Universally measurable sets in generic extensions

Paul Larson (with Saharon Shelah and Itay Neeman)

June 16, 2009

Let X be a topological space and let \mathcal{B} be the collection of Borel subsets of X.

A finite Borel measure on X is a function

$$\mu \colon \mathcal{B} \to [0, \infty)$$

which is countably additive for pairwise disjoint families.

A set $A \subseteq X$ is universally null if A is contained in a Borel set of μ -measure 0, for each atomless finite Borel measure μ on X.

A is *universally measurable* if for each finite Borel measure μ on X there exist Borel sets B, N such that

$$\mu(N) = 0$$

and

$$A \triangle B \subset N$$
.

A *Polish* space is a complete separable metric space.

Theorem 1. If X and Y are Polish spaces and μ and ν are atomless Borel probability measures on X and Y respectively, then there is a Borel bijection $f: X \to Y$ such that

$$\mu(I) = \nu(f[I])$$

for all Borel $I \subset X$.

Theorem 2. If X is a Polish space and $A \subseteq X$, then A is universally measurable if and only if every continuous injective image of A in \mathbb{R} is Lebesgue measurable.

3 Fact. A universally null subset of a Polish space cannot contain a perfect set.

Theorem 4 (Lusin 1917). Every analytic set is universally measurable.

Theorem 5 (Grzegorek, Ryll-Nardzewski 1979). There are analytic sets which don't have universally null symmetric difference with any Borel set.

6 Question. Is there a nice pointclass Γ such that for every universally measurable set A there is a

 $B \in \Gamma$

such that

 $A \triangle B$

is universally null?

If proper class many Woodin cardinals exist, Γ has to contain the universally Baire sets.

Suppose that $\Gamma_0 \subset \Gamma_1$ are pointclasses which are closed under finite unions and complements, and suppose that

- \bullet Γ_0 is closed under countable changes,
- Γ_1 has the perfect set property,
- $A \in \Gamma_1 \setminus \Gamma_0$.

Then A does not have universally null symmetric difference with any member of Γ_0 .

What if Γ is the sets with the Baire Property? Equivalent to asking if all universally measurable set can have the property of Baire.

7 Fact. (Larson-Neeman) Let $S \subset \mathbb{R}$ be a universally measurable set without the property of Baire. Then $S \times \mathbb{R}$ is universally measurable and does not have universally null symmetric difference with any set the property of Baire.

8 Definition. A function is *universally measurable* if all preimages of open sets are universally measurable.

9 Definition. A medial limit is a universally measurable function from $\mathcal{P}(\omega)$ to [0,1] which is finitely additive for disjoint sets, and maps singletons to 0 and ω to 1.

10 Question. Do medial limits necessarily exist?

Mokobodzki/Christensen: Yes if CH holds.

Fremlin: Yes if $cov(\mathcal{M}) = \mathfrak{c}$ holds.

11 Question. Is there necessarily a uniform universally measurable proper ideal on ω which contains all but countably many members of any almost disjoint family?

Not if every universally measurable ideal (equivalently, filter) has the property of Baire.

Yes if there exists a medial limit.

12 Definition. The *Filter Dichotomy* is the statement that for each nonmeager filter F on ω , there is a finite-to-1 $h: \omega \to \omega$ such that $\{h[x] \mid x \in F\}$ is an ultrafilter.

Shown consistent by Blass and Laflamme in 1989.

Theorem 13. The Filter Dichotomy implies that universally null uniform filters on ω are meager.

Proof: Let F be a nonmeager universally measurable uniform filter on ω , and let $h: \omega \to \omega$ be finite-to-1 such that $\{h[x] \mid x \in F\}$ is an ultrafilter. Let

$$S = \{ \bigcup_{n \in Z} h^{-1}[n] \mid Z \subset \omega \},\$$

and let $G: \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ be defined by G(x) = h[x].

- S is a perfect subset of $\mathcal{P}(\omega)$.
- \bullet $F \cap S$ is a universally measurable subset of S.
- $G \upharpoonright S : S \to \mathcal{P}(\omega)$ is a Borel isomorphishm.
- $G[F \cap S] = G[F]$ is not Lebesgue measurable.

14 Question. (Mauldin 1978) Do there exist more than continuum many universally measurable sets?

Larson-Shelah: consistently, no.

Theorem 15. (Hausdorff 1908) There exists a universally null subset of \mathbb{R} of cardinality \aleph_1 .

Theorem 16. (Recław) If R is a Borel binary relation on a Polish space and X is well-ordered by R, then X is universally null.

Theorem 17. (Laver 1970's) Consistently there exist just continuum many universally null subsets of \mathbb{R} .

For any nonempty set X, let μ_X denote the standard product measure on X2 , in which, for each finite $Y\subseteq X$ and each function $a\colon Y\to 2$,

$$\mu_X(\{f \in {}^X 2 \mid f \upharpoonright Y = a\}) = 2^{-|Y|}.$$

The *Baire* sets are those in the σ -algebra generated by the sets

$$\{f \in {}^{X}2 \mid f(x) = i\},\$$

for $x \in X$ and $i \in 2$.

