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Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Directed orders

(P,≤) partial order is directed if

p, q ∈ P =⇒ p ∨ q ∈ P (least upper bound)

Examples:

• ([κ]<λ,⊆)

• ideals in (P(ω),⊆)

• ideals on (R,⊆): Lebesgue null sets, meager sets, etc.

• relative ideals: ideals in K(2ω), etc.

↗
Hyperspace: compact subsets of 2ω



Cofinal types of

directed orders

Tamás Mátrai
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Cofinal types

(P,≤), (Q,≤) directed partial orders

Tukey reducibility: (P,≤) ≤T (Q,≤) if
∃f : P → Q

X ⊆ P unbounded =⇒ f [X ] ⊆ Q unbounded

∃g : Q → P

Y ⊆ Q cofinal =⇒ g [Y ] ⊆ P cofinal

• P ≤T Q =⇒ add(Q) ≤ add(P)

• P ≤T Q =⇒ cof(P) ≤ cof(Q)

• all inequalities in the Cichoń diagram

Exercise: (P,≤) directed partial order, |P| = κ ⇒ (P,≤) ≤T ([κ]<ω,⊆)
f : P → κ arbitrary injection

X ⊆ P unbounded =⇒ ω ≤ |X | =⇒ f [X ] unbounded
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S. Todorčević

i.e. cofinal types of directed orders on ω1

CH =⇒ ∃ 2ω1 many different cofinal types of directed orders on ω1

Con({1, ω, ω1, ω × ω1, [ω1]
<ω} are all the cofinal types

of directed orders ≤T [ω1]
<ω)

Additional structure:

† Ultrafilters (recall the talk of N. Dobrinen)

† For us: analytic ideals in (P(ω),⊆)

i.e. I ⊆ P(ω) analytic, ideal
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i.e. cofinal types of directed orders on ω1

CH =⇒ ∃ 2ω1 many different cofinal types of directed orders on ω1

Con({1, ω, ω1, ω × ω1, [ω1]
<ω} are all the cofinal types

of directed orders ≤T [ω1]
<ω)

Additional structure:

† Ultrafilters (recall the talk of N. Dobrinen)

† For us: analytic ideals in (P(ω),⊆)

i.e. I ⊆ P(ω) analytic, ideal



Base problems

Tukey reducibility: (P,≤) ≤T (Q,≤) if ∃f : P → Q

X ⊆ P unbounded =⇒ f [X ] ⊆ Q unbounded

1. I,J ⊆ P(ω) analytic ideals,

Borel/Souslin/Baire measurable, etc.

↙

I ≤T J =⇒? ∃f : I → J definable Tukey reduction

2. I,J ,K ⊆ P(ω) analytic ideals

I ≤T J ⊕K =⇒? I ≤T J or I ≤T K

↗
J ⊕K = {(J, K) : J ∈ J , K ∈ K}, ⊆ coordinatewise

1. Definability problem 2. Primality problem
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S. Solecki, S. Todorčević

i.e. theory of directed basic orders

(P,≤) is basic if . . .

“separable metric+every convergent sequence has a bounded subsequence”

. . . e.g. analytic P-ideals in P(ω), (relative) σ-ideals of compact sets

Theorem. (P,≤), (Q,≤) basic,

P ≤T Q =⇒ ∃f : P → QSouslin measurable Tukey reduction
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Imax

i.e. how to copy ideals of compact sets into P(ω)

[c]<ω maximal cofinal type of analytic ideals
[c]<ω [2ω]<ω ⊆ K(2ω) is Fσ  Imax ⊆ P(Ω)is Fσ

2Ω

Ω = 2<ω

A ⊆ 2ω closed

 

A = [A],A ⊆ 2<ω pruned tree

 
A ∈ P(Ω)2ω

Imax is NOT basic (Solecki-Todorčević theory does not apply)

Particular problems: J ,K ⊆ P(ω) analytic ideals

1. Imax ≤T J =⇒? ∃f : Imax → J definable Tukey reduction

2. Imax ≤T J ⊕K =⇒? Imax ≤T J or Imax ≤T K
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〈
⋃

α∈ω1∪{∞}KrkCB<ω([tp(x) = α])〉
i.e. consistent negative answer to Definability problem

J ⊆ P(ω) analytic ideal
H ⊆ J strongly unbounded: ∀H ∈ [H]ω we have

⋃
H /∈ J

[κ]<ω ≤T J ⇔ ∃H ⊆ J strongly unbounded: |H| = κ

⇐ : f : [κ]<ω → H injective
⇒ : if f : [κ]<ω → J is Tukey, H = f [[κ]<ω],

• |H| = κ (f is Tukey hence finite-to-one),

• H ⊆ J is strongly unbounded (f is Tukey).

Theorem. ∃J ⊆ P(ω) analytic ideal:

† [ω1]
<ω≤T J , i.e. J has an uncountable strongly unbounded subset;

† [ω2]
<ω 6≤T J ;

† J has no non-empty perfect strongly unbounded subset.

