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Ramsey Theorems

Let us first recall some classical Ramsey type theorems.

The first result hardly deserves to be called a theorem, but can be
extremely useful when used correctly.

Theorem (Dirichlet’s principle)

Suppose
c : N→ {verde, amarelo}

is a colouring of the natural numbers with two colours verde and
amarelo. Then there is an infinite subset A ⊆ N which is
monochromatic.
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On the other hand, though not too hard to prove, Ramsey’s
Theorem is much deeper.

Theorem (Ramsey’s Theorem - infinite version)

Suppose
c : [N]2 → {verde, amarelo}

is a colouring with 2 colours. Then there is an infinite subset
A ⊆ N such that [A]2 is monochromatic.
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And finally, the pride of infinite-dimensional Ramsey theory:

Theorem (Galvin - Prikry)

Suppose
c : [N]∞ → {verde, amarelo}

is a Borel colouring with 2 colours. Then there is an infinite subset
A ⊆ N such that [A]∞ is monochromatic.
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Ramsey theory for Banach spaces?

For the geometric theory of Banach spaces, it would be extremely
useful to have a similar principle for stabilising colourings.

So let us try to set up an ideal correspondence of the objects of
classical Ramsey theory with Banach spaces:

the base set N ∼ an infinite-dimensional Banach space X

infinite subsets A ⊆ N ∼ infinite-dimensional subspaces Y ⊆ X

numbers n ∈ N ∼ vectors x ∈ X
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Dirichlet’s principle for Banach spaces?

So here is the analogue of Dirichlet’s principle for Banach spaces.

First of all, since we can colour vectors according to their norm, we
should restrict the consideration to vectors of norm 1.

Secondly, since we are dealing with continuous objects, our colours
and colouring should also be continuous.

Question

Suppose X is a separable infinite-dimensional Banach space and

c : SX → [0, 1]

is a Lipschitz function defined on the unit sphere SX of X .
For any ε > 0, is there an infinite-dimensional subspace Y ⊆ X
such that

diam(c[SY ]) < ε ?
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Gowers’ c0-theorem

In the early 1990s, W. T. Gowers proved that at least for c0, i.e.,
the space

c0 = {(xn) ∈ RN ∣∣ xn −→
n→∞

0},

there is a valid Dirichlet principle.

Theorem (Gowers)

Suppose
c : Sc0 → [0, 1]

is a Lipschitz function and ε > 0.
Then there is an infinite-dimensional subspace Y ⊆ c0 such that

diam(c[SY ]) < ε.
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The distortion theorem

Unfortunately, c0 is the only space for which this Dirichlet principle
is true.

Theorem (Odell-Schlumprecht)

Suppose X is a separable infinite-dimensional Banach space not
containing an isomorphic copy of c0.
Then there is an infinite-dimensional subspace Y ⊆ X and a
Lipschitz function

c : SY → [0, 1]

such that for any infinite-dimensional subspace Z ⊆ Y , we have

c[SZ ] = [0, 1].
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So this shows that even the most basic Ramsey principle fails in
general Banach spaces.

We shall instead try to replace the stabilisation of colourings with
a more dynamical principle that can hold in more general cases.
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Vector spaces over countable fields

Suppose F is a countable field (think of Q or Q + iQ) and E is a
countable-dimensional F-vector space with basis (en)∞n=1.

Then E is a countable set, which we give the discrete topology,
and we equip the infinite product E N with the product topology.
So E N is Polish.
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Now if x =
∑

anen ∈ E , we let supp(x) = {n ∈ N
∣∣ an 6= 0},

which is a finite set of integers.

Also, for non-zero vectors x , y ∈ E and an integer k , set

x < y ⇔ max supp(x) < min supp(y)

and
k < x ⇔ k < min supp(x).

Q x y

e1 e2 e3 . . . ek
-

6

−1

0

1
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A block sequence of (en) is an infinite sequence of non-zero vectors
(x1, x2, x3, . . .) such that

x1 < x2 < x3 < x4 < . . . .

Q x1 x2 x3

e1 e2 e3 e4 e5 . . .
-

6

−1

0

1

A block subspace of E is an infinite-dimensional subspace X ⊆ E
spanned by an infinite block sequence (xn) (written X = [xn]).
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By elementary linear algebra, any infinite-dimensional subspace of
E contains an infinite-dimensional block subspace X = [xn].

