Fodor-type Reflection Principle and its "mathematical" characterizations

Sakaé Fuchino

Chubu Univ.

fuchino@isc.chubu.ac.jp
http://pauli.isc.chubu.ac.jp/~fuchino/

(June 19, 2009 (06:29) version)

Erwin Schrödinger International Institute for Mathematical Physics, Wien ESI workshop on large cardinals and descriptive set theory

June 15. 2009

This presentation is typeset by pATEX + beamer class

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, <u>More about</u> the Fodor-type Reflection Principle, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, <u>More about</u> the Fodor-type Reflection Principle, in preparation.

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. $\omega_1 \subseteq I$, $cf(I) = \omega_1$ and $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $\mathrm{AR}([\lambda]^{\aleph_0})$: For any stationary $S\subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T}\subseteq [\lambda]^{\aleph_1}$, there is $I\in\mathcal{T}$ s.t. $S\cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

- $ightharpoonup \mathcal{T}$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 $RP : \Leftrightarrow RP([\lambda]^{\aleph_0})$ holds for all cardinals $\lambda \geq \aleph_2$.

 $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S\subseteq [\lambda]^{\aleph_0}$, there is an $I\in [\lambda]^{\aleph_1}$ s.t. $\omega_1\subseteq I$, $cf(I)=\omega_1$ and $S\cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

 $\mathrm{AR}([\lambda]^{\aleph_0})$: For any stationary $S\subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T}\subseteq [\lambda]^{\aleph_1}$, there is $I\in\mathcal{T}$ s.t. $S\cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

Here, $\mathcal{T} \subseteq [X]^{\aleph_1}$ for an uncountable set X is said to be ω_1 -club (or "tight and unbouded" in Fleissner's terminology) if

- $ightharpoonup \mathcal{T}$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 $RP : \Leftrightarrow RP([\lambda]^{\aleph_0})$ holds for all cardinals $\lambda \geq \aleph_2$.

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. $\omega_1 \subseteq I$, $cf(I) = \omega_1$ and $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $AR([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T} \subseteq [\lambda]^{\aleph_1}$, there is $I \in \mathcal{T}$ s.t. $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

- $ightharpoonup \mathcal{T}$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 $RP : \Leftrightarrow RP([\lambda]^{\aleph_0})$ holds for all cardinals $\lambda \geq \aleph_2$.

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. $\omega_1 \subseteq I$, $cf(I) = \omega_1$ and $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- AR($[\lambda]^{\aleph_0}$): For any stationary $S \subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T} \subseteq [\lambda]^{\aleph_1}$, there is $I \in \mathcal{T}$ s.t. $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

- lacksquare $\mathcal T$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 $RP :\Leftrightarrow RP([\lambda]^{\aleph_0})$ holds for all cardinals $\lambda \geq \aleph_2$.

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. $\omega_1 \subseteq I$, $cf(I) = \omega_1$ and $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $AR([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T} \subseteq [\lambda]^{\aleph_1}$, there is $I \in \mathcal{T}$ s.t. $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

- lacksquare $\mathcal T$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 $\operatorname{RP} :\Leftrightarrow \operatorname{RP}([\lambda]^{\aleph_0}) \text{ holds for all cardinals } \lambda \geq \aleph_2.$

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. $\omega_1 \subseteq I$, $cf(I) = \omega_1$ and $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- AR($[\lambda]^{\aleph_0}$): For any stationary $S \subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T} \subseteq [\lambda]^{\aleph_1}$, there is $I \in \mathcal{T}$ s.t. $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

- $ightharpoonup \mathcal{T}$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.
- $RP : \Leftrightarrow RP([\lambda]^{\aleph_0})$ holds for all cardinals $\lambda \geq \aleph_2$.
- Axiom R : \Leftrightarrow AR($[\lambda]^{\aleph_0}$) holds for all cardinals $\lambda \geq \aleph_2$.

Set-theoretic consequences of RP

- (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- ► I_{NS} is precipitous
- A strong form of Chang's conjecture
 - ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- ► I_{NS} is precipitous
- ▶ A strong form of Chang's conjecture
 - ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- ► I_{NS} is precipitous
- A strong form of Chang's conjecture
 - ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- I_{NS} is precipitous
- ▶ A strong form of Chang's conjecture
 - ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture
 - ...

- ► Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- ▶ A strong form of Chang's conjecture
 - ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1,4", "Theorem 1,6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- ▶ A strong form of Chang's conjecture
- **...**

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- ▶ A strong form of Chang's conjecture
- ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- ▶ A strong form of Chang's conjecture
- •

- ▶ Fleissner's Theorem on left-separated spaces
- Fleissner's Theorem on coloring number of graphs
- A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture
- **...**

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- A characterization of openly generated Bas (F., Qi Feng)
- Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture
- **...**

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture
- **•** ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ► A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4". "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- ▶ (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- ▶ A strong form of Chang's conjecture
- ...