For each Baire set $E\subseteq {}^X\mathbf{2}$, let $[E]_{\mu_X}$ be the set of Baire sets $F\subseteq {}^X\mathbf{2}$ such that

$$\mu_X(E \triangle F) = 0.$$

The random algebra $\mathbb{B}(X)$ consists of all sets of the form $[E]_{\mu_X}$, with E a non- μ_X -null Baire subsets of X2 , with the order of mod- μ_X -null containment.

 $\mathbb{B}(X)$ is c.c.c., and forcing with $\mathbb{B}(X)$ adds a generic function $F: X \to 2$.

If κ is a cardinal such that $\kappa^{\aleph_1} = \kappa$, then

$$2^{\aleph_0} = 2^{\aleph_1} = \kappa$$

in the $\mathbb{B}(\kappa)$ -extension.

Theorem 18. (Larson-Shelah) Every universally measurable subset of \mathbb{R} in the $\mathbb{B}(X)$ -extension is the union of \mathfrak{c}^V many Borel sets.

Baire sets and Borel sets have codes which induce reinterpretations in generic extensions.

A function $F: X \to 2$ is V-generic for $\mathbb{B}(X)$ if and only if F is in (the reinterpretation of) every measure 1 Baire set in V.

If $Y \subseteq X$ then $\mathbb{B}(X) \sim \mathbb{B}(Y) * \mathbb{B}(X \setminus Y)$.

For every $\mathbb{B}(X)$ -name η for an element of \mathbb{R} , if Y is a subset of X and

$$H \subseteq \mathbb{B}(Y)$$

is a V-generic filter, then there is in V[H] a finite Borel measure

$$\nu(H,\eta)(I) = \mu_{X \setminus Y}([[(\eta/\check{H}) \in \check{I}]]).$$

Every name for a countable set of ordinals has countable support, i.e., depends only on $F \upharpoonright Y$, for some countable $Y \subseteq X$.

Every $\mathbb{B}(X)$ -name for a finite Borel measure is induced by a $\mathbb{B}(Y)$ -name, for some countable $Y \subseteq X$ (i.e., the name has support Y).

For each countable $Y \subseteq X$, there is a set of \mathfrak{c}^V many $\mathbb{B}(X)$ -names which represent all finite Borel measures on \mathbb{R} in the $\mathbb{B}(Y)$ extension.

Letting \dot{A} be a $\mathbb{B}(X)$ -name for a universally measurable set, for each $\mathbb{B}(X)$ -name \dot{m} for a finite Borel measure, there are names \dot{B} , \dot{N} for Borel sets for which every condition forces that

$\dot{A} \triangle \dot{B}$

will be contained in the \dot{m} -null set \dot{N} .

Then there is a $Y \subseteq X$ of cardinality \mathfrak{c}^V such that for every $\mathbb{B}(X)$ -name for a finite Borel measure with support contained in Y, there exist such names \dot{B} , \dot{N} with support contained in Y.

Say that such a Y is \dot{A} -closed.

Lemma 19. If η is a $\mathbb{B}(X)$ -name for an element of \mathbb{R} ,

- \bullet $Y \subseteq X$,
- \dot{B} and \dot{N} are $\mathbb{B}(X)$ -names with support Y for Borel sets,
- every condition forces that \dot{N} is $\nu(G \upharpoonright Y, \eta)$ -null and $\dot{A} \triangle \dot{B} \subseteq \dot{N}$,

then every condition forces that $\eta \notin \dot{N}$ and thus that $\eta \in \dot{A} \leftrightarrow \eta \in \dot{B}$.

It follows that if Y is \dot{A} -closed, then every element of \dot{A} in the $\mathbb{B}(X)$ -extension will be an element of a Borel set contained in \dot{A} (of the form $\dot{B}\setminus\dot{N}$) in the $\mathbb{B}(Y)$ -extension.

If $|Y| = \mathfrak{c}^V$, then there are \mathfrak{c}^V many such Borel sets.

Under MA_{λ} every union of λ many Borel sets is universally measurable.

20 Question. Can the universally measurable sets be the unions of \aleph_1 -many Borel sets?

No:

Theorem 21 (Grzegorek). If κ is the smallest cardinality of a nonmeasurable set of reals, then there is a universally null set of cardinality κ .

Theorem 22. (Larson-Neeman-Shelah) If $|X| > \mathfrak{c}^V$ then in the $\mathbb{B}(X)$ extension A is universally measurable if and only if A and its complement are unions of \mathfrak{c}^V many Borel sets.

23 Definition. The *Borel reinterpretation* of a set A in a generic extension is the union of all reinterpreted ground model Borel sets contained in A.

A is universally measurable if and only if the Borel reinterpretations of A and its complement in any random algebra extension are complements.