Therefore, from the point of view of Ramsey theory, we only have
to worry about block subspaces.
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Notation

In the following,
X ,Y ,Z , . . .

denote (infinite-dimensional) block subspaces of E ,

x , y , z , . . .

denote non-zero vectors in E , and

~x , ~y ,~z , . . .

denote finite block sequences ~x = (x0, x1, . . . , xn) in E .
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The Gowers game

Let X ⊆ E be any block subspace and define the Gowers game GX

played below X as follows:

I Y0 Y1 Y2 . . .
II z0 ∈ Y0 z1 ∈ Y1 z2 ∈ Y2 . . .

Here the Yn are block subspaces of X and the zn ∈ Yn are nonzero
vectors such that zn < zn+1.

The outcome of an infinite run of the game is the infinite block
sequence (zn) in X .

If also ~x is a finite block sequence, GX (~x) is defined as above,
except that the outcome is now ~xˆ(zn).
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The Infinite Asymptotic game

Fix a block subspace X ⊆ E and define the Infinite Asymptotic
game FX played below X as follows:

I k0 k1 k2 . . .
II k0 < z0 k1 < z1 k2 < z2 . . .

Here I and II alternate in choosing respectively natural numbers kn

and non-zero vectors kn < zn ∈ X according to the constraint
zn < zn+1.

The outcome of an infinite run of the game is again the infinite
block sequence (zn) in X .

Again, if ~x is a finite block sequence, the game FX (~x) is played as
above, except that the outcome is now ~xˆ(zn).
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One easily sees that the infinite asymptotic game is equivalent to
the Gowers game in which we moreover demand that player I plays
block subspaces Yn of finite codimension in X .

So from this follows that if A ⊆ E N, then

If II has a strategy in GX (~x) to play in A,
then II has a strategy in FX (~x) to play in A.

Conversely,

If I has a strategy in FX (~x) to play in A,
then I has a strategy in GX (~x) to play in A.

So the infinite asymptotic game is easier to play for II than the
Gowers game, while the converse is true for player I.
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Strategically Ramsey sets

Definition

We say that a set A ⊆ E N is strategically Ramsey if for any V ⊆ E
and finite block sequence ~v, there is a block subspace Y ⊆ V such
that one of the following two mutually exclusive conditions hold:

II has a strategy in GY (~v) to play in A,

I has a strategy in FY (~v) to play in the complement ∼A.

Since the game GY (~v) is easier to play for I than the game FY (~v),
we see that the conclusion is stronger than just stating that the
game GY (~v) to play in or out of A is determined.
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So being strategically Ramsey is more than determinacy of a
certain game. But on the other hand, the conclusion is only
obtained on a subspace X ⊆ E and not on E itself, so the
definition also involves Ramsey theory.

The proof of Galvin–Prikry’s Theorem for open sets requires
relatively subtle Ramsey theoretical techniques.

On the other hand, using hardly any Ramsey theory at all, but only
Gale–Stewart’s proof of determinacy of open games, one can show
that open sets are strategically Ramsey.
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Open sets are strategically Ramsey

Suppose Y = [yn]. We write Y ⊆∗ X to denote that yn ∈ X for all
but finitely many n, i.e., that Y ∩ X has finite codimension in Y .

So, as for infinite subsets of N, if

X0 ⊇∗ X1 ⊇∗ X2 ⊇∗ . . .

is a decreasing sequence of subspaces, there is some X∞ such that
X∞ ⊆∗ Xn for all n.
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Recall the game GX (~x):

I Y0 Y1 Y2 . . .
II z0 ∈ Y0 z1 ∈ Y1 z2 ∈ Y2 . . .

where Y0,Y1, . . . ⊆ X .

By the asymptotic nature of GX (~x), we have for Z ⊆∗ X

If II has a strategy in GX (~x) to play in A,
then II has a strategy in GZ (~x) to play in A.

Similarly,

If I has a strategy in FX (~x) to play in A,
then I has a strategy in FZ (~x) to play in A.
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Proposition

Open sets are strategically Ramsey.

