mathcal{I})$ and $\mathfrak{r}(\mathcal{I}) < \mathfrak{d}$ are consistent.

<u>Proofs</u>: Use $\mathcal{I} = \operatorname{Fin}(\varphi)$. \Box

Proposition

Some $A \in \mathcal{I}^+$ forces $\mathfrak{c} = \mathfrak{h}(\mathcal{I})^V$.

Proposition

$$\mathfrak{t}(\mathcal{I}) \leq \mathfrak{h}(\mathcal{I}) \leq \min\{\mathfrak{b}, \mathfrak{s}(\mathcal{I})\}.$$

Basic results for F_{σ} quotients 2

Proposition (Farkas and Soukup)

 $\mathfrak{b} \leq \mathfrak{a}(\mathcal{I})$ for F_{σ} *P*-ideals.

<u>Proof</u>: Use $\mathcal{I} = \operatorname{Exh}(\varphi)$. \Box

Is this true for F_{σ} -ideals in general? No!

Theorem

 $\mathfrak{a}(\mathcal{ED}_{\mathrm{fin}}) < \mathfrak{b}$ is consistent. (In fact, this holds in the Hechler model.)

Here, $\mathcal{ED}_{\mathrm{fin}}$ is one of the *eventually different* ideals introduced by Hernández and Hrušák.

The ideal $\mathcal{ED}_{\mathrm{fin}}$

Let

$$\Delta = \{ (n, i) \in \omega \times \omega : i \le n \}$$

be the triangle below the diagonal.

 $\mathcal{ED}_{\mathrm{fin}}$ is the ideal on Δ generated by graphs of functions: for $A \subseteq \Delta$:

$$A \in \mathcal{ED}_{\mathrm{fin}} \Longleftrightarrow \exists m \,\forall n \, (|A_n| \leq m)$$

where $A_n = \{i : (n, i) \in A\}$ is the vertical section of A at n. This is an F_{σ} -ideal.

Analytic ideals Basic results for F_{σ} quotients Consistency results for F_{σ} quotients

Basic results for F_{σ} quotients 3

Observation

 $\mathfrak{p} \leq \mathfrak{a}(\mathcal{I}).$

Proposition

 $\mathfrak{a}(\mathcal{I})$ can be increased by a definable σ -centered forcing \mathbb{P} .

Corollary

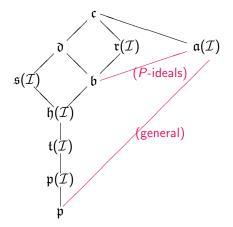
 $\mathfrak{a}(\mathcal{I}) > \mathfrak{d}$ is consistent.

<u>Proof:</u> Put \mathbb{P} into Shelah's template framework. \Box

... and many more.

Analytic ideals Basic results for F_{σ} quotients Consistency results for F_{σ} quotients

ZFC-inequalities: the F_{σ} case



Classical cardinal invariants

2 Cardinal invariants of analytic quotients

- Analytic ideals
- Basic results for F_{σ} quotients
- Consistency results for F_{σ} quotients

Summable ideals

Let
$$f: \omega \to \mathbb{R}^+$$
 with $\sum_n f(n) = \infty$.

For
$$A \subseteq \omega$$
:
 $A \in \mathcal{I}_f \iff \sum_{n \in A} f(n) < \infty$

 \mathcal{I}_f is an F_σ P-ideal.

In fact $\mathcal{I}_f = \operatorname{Fin}(\mu_f) = \operatorname{Exh}(\mu_f)$ where

$$\mu_f(A) = \sum_{n \in A} f(n)$$

Splitting and reaping for summable ideals

Theorem

 $\mathfrak{s}(\mathcal{I}) < \mathfrak{s}$ is consistent for any tall summable ideal \mathcal{I} . Dually $\mathfrak{r} < \mathfrak{r}(\mathcal{I})$ is consistent.

