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Examples:
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Hyperspace: compact subsets of 2
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Tukey reducibility: (P, <) <+ (Q,<)if3If: P - Q

X C P unbounded = f[X] C @ unbounded

1. Z,J C P(w) analytic ideals, Borel/Souslin/Baire measurable, etc.

/
I<+J :?:> df: 7 — J definable Tukey reduction

2. 7,J,K C P(w) analytic ideals

T<r ToKk-L T<rTorT<rK
J

JoK={(,K):JeJ, KeK}, C coordinatewise

1. Definability problem 2. Primality problem
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(P,<) is basic if ...
“separable metric+every convergent sequence has a bounded subsequence”
...e.g. analytic P-ideals in P(w), (relative) o-ideals of compact sets
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Tukey reducibility witnessed by

J, K C P(w) analytic ideals, Souslin measurable function
/
Thax <st T @ K
4

Tmax <7 J O Lax <7 K
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3D: T — 2P with D()) = 2P and D(t) C U{D(t'): t’ € succr(t)}
vSesS
Vd: S — P with d(s) € D(s) (s € S)

{d(s): s € S} C P is bounded

Theorem.
1. Q<7 P, Pis (T,S)-calibrated = Q is (T,S)-calibrated

2. QLT P= 3(T,S): Pis (T,S)-calibrated,
Q is not (T,S)-calibrated
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