Proof
Suppose U ⊆ E N is open and suppose V ⊆ E and ~v are given.

By a simple diagonalisation over all finite block sequences ~x , we
can find some X ⊆ V such that for all Y ⊆∗ X and ~x ,

II has a strategy in GY (~x) to play in U

if and only if

II has a strategy in GX (~x) to play in U.
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By a further diagonalisation, we can find some Y ⊆ X such that
for all ~x ,

if there is some Z ⊆ Y such that for all y ∈ Z , II has no
strategy in GY (~xˆy) to play in U, then there is some n
such that for all y ∈ Y , if n < y, then II has no strategy
in GY (~xˆy) to play in U.

We will show that either

II has a strategy in GY (~v) to play in A, or

I has a strategy in FY (~v) to play in the complement ∼A.
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Let T be the set of all ~x such that II has no strategy in GY (~x) to
play in U.

Since U is open, we have [T ] ∩ U = ∅.

Also, suppose that ~x ∈ T .

Then, as II has no strategy in GY (~x) to play in U, I can play some
Z ⊆ Y such that for all y ∈ Z , II has no strategy in GY (~x ˆy) to
play in U.

So for some n and all y ∈ Y , if n < y , then II has no strategy in
GY (~x ˆy) to play in U, i.e., ~xˆy ∈ T .

Thus, in the game FY (~x), we can let I play this n, and so for any
response y ∈ Y by II such that n < y , we still have ~x ˆy ∈ T .
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This shows that if we have ~v ∈ T , then T provides a
quasi-strategy for I in FY (~v) to play in [T ] ⊆ ∼U.

On the other hand, if ~v /∈ T , then, by definition, II has a strategy
in GY (~v) to play in U. Q.E.D.
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The extent of strategically Ramsey sets

Theorem

Analytic sets strategically Ramsey.

This result was originally proved by Gowers for so called weakly
Ramsey sets in Banach spaces, whereas the above result speaks
about sets of block sequences in countable-dimensional vector
spaces over countable fields.

Secondly, as a byproduct of the proof of our theorem, we have that

Theorem

The class of strategically Ramsey sets is closed under countable
unions.
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Theorem (MAκ)

The class of strategically Ramsey sets is closed under κ-unions.

Again, J. Bagaria and J. López-Abad, proved the same conclusion
for the class of weakly Ramsey sets in Banach spaces under an
assumption relatively consistent with the existence of a weakly
compact cardinal.

Moreover, as Σ1
2 sets are unions of ℵ1 Borel sets, we have

Corollary (MAω1)

Σ1
2-sets are strategically Ramsey.
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Strategically Ramsey sets in normed vector spaces

The full power of the notion of strategically Ramsey sets really
becomes apparent once we work within an ambient normed vector
space.

So suppose that F is a countable subfield of R or of C and ‖ · ‖ is
a norm on the vector space E , i.e., ‖ · ‖ : E → R.

For X ⊆ E , let BX = {x ∈ X
∣∣ ‖x‖ 6 1} denote the unit ball of X .
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Also, if ∆ = (δn) is a sequence of positive real numbers δn > 0,
which we denote by ∆ > 0, we define for any set A ⊆ E N,

A∆ = {(zn) ∈ E N ∣∣ ∃(yn) ∈ A ∀n ‖zn − yn‖ < δn}

and

Int∆(A) = {(zn) ∈ E N ∣∣ ∀(yn)
(
∀n ‖zn − yn‖ < δn → (yn) ∈ A

)
}

= ∼ (∼ A)∆.
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The fundamental theorem of infinite asymptotic games

Theorem

Suppose I has a strategy in FX to play in some set A and ∆ > 0.
Then there is a sequence of finite intervals

I0 < I1 < I2 < I3 < . . . ⊆ N

such that for any block sequence (zn) ⊆ BX , if

(∗) ∀n ∃m I0 < zn < Im < zn+1,

then (zn) ∈ A∆.

This result has been through some iterations. Originally, some
version of this was proved for closed sets by E. Odell and Th.
Schlumprecht, while another result was proved for coanalytic sets
by C. Rosendal. The above result is essentially from a paper by V.
Ferenczi and C. Rosendal.
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To understand the condition (∗), note that it just requires that any
two successive vectors zn and zn+1 are separated by an interval Im
and the support of the first vector z1 begins after I0.