 $\begin{array}{l} \underline{\operatorname{Proof:}} \ \mathcal{I} = \mathcal{I}_f. \ \text{Let } \varepsilon \gg \delta > 0.\\ \text{Say } g : \omega \to [\omega]^{<\omega} \ \text{is an } \varepsilon \text{-function if}\\ \mu_f(g(n)) \geq \varepsilon \ \text{for all } n \ \text{and } \limsup_n(\min g(n)) = \infty\\ X \in [\omega]^{\omega} \ \delta \text{-splits } g \ \text{if}\\ \exists^{\infty} n \ \left(\mu_f(g(n) \cap X) \geq \frac{\varepsilon}{2} - \delta \ \text{and} \ \mu_f(g(n) \setminus X) \geq \frac{\varepsilon}{2} - \delta \right) \end{array}$

Splitting and reaping for summable ideals 2

Crucial Lemma

Let M, N be models of ZFC. Let \mathcal{U} be an ultrafilter in M. Assume $X \in [\omega]^{\omega} \cap N$ satisfies

$$(\star_X^{M,N}): \quad \forall f, \varepsilon, \delta \ (X \ \delta \text{-splits } f)$$

Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that $(\star_X^{M[G],N[G]})$ holds where G is $\mathbb{L}_{\mathcal{V}}$ -generic over N (and thus $\mathbb{L}_{\mathcal{U}}$ -generic over M).

Here $\mathbb{L}_{\mathcal{U}}$ denotes *Laver forcing* with \mathcal{U} , i.e. forcing with Laver trees such that successor levels of splitnodes belong to \mathcal{U} .

Splitting and reaping for summable ideals 3

We continue the proof sketch of the Theorem.

Start with a model V for CH.

Add ω_1 many Cohen reals X_{α} and obtain the model W.

(The Cohen reals are intended as a witness for $\mathfrak{s}(\mathcal{I})$.)

Use the crucial lemma to build a matrix-like iterated forcing

$$(\mathbb{P}^{\alpha}_{\gamma}: \alpha \leq \omega_1, \gamma \leq \omega_2)$$

adding $\mathbb{L}_{\mathcal{U}_{\gamma}}$ -generics ω_2 times with finite support and preserving $(\star_{X_{\alpha}}^{V,W})$ along the γ -iteration. Obtain the models V' and W'. The $\mathbb{L}_{\mathcal{U}_{\gamma}}$ -generics witness $\mathfrak{s} = \aleph_2$. $(\star_{X_{\alpha}}^{V',W'})$ shows the Cohen reals witness $\mathfrak{s}(\mathcal{I}) = \aleph_1$. \Box

Analytic ideals Basic results for F_{σ} quotients Consistency results for F_{σ} quotients

Distributivity for summable ideals

Conjecture

 $\mathfrak{h}(\mathcal{I}) < \mathfrak{h}$ is consistent for summable \mathcal{I} .

Conjecture

 $\mathfrak{h} < \mathfrak{h}(\mathcal{I})$ is consistent for summable \mathcal{I} .

Splitting, reaping, and distributivity for $\mathcal{ED}_{\mathrm{fin}}$

Theorem

$$\mathfrak{s}(\mathcal{ED}_{\mathrm{fin}}) < \mathfrak{s}$$
 and $\mathfrak{r} < \mathfrak{r}(\mathcal{ED}_{\mathrm{fin}})$ are consistent.

Theorem

 $\mathfrak{h}(\mathcal{ED}_{\mathrm{fin}}) < \mathfrak{h}$ is consistent.

Note that

- $\mathfrak{h}(\mathcal{ED}_{\mathrm{fin}}) \leq \mathfrak{h}$,
- $\mathfrak{s}(\mathcal{ED}_{\mathrm{fin}}) \leq \mathfrak{s}$, and
- $\mathfrak{r}(\mathcal{ED}_{\mathrm{fin}}) \geq \mathfrak{r}$

in ZFC.

Next RIMS meeting in Kyoto:

Combinatorial set theory and forcing theory November 16 - 19, 2009

at Rakuyu Kaikan, Kyoto University, Japan organized by Teruyuki Yorioka http://www.ipc.shizuoka.ac.jp/~styorio/rims09/

Jörg Brendle Cardinal invariants of analytic quotients