- ▶ Fleissner's Theorem on left-separated spaces
- ▶ Fleissner's Theorem on coloring number of graphs
- ► A characterization of openly generated Bas (F., Qi Feng)
- ▶ Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Fleissner's Theorem on left-separated spaces

FRP and its "mathematical" characterizations (5/18)

Theorem 1 (W. Fleissner 1986)

Assume Axiom R. Suppose that X is a T_1 -space with a point countable base. If X is not left-separated then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not left-separated.

▶ A topological space X is left-separated if there is a well-ordering < of X s.t. every initial segment with respect to < is a closed subset of X.

Fleissner's Theorem on left-separated spaces

FRP and its "mathematical" characterizations (5/18)

Theorem 1 (W. Fleissner 1986)

Assume Axiom R. Suppose that X is a T_1 -space with a point countable base. If X is not left-separated then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not left-separated.

▶ A topological space X is left-separated if there is a well-ordering < of X s.t. every initial segment with respect to < is a closed subset of X.

Fleissner's Theorem on coloring number of graphs

FRP and its "mathematical" characterizations (6/18)

Theorem 2 (W. Fleissner 1986)

Assume Axiom R. If a graph (V, E) has coloring number $\geq \aleph_1$ then there is an infinite subgraph of (V, E) of cardinality \aleph_1 with coloring number \aleph_1 .

▶ For a graph (V, E) the coloring number of (V, E) is the minimal cardinal μ s.t.

there is a well-ordering \prec of V s.t. , for every $v \in V$, the set $\{u \in V : u \prec v, \{u,v\} \in E\}$ has cardinality $< \mu$.

Fleissner's Theorem on coloring number of graphs

FRP and its "mathematical" characterizations (6/18)

Theorem 2 (W. Fleissner 1986)

Assume Axiom R. If a graph (V, E) has coloring number $\geq \aleph_1$ then there is an infinite subgraph of (V, E) of cardinality \aleph_1 with coloring number \aleph_1 .

▶ For a graph (V, E) the coloring number of (V, E) is the minimal cardinal μ s.t.

there is a well-ordering \prec of V s.t. , for every $v \in V$, the set $\{u \in V: u \prec v, \, \{u,v\} \in E\}$ has cardinality $<\mu$.

FRP and its "mathematical" characterizations (7/18)

Theorem 3 (Z. Balogh 2002)

- ightharpoonup A topological space X is coutably compact if any countable open cover of X has a finite subcover.
- ightharpoonup A topological space X is locally countably compact if any point of X has a neighborhood which is countably compact.

FRP and its "mathematical" characterizations (7/18)

Theorem 3 (Z. Balogh 2002)

- ightharpoonup A topological space X is coutably compact if any countable open cover of X has a finite subcover.
- ightharpoonup A topological space X is locally countably compact if any point of X has a neighborhood which is countably compact.

FRP and its "mathematical" characterizations (7/18)

Theorem 3 (Z. Balogh 2002)

- ▶ A topological space *X* is coutably compact if any countable open cover of *X* has a finite subcover.
- ightharpoonup A topological space X is locally countably compact if any point of X has a neighborhood which is countably compact.

FRP and its "mathematical" characterizations (7/18)

Theorem 3 (Z. Balogh 2002)

- ightharpoonup A topological space X is coutably compact if any countable open cover of X has a finite subcover.
- ightharpoonup A topological space X is locally countably compact if any point of X has a neighborhood which is countably compact.

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\leq \aleph_1 \overline{Y}$ has Lindelöf degree $\leq \aleph_1$.

If X is not paracompact then there is a <u>clopen</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space *X* is Lindelöf if each open cover of *X* has a countable subcover.
- ➤ X is locally Lindelöf if each point of X has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- ► X is paracompact if each open covering of X has a locally finite

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\leq \aleph_1$ \overline{Y} has Lindelöf degree $\leq \aleph_1$.

If X is not paracompact then there is a clopen subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space *X* is Lindelöf if each open cover of *X* has a countable subcover.
- ► X is locally Lindelöf if each point of X has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- ► X is paracompact if each open covering of X has a locally finite refinement

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\leq \aleph_1$ \overline{Y} has Lindelöf degree $\leq \aleph_1$.

If X is not paracompact then there is a clopen subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space *X* is Lindelöf if each open cover of *X* has a countable subcover.
- ▶ *X* is locally Lindelöf if each point of *X* has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- \triangleright X is paracompact if each open covering of X has a locally finite refinement

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\leq \aleph_1$ \overline{Y} has Lindelöf degree $\leq \aleph_1$.