If $A \subset \mathbb{R}$ is universally measurable, then for any Borel $f \colon {}^{\omega}2 \to \mathbb{R}$ there are Borel B, N such that $f^{-1}[N]$ is μ_{ω} -null and $A \bigtriangleup B \subset N$.

If ν is an atomless finite Borel measure on \mathbb{R} , let

$$f$$
: $\omega_2 \to \mathbb{R}$

be a Borel isomorphism mapping μ_{ω} to ν . Then if $[B]_{\mu_{\omega}}$ is the Boolean value that f(G) is in a Borel subset of A in the ground model, then f[B] is a Borel set whose symmetric difference with A is ν -null.

So: if \mathcal{A} and \mathcal{B} are collection of Borel sets whose unions are complements, and $\bigcup \mathcal{A}$ is not universally measurable, then there exist a Borel function $f : {}^{\omega}2 \to \mathbb{R}$ and a Borel set $E \subseteq {}^{\omega}2$ such that for no Borel $E' \subset E$ is f[E'] contained in a Borel subset of either $\bigcup \mathcal{A}$ or $\bigcup \mathcal{B}$.

By genericity, there is a countable $Y \subset X$ such that $\mathcal{A}, \mathcal{B}, f$ are in $V[G \upharpoonright X \setminus Y]$ and $G \upharpoonright Y$ is "in" E. But $f(G \upharpoonright Y)$ is in some member of $\mathcal{A} \cup \mathcal{B}$.

The Borel reinterpretation of a universally measurable set in a random algebra extension is universally measurable.

Given a Borel function $x \mapsto \rho_x$ (for $x \in {}^{\omega}2$) representing a Borel measure, consider the measure

$$\nu(E) = \int \rho_x(E) d(\mu_\omega).$$

24 Definition (Ciesielski-Pawlikowski). A *cube* is a continuous injection from $\Pi_{n\in\omega}C_n$ to X, where X is a Polish space and each C_n is a perfect subset of ${}^{\omega}2$.

Let Perf(X) denote the set of perfect subsets of X.

- **25 Definition.** $\mathcal{E} \subseteq Perf(X)$ is \mathcal{F}_{cube} -dense if for each cube f there is a cube g such that $g \subseteq f$ and $range(g) \in \mathcal{E}$.
- **26 Definition.** The axiom $CPA_{cube}(X)$ says that for every \mathcal{F}_{cube} -dense $\mathcal{E} \subseteq Perf(X)$ there is a $\mathcal{E}_0 \subseteq \mathcal{E}$ such that $|\mathcal{E}_0| \leq \aleph_1$ and $|X \setminus \bigcup \mathcal{E}_0| \leq \aleph_1$.

Theorem 27. If X is a Polish space and $CPA_{cube}(X)$ holds, then every universally measurable set A is the union of at most \aleph_1 many sets, each of which is either a perfect set or a singleton.

Proof. Let $\mathcal E$ be the collection of perfect subsets of X which are either contained in or disjoint from A. Let $f: \Pi_{n\in\omega}{}^\omega 2 \to X$ be a continuous injection, and let μ be the Borel measure on X defined by letting $\mu(I)$ be the measure of $f^{-1}[I]$. Then there exist Borel subsets B, N of X such that $A \triangle B \subset N$ and $\mu(N) = 0$. Then one of $B \setminus N$ and $(X \setminus B) \setminus N$ has positive μ -measure. \square

Lemma 28. If D is a Borel subset of $\Pi_{n\in\omega}^{\omega}$ 2 and D has positive measure in the usual product measure, then D contains a set of the form $\Pi_{n\in\omega}C_n$, where each $C_n\in Perf(X)$.

Under $\mathsf{CPA}^{game}_{cube}$, the perfect sets can be taken to be disjoint.

(Debs) An ideal I on \mathbb{R} is *polar* if for some (Borel) set Σ of Borel measures on \mathbb{R} , I is the set of Borel sets which are null for all members of Σ .

29 Question. Can the arguments given above for the random algebra be carried out under the countable support iteration of any (iterable, proper) polar ideal?

30 Definition. A probability transition kernel from a Polish space X to a Polish space Y a function that associates to each $x \in X$ a Borel measure ρ_x on Y, in such a way that

$$x \mapsto \rho_x(B)$$

is a Borel function, for each Borel $B \subseteq Y$.

31 Definition. Probability measures p, q are orthogonal if there is a set which has p-measure 1 and q-measure 0.

32 Definition. A probability transition kernel is orthogonality preserving if

$$\int \rho_x(E) dp$$

and

$$\int \rho_x(E) dp$$

$$\int \rho_x(E) dq$$

are orthogonal measures on Y, whenever p and q are orthogonal measures on X.

33 Question (Mauldin, Preiss, Wiezsacker). If $x \mapsto \rho_x$ is orthogonality preserving, is there a universally measurable $f: Y \to X$ such that

$$\rho_x(f^{-1}\{x\}) = 1$$

for all $x \in X$?

- Replace "universally measurable" with Borel, then no, though the converse holds.
- Yes if there is a medial limit.
- No if all universally measurable sets have property of Baire.