Fodor-type Reflection Principle and its "mathematical" characterizations

Sakaé Fuchino

Chubu Univ.

fuchino@isc.chubu.ac.jp
http://pauli.isc.chubu.ac.jp/~fuchino/

(June 19, 2009 (06:27) version)

Erwin Schrödinger International Institute for Mathematical Physics, Wien ESI workshop on large cardinals and descriptive set theory

June 15, 2009

This presentation is typeset by pATEX + beamer class.

The most recent results in this talk are obtained in a joint research with:

Lajos Soukup (Budapest), Hiroshi Sakai (Kobe), and Toshimichi Usuba (Bonn)

Related Papers and Preprints

- [1] S. Fuchino, I. Juhász, L. Soukup, Z. Szentmiklóssy and T. Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness, to appear in Topology and Its Applications.
- [2] S. Fuchino, Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kôkyûroku No.1619, (2008), 32–42.
- [3] S. Fuchino, Fodor-type Reflection Principle implies Balogh's theorems under Axiom R, preprint.
- [4] S. Fuchino H. Sakai, L. Soukup and T. Usuba, *More about the Fodor-type Reflection Principle*, in preparation.

- $\operatorname{RP}([\lambda]^{\aleph_0})$: For any stationary $S\subseteq [\lambda]^{\aleph_0}$, there is an $I\in [\lambda]^{\aleph_1}$ s.t. $\omega_1\subseteq I$, $cf(I)=\omega_1$ and $S\cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- AR($[\lambda]^{\aleph_0}$): For any stationary $S \subseteq [\lambda]^{\aleph_0}$ and ω_1 -club $\mathcal{T} \subseteq [\lambda]^{\aleph_1}$, there is $I \in \mathcal{T}$ s.t. $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.

Here, $\mathcal{T} \subseteq [X]^{\aleph_1}$ for an uncountable set X is said to be ω_1 -club (or "tight and unbouded" in Fleissner's terminology) if

- $ightharpoonup \mathcal{T}$ is cofinal in $[X]^{\aleph_1}$ with respect to \subseteq and
- ▶ for any increasing chain $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{T} of length ω_1 , we have $\bigcup_{\alpha < \omega_1} I_{\alpha} \in \mathcal{T}$.

 ${\rm RP} \ :\Leftrightarrow \ {\rm RP}([\lambda]^{\aleph_0}) \ \text{holds for all cardinals} \ \lambda \geq \aleph_2.$

Axiom R : \Leftrightarrow AR($[\lambda]^{\aleph_0}$) holds for all cardinals $\lambda \geq \aleph_2$.

$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP$

Set-theoretic consequences of RP

- ▶ (Todorcevic) $2^{\aleph_0} \leq \aleph_2$
- (Foreman, Magidor Shelah) Every poset preserving stationarity of subsets of ω_1 is semiproper. As consequences of this we have e.g.:
- $ightharpoonup I_{NS}$ is precipitous
- A strong form of Chang's conjecture
- •

Mathematical consequences of Axiom R

- Fleissner's Theorem on left-separated spaces
- Fleissner's Theorem on coloring number of graphs
- ▶ A characterization of openly generated Bas (F., Qi Feng)
- Balogh's reflection theorem on metrizability
- ▶ Balogh's "Theorem 1.4", "Theorem 1.6"

Fleissner's Theorem on left-separated spaces

FRP and its "mathematical" characterizations (5/18)

Theorem 1 (W. Fleissner 1986)

Assume Axiom R. Suppose that X is a T_1 -space with a point countable base. If X is not left-separated then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not left-separated.

▶ A topological space X is left-separated if there is a well-ordering < of X s.t. every initial segment with respect to < is a closed subset of X.

FRP and its "mathematical" characterizations (6/18)

Theorem 2 (W. Fleissner 1986)

Assume Axiom R. If a graph (V, E) has coloring number $\geq \aleph_1$ then there is an infinite subgraph of (V, E) of cardinality \aleph_1 with coloring number \aleph_1 .

▶ For a graph (V, E) the coloring number of (V, E) is the minimal cardinal μ s.t.

there is a well-ordering \prec of V s.t., for every $v \in V$, the set $\{u \in V : u \prec v, \{u, v\} \in E\}$ has cardinality $< \mu$.