If X is not paracompact then there is a <u>clopen</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space *X* is Lindelöf if each open cover of *X* has a countable subcover.
- ▶ *X* is locally Lindelöf if each point of *X* has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- \triangleright X is paracompact if each open covering of X has a locally finite refinement

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\leq \aleph_1$ \overline{Y} has Lindelöf degree $\leq \aleph_1$.

If X is not paracompact then there is a <u>clopen</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space *X* is Lindelöf if each open cover of *X* has a countable subcover.
- ► X is locally Lindelöf if each point of X has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- ightharpoonup X is paracompact if each open covering of X has a locally finite refinement.

Suppose that X is locally Lindelöf and countably tight. If X is not paracompact then there is an <u>open</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

▶ The Lindelöf degree of a topological space X is the minimal cardinal μ s.t. , for any open covering of X there is a subcovering of cardinality $\leq \mu$.

Suppose that X is locally Lindelöf and countably tight. If X is not paracompact then there is an <u>open</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

▶ The Lindelöf degree of a topological space X is the minimal cardinal μ s.t. , for any open covering of X there is a subcovering of cardinality $\leq \mu$.

```
\begin{split} \operatorname{FRP}(\kappa)\colon & \text{ For any stationary } S\subseteq E_{\omega}^{\kappa} \text{ and mapping } \\ & g:S\to [\kappa]^{\leq\aleph_0} \text{ there is } I\in [\kappa]^{\aleph_1} \text{ such that } \\ & \triangleright \operatorname{cf}(I)=\omega_1; \\ & \blacktriangleright g(\alpha)\subseteq I \text{ for all } \alpha\in I\cap S; \\ & \blacktriangleright \text{ for any regressive } f:S\cap I\to \kappa \text{ s.t.} \\ & f(\alpha)\in g(\alpha) \text{ for all } \alpha\in S\cap I, \text{ there is } \xi^*<\kappa \text{ s.t.} \\ & f^{-1} \text{ $I$}\{\xi^*\} \text{ is stationary in } \sup(I). \end{split}
```

 $\overline{FRP} : \Leftrightarrow \overline{FRP}(\kappa)$ holds for every regular $\kappa \geq \aleph_2$

```
\begin{split} \operatorname{FRP}(\kappa)\colon & \text{ For any stationary } S\subseteq E_{\omega}^{\kappa} \text{ and mapping } \\ & g:S\to [\kappa]^{\leq\aleph_0} \text{ there is } I\in [\kappa]^{\aleph_1} \text{ such that } \\ & \triangleright \operatorname{cf}(I)=\omega_1; \\ & \blacktriangleright g(\alpha)\subseteq I \text{ for all } \alpha\in I\cap S; \\ & \blacktriangleright \text{ for any regressive } f:S\cap I\to \kappa \text{ s.t.} \\ & f(\alpha)\in g(\alpha) \text{ for all } \alpha\in S\cap I, \text{ there is } \xi^*<\kappa \text{ s.t.} \\ & f^{-1} \text{ $I$}\{\xi^*\} \text{ is stationary in } \sup(I). \end{split}
```

FRP : \Leftrightarrow FRP(κ) holds for every regular $\kappa \geq \aleph_2$

- - ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}^{I} \{\xi^*\}$ is stationary in sup(I).

FRP : \Leftrightarrow FRP(κ) holds for every regular $\kappa \geq \aleph_2$

- $\operatorname{FRP}(\kappa)\colon$ For any stationary $S\subseteq E^\kappa_\omega$ and mapping $g:S\to [\kappa]^{\leq\aleph_0}$ there is $I\in [\kappa]^{\aleph_1}$ such that
 - ightharpoonup cf(I) = ω_1 ;
 - ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
 - ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} \, {}'' \{\xi^*\}$ is stationary in sup(I).

FRP : \Leftrightarrow FRP(κ) holds for every regular $\kappa \geq \aleph_2$

- ▶ RP(κ) implies FRP(κ) for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ RP(κ) implies FRP(κ) for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X, if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$\mathrm{MA}^+(\sigma\text{-closed}) \Rightarrow \mathrm{Axiom} \ \mathsf{R} \Rightarrow \mathrm{RP} \Rightarrow \mathrm{FRP} \Rightarrow \mathrm{ORP}$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ RP(κ) implies FRP(κ) for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X, if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X, if X is not meta-Lindelöf then there is a subspace Y of X of cardinality ≤ ℵ₁ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \geq \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X, if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

- $E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

- $\blacktriangleright E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}.$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

- $\blacktriangleright E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}.$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

- $\blacktriangleright E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}.$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

- $\blacktriangleright E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}.$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t., for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^{\mu}_{\omega}$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t., for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^{\mu}_{\omega}$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^{\mu}_{\omega}$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^{\mu}_{\omega}$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

$$Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$$
 is non-stationary in $[I]^{\aleph_0}$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

For the essential disjointness of $X \in [\lambda]^{\mu}$ for regular μ with $\aleph_1 < \mu < \lambda^*$, we use $\operatorname{FRP}(\mu)$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

For the essential disjointness of $X \in [\lambda]^{\mu}$ for regular μ with $\aleph_1 < \mu < \lambda^*$, we use $\operatorname{FRP}(\mu)$.