Corollary. CH =⇒ ∃J ⊆ P(ω) analytic ideal:

† [ω1]
<ω = [c]<ω = Imax ≤T J ;

† f : Imax → J Tukey ⇒ f [Imax] has no non-empty perfect subset.
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Infinite dimensional perfect set thms
i.e. consistent positive answer to Definability problem

J ⊆ P(ω) analytic ideal ∀C ∈ [H]ω
⋃
C /∈ J"

[c]<ω = Imax ≤T J ⇔ ∃H ⊆ J strongly unbounded: |H| = c

J =

{
(An)n<ω ∈ P(ω)ω : An ∈ J (n < ω),

⋃
n<ω

An /∈ J
}

is σ(Σ1
1)

ISω(H): injective ω → H functions

H ⊆ J strongly unbdd ⇔ ISω(H) ⊆ J ⇔ H is J-homogeneous

Theorem. Under suitable assumptions,

† ∃H ⊆ J : |H| = c, ISω(H) ⊆ J ⇒ ∃P ⊆ J perfect : ISω(P) ⊆ J

† ∃H ⊆ J strongly unbdd, |H| = c
⇒ ∃P ⊆ J perfect strongly unbdd

† Imax ≤T J ⇒ ∃f : Imax → J continuous Tukey map
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Product games
i.e. how to get infinite dimensional perfect set thms

Example: Banach-Mazur game
Playground: X , payoff set: A ⊆ X

I : U(0) U(1) . . . U(n − 1) . . .

II : V (0) V (1) . . . V (n − 1) . . .

• U(n),V (n) ⊆ X (n < ω) non-empty open sets

• diam (U(n)),diam (V (n)) < 2−n (n < ω)

• U(n + 1) ⊆ V (n) ⊆ U(n) (n < ω)

II wins ⇔ x =
⋂

n<ω U(n) =
⋂

n<ω V (n) ∈ A.
Theorem.

† I has a winning strategy ⇔ ∃U non-empty open: A ∩ U is meager
 R ⊆ X everywhere non-meager ⇒ ISω(R) 6⊆ A

† II has a winning strategy ⇔ X \ A is meager
 ∃P ⊆ X perfect: ISω(P) ⊆ A
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To summarize. . .
i.e. consistent positive answer to Definability problem

J ⊆ P(ω) analytic ideal

J =

{
(An)n<ω ∈ P(ω)ω : An ∈ J (n < ω),

⋃
n<ω

An /∈ J
}

is σ(Σ1
1)

Theorem. Under suitable assumptions,

† ∃H ⊆ J : |H| = c, ISω(H) ⊆ J ⇒ ∃P ⊆ J perfect : ISω(P) ⊆ J

Assumptions:
1. H ⊆ P(ω), |H| = c ⇒ H is not perfectly meager
2. σ(Σ1

1) games are determined (now superfluous)
Recall:

† I has awinning strategy H ⊆ X everywhere non-meager
⇒ ISω(H) 6⊆ J

† II has awinning strategy ∃P ⊆ X perfect: ISω(P) ⊆ J

Corollary. Under the same assumptions,
Imax ≤T J ⊕K =⇒ Imax ≤T J or Imax ≤T K
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Tukey picture update

i.e. many cofinal types of definable directed orders

(P(ω),⊆?)

↪→

measure leaf −→

1 <T ω <T ωω

category leaf −→

< T

<
T

Z0

<
T

N ∩K(2ω)

∈ {analytic P-ideals} ≤T

<
T

≤T

I1/n

<
T

M∩K(2ω)

<T I

↪→

(P(ω),⊆?)

�� ��{H ⊆ ω : limn<ω |H ∩ n|/n = 0}
↘ ↙

�� ��{H ⊆ ω :
∑

h∈H 1/h < ∞}

↖ ↗�� ��compact measure zero
�� ��compact meager
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Tree calibration

T : tree
S : set of subtrees of T
(P,≤) is (T ,S)-calibrated:

∃D : T → 2P with D(∅) = 2P and D(t) ⊆
⋃
{D(t ′) : t ′ ∈ succT (t)}

∀S ∈ S
∀d : S → P with d(s) ∈ D(s) (s ∈ S)

{d(s) : s ∈ S} ⊆ P is bounded

Theorem.

1. Q ≤T P, P is (T ,S)-calibrated ⇒ Q is (T ,S)-calibrated

2. Q 6≤T P ⇒ ∃(T ,S) : P is (T ,S)-calibrated,
Q is not (T ,S)-calibrated
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Back to the picture



Open towers
X topological space

U = (Un)0<n<ω open tower:

[U ] =
⋂

0<n<ω Un × Xω\n

• Un ⊆ X n open (0 < n < ω)

• Un∆PrX n(Un+1) is nowhere dense (0 < n < ω)

U1

X 2

U2
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