FRP and its "mathematical" characterizations (7/18)

Theorem 3 (Z. Balogh 2002)

Assume Axiom R. Suppose that X is locally countably compact. If X is not metrizable then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not metrizable.

- ightharpoonup A topological space X is coutably compact if any countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if any point of X has a neighborhood which is countably compact.

Theorem 4 (Z. Balogh 2002 (Theorem 1.4))

Assume Axiom R. Suppose that X is locally Lindelöf, countably tight and s.t.

for every subspace Y of X of Lindelöf degree $\langle \aleph_1 | Y \rangle$ has Lindelöf degree $< \aleph_1$.

If X is not paracompact then there is a clopen subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

- ▶ A topological space X is Lindelöf if each open cover of X has a countable subcover.
- X is locally Lindelöf if each point of X has a closed neighborhood which is Lindelöf.
- ▶ X is countably tight if $x \in \overline{Y}$ for any $x \in X$ and $Y \subseteq X$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.
- X is paracompact if each open covering of X has a locally finite refinement.

Theorem 5 (Z. Balogh 2002 (Theorem 1.6))

Suppose that X is locally Lindelöf and countably tight. If X is not paracompact then there is an <u>open</u> subspace Y of X of Lindelöf degree $\leq \aleph_1$ which is not paracompact.

▶ The Lindelöf degree of a topological space X is the minimal cardinal μ s.t. , for any open covering of X there is a subcovering of cardinality $\leq \mu$.

The 'mathematical' reflection theorems mentioned above are actually consequences of the following combinatorial principle which is much weaker than Axiom R (even weaker than RP):

 $\operatorname{FRP}(\kappa)\colon$ For any stationary $S\subseteq E^{\kappa}_{\omega}$ and mapping $g:S\to [\kappa]^{\leq\aleph_0}$ there is $I\in [\kappa]^{\aleph_1}$ such that

- ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. f^{-1} " $\{\xi^*\}$ is stationary in sup(I).

FRP : \Leftrightarrow FRP(κ) holds for every regular $\kappa \geq \aleph_2$

Results from [F., Juhász, Soukup, Szentmiklóssy and Usuba] (and [F.])

- ▶ $RP(\kappa)$ implies $FRP(\kappa)$ for every regular $\kappa \ge \aleph_2$
- ▶ $FRP(\kappa)$ is preserved by c.c.c. extension (this is of course not the case for $RP(\kappa)$)

$$MA^+(\sigma\text{-closed}) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \Rightarrow ORP$$

- ▶ Fleissner's Theorem on left-separated spaces follows from FRP
- ▶ The following reflection theorem follows from FRP: For a locally countably compact and countably tight space X, if X is not meta-Lindelöf then there is a subspace Y of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf (F, Juhász et al.)
- ▶ Balogh's reflection theorem on metrizability follows from FRP
- ▶ Balogh's "Theorem 1.6" follows from FRP

Theorem 6 (F., Sakai, Soukup and Usuba)

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^{\mu}_{\omega}$.

- $\triangleright E_{\omega}^{\mu} = \{ \alpha < \mu : \operatorname{cf}(\alpha) = \omega \}.$
- ▶ $g: E \to [\mu]^{\aleph_0}$ is a ladder system if, for all $\alpha \in E$, we have $g(\alpha) \subseteq \alpha$, $g(\alpha)$ is cofinal in α and $otp(g(\alpha)) = \omega$.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is essentially disjoint if there is a regressive $f: E \to \mu$ s.t. $g(\alpha) \setminus f(\alpha)$, $\alpha \in E$ are pairwise disjoint.
- ▶ A ladder system $g: E \to [\mu]^{\aleph_0}$ is almost essentially disjoint if $g \upharpoonright X$ is essentially disjoint for all $X \in [\mu]^{<|E|}$.

Theorem 6 (F., Sakai, Soukup and Usuba)

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

Sketch of the proof. " \Rightarrow ": Easy.

" \Leftarrow ": Suppose that $\neg FRP$ and let λ^* be the least regular cardinal s.t. $\neg FRP(\lambda^*)$. Then there are a stationary $E \subseteq E_\omega^{\lambda^*}$ and a ladder system $g: E \to [\lambda^*]^{\aleph_0}$ s.t. , for any $I \in [\lambda^*]^{\aleph_1}$ with $\mathrm{cf}(I) = \omega_1$ and closed with respect to g, we have:

 $Z_I = \{x \in [I]^{\aleph_0} : \sup(x) \in E \cap I \text{ and } g(\sup(x)) \subseteq x\}$ is non-stationary in $[I]^{\aleph_0}$.

Let $\sigma: \lambda^* \to {}^{\aleph_0}{}^> \lambda^*$ be a λ^* to 1 surjection and $C^* = \{\alpha < \lambda^* : \text{for all } a \in {}^{\aleph_0}{}^> \alpha, \, \{\gamma < \alpha : \sigma(\gamma) = a\} \text{ is cofinal in } \alpha\}.$ Then C^* is a club subset of λ^* . Thus $E^* = E \cap C^*$ is a stationary subset of λ^* .

Theorem 6 (F., Sakai, Soukup and Usuba)

FRP \Leftrightarrow For any regular $\mu > \aleph_1$, there is no almost essentially disjoint ladder system $g: E \to [\mu]^{\aleph_0}$ for any stationary $E \subseteq E^\mu_\omega$.

For $\alpha \in E^*$, let $\langle \eta_i^\alpha : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in α s.t. $\sigma(\eta_i^\alpha) = \langle \xi_k^\alpha : k \leq i \rangle$ where $\langle \xi_k^\alpha : k < \omega \rangle$ is a fixed enumeration of $g(\alpha)$. Let $g^* : E^* \to [\lambda^*]^{\aleph_0}$ be the ladder system defined by $g^*(\alpha) = \{\eta_i^\alpha : i < \omega\}$.

 g^* is almost essentially disjoint: For $X \in [\lambda^*]^{\aleph_1}$, the essential disjointness of $g^* \upharpoonright X$ can be shown straightfowardly by definition of g^* .

For the essential disjointness of $X \in [\lambda]^{\mu}$ for regular μ with $\aleph_1 < \mu < \lambda^*$, we use $\operatorname{FRP}(\mu)$.

FRP and its "mathematical" characterizations (15/18)

Using Theorem 6, we can show that most of the reflection theorems mentioned before are actually equivalent to FRP over ZF.

Corollary 7

FRP is equivalent to each of the following assertions over ZFC:

- (A) For every locally separable countably tight topological space X, if X is not meta-Lindelöf, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not meta-Lindelöf.
- (B) For every locally countably compact topological space X, if X is not metrizable, then there is a subspaces of X of cardinality $\leq \aleph_1$ which is not metrizable.
- (C) For every T_1 -space X with a point countable base, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (C') For every metrizable space X, if X is not left-separated, then there is a subspace of X of cardinality $\leq \aleph_1$ which is not left-separated.
- (D) For any graph $G = \langle G, \mathcal{E} \rangle$ if the coloring number of G is uncountable, then there is $I \in [G]^{\aleph_1}$ s.t. the coloring number of $G \upharpoonright I$ is uncountable.

Axiom R-like extension of Fodor-type reflection principle (FRP^R)

FRP and its "mathematical" characterizations (16/18)

FRP^R(
$$\kappa$$
): For any ω_1 -club $\mathcal{T} \subseteq [\kappa]^{\aleph_1}$, stationary $S \subseteq E_\omega^\kappa$ and mapping $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in \mathcal{T}$ such that

• for any regressive $f: S \cap I \to \kappa$ s.t.

• $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t.

• $f^{-1}{}''\{\xi^*\}$ is stationary in $sup(I)$.

 $\operatorname{FRP}^R :\Leftrightarrow \operatorname{FRP}^R(\kappa)$ holds for every regular $\kappa \geq \aleph_2$

- ▶ The proof of $RP \Rightarrow FRP$ can be modified to prove Axiom $R \Rightarrow FRP^R$.
- $ightharpoonup FRP^R$ is still preserved by c.c.c. extensions.

FRP and its "mathematical" characterizations (17/18)

Theorem 8

- (A) Assume FRP^R and " $\{\kappa < \lambda : \operatorname{cf}([\kappa^{\aleph_0}]) = \kappa\}$ is cofinal in λ for any singular cardinal λ " Then, the assertion of Balogh's "Thoerem 1.4" holds.
- (B) The characterization of openly generated BA by F. and Feng holds under FRP^R .

Conjecture. FRP^R in the theorem above can be replaced by FRP.

FRP and its "mathematical" characterizations (18/18)

Ich danke Ihnen für Ihre Aufmersamkeit.