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to $\rm FRP$ over $\rm ZF.$

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality ≤ ℵ₁ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable.

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable.

FRP and its "mathematical" characterizations (16/18)

 $\operatorname{FRP}^R(\kappa)$: For any ω_1 -club $\mathcal{T} \subseteq [\kappa]^{\aleph_1}$, stationary $S \subseteq E_\omega^\kappa$ and mapping $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in \mathcal{T}$ such that $lackbr{\triangleright}$ for any regressive $f: S \cap I \to \kappa$ s.t.

for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} \setminus \{\xi^*\}$ is stationary in sup(I).

 $\operatorname{FRP}^R :\Leftrightarrow \operatorname{FRP}^R(\kappa)$ holds for every regular $\kappa \geq \aleph_2$

- ▶ The proof of $RP \Rightarrow FRP$ can be modified to prove Axiom $R \Rightarrow FRP^R$.
- $ightharpoonup FRP^R$ is still preserved by c.c.c. extensions.

FRP and its "mathematical" characterizations (16/18)

FRP^R(κ): For any ω_1 -club $\mathcal{T} \subseteq [\kappa]^{\aleph_1}$, stationary $S \subseteq E_\omega^{\kappa}$ and mapping $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in \mathcal{T}$ such that

▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}^{I} \{\xi^*\}$ is stationary in sup(I).

 $\operatorname{FRP}^R :\Leftrightarrow \operatorname{FRP}^R(\kappa)$ holds for every regular $\kappa \geq \aleph_2$

- ▶ The proof of $RP \Rightarrow FRP$ can be modified to prove Axiom $R \Rightarrow FRP^R$.
- $ightharpoonup FRP^R$ is still preserved by c.c.c. extensions.

FRP and its "mathematical" characterizations (16/18)

 $\operatorname{FRP}^R(\kappa)$: For any ω_1 -club $\mathcal{T} \subseteq [\kappa]^{\aleph_1}$, stationary $S \subseteq E^{\kappa}_{\omega}$ and mapping $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in \mathcal{T}$ such that

▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} \setminus \{\xi^*\}$ is stationary in sup(I).

 $\operatorname{FRP}^R :\Leftrightarrow \operatorname{FRP}^R(\kappa)$ holds for every regular $\kappa \geq \aleph_2$

- ▶ The proof of $RP \Rightarrow FRP$ can be modified to prove Axiom $R \Rightarrow FRP^R$.
- $ightharpoonup FRP^R$ is still preserved by c.c.c. extensions.

FRP and its "mathematical" characterizations (17/18)

Theorem 8

- (A) Assume FRP^R and " $\{\kappa < \lambda : \operatorname{cf}([\kappa^{\aleph_0}]) = \kappa\}$ is cofinal in λ for any singular cardinal λ " Then, the assertion of Balogh's "Thoerem 1.4" holds.
- (B) The characterization of openly generated BA by F. and Feng holds under FRP^R .

Conjecture. FRP^R in the theorem above can be replaced by FRP.

FRP and its "mathematical" characterizations (17/18)

Theorem 8

- (A) Assume FRP^R and " $\{\kappa < \lambda : \operatorname{cf}([\kappa^{\aleph_0}]) = \kappa\}$ is cofinal in λ for any singular cardinal λ " Then, the assertion of Balogh's "Thoerem 1.4" holds.
- (B) The characterization of openly generated BA by F. and Feng holds under FRP^R .

Conjecture. FRP^R in the theorem above can be replaced by FRP.

FRP and its "mathematical" characterizations (17/18)

Theorem 8

- (A) Assume FRP^R and " $\{\kappa < \lambda : \operatorname{cf}([\kappa^{\aleph_0}]) = \kappa\}$ is cofinal in λ for any singular cardinal λ " Then, the assertion of Balogh's "Thoerem 1.4" holds.
- (B) The characterization of openly generated BA by F. and Feng holds under FRP^R .

Conjecture. FRP^R in the theorem above can be replaced by FRP.

Ich danke Ihnen für Ihre Aufmersamkeit.