-

6

−1

0

1

I0 I1 I2 I3 I4 I5 I6
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To understand the condition (∗), note that it just requires that any
two successive vectors zn and zn+1 are separated by an interval Im
and the support of the first vector z1 begins after I0.

-

6

−1

0
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and the support of the first vector z1 begins after I0.

-

6

−1

0

1
z1 z2 z3

I1 I2 I4 I6I0 I3 I5

Christian Rosendal University of Illinois at Chicago A simple proof of Gowers’ dichotomy theorem



This really says that if ever I has a strategy in FX to play in A,
then for any ∆ > 0, I has a trivial strategy in FX to play in the
slightly bigger A∆.

For in this case, I does not need to look at what II is playing, but
can say in advance of the game that if the block sequence is
sufficiently separated, as given by the intervals (In), then
(zn) ∈ A∆.
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So if we combine the fundamental theorem for infinite asymptotic
games with the definition of strategically Ramsey sets, we obtain

Corollary (Gowers’ Selection Theorem)

Suppose A ⊆ E N is strategically Ramsey (e.g., analytic) such that
for some ∆ > 0 and all block subspaces X ⊆ E there is a block
sequence (zn) ⊆ BX lying in Int∆(A).
Then there is a block subspace X ⊆ E such that II has a strategy
in GX to ensure that the outcome lies in A.
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Adversarial Ramsey principles

Note that, as opposed to most other games between two players,
in both the Gowers game and the infinite asymptotic game, only
player II directly contributes to the outcome.

So are there similar games in which both players contribute?

A. M. Pe lczar and later V. Ferenczi considered such a game that
we will refine here.
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The AX -game

Let X ⊆ E and define the game AX as follows:

I n0 < x0,Z0 n1 < x1,Z1 . . .
II n0 y0 ∈ Z0, n1 y1 ∈ Z1, n2 . . .

where Z0,Z1, . . . ⊆ X and the vectors are subject to the condition
x0 < y0 < x1 < y1 < . . . .

The outcome is the infinite block sequence (x0, y0, x1, y1, . . .).

Note that here, I simultaneously acts a player I in GX and as player
II in FX and vice versa for II.

In fact, we can separate this into the games GX and FX , which
then have a joint outcome.
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The BX -game

In the game BX , we change the roles of I and II, while preserving
the order in which they are playing.

Thus, I is still the first player to play a vector, but is now the one
having to choose vectors in arbitrary subspaces, while II only has to
choose vectors beyond some integer.

I x0 ∈ Z0, n0 x1 ∈ Z1, n1 . . .
II Z0 n0 < y0,Z1 n1 < y1,Z2 . . .

Again, the outcome is the block sequence (x0, y0, x1, y1, . . .).
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The adversarial Ramsey property

Definition

A set A ⊆ E N is said to be adversarially Ramsey if for any X ⊆ E
there is some Y ⊆ X such that one of the following two conditions
hold:

II has a strategy in AY to play in A,

I has a strategy in BY to play in ∼A.

Notice again that this is stronger than just demanding that the
games AY and BY are determined.
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For either II will have a strategy in the game AY to play in A

I n0 < x0,Z0 n1 < x1,Z1 . . .
II n0 y0 ∈ Z0, n1 y1 ∈ Z1, n2 . . .

where I is playing the block subspaces.

Or I will have a strategy in the game BY to play in ∼A

I x0 ∈ Z0, n0 x1 ∈ Z1, n1 . . .
II Z0 n0 < y0,Z1 n1 < y1,Z2 . . .

where now II is playing the block subspaces.
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Adversarial Ramsey sets and determinacy

The connection between adversarial Ramsey sets and determinacy
is very tight. In fact, we have the following direct implication.

Proposition

Let Γ be a class of subsets of Polish spaces closed under
continuous preimages. Assume that any Γ set A ⊆ E N is
adversarially Ramsey. Then Γ games on N are determined.

The reason for this is that we can code integers by vectors in any
block subspace using, e.g., their first coordinate on the basis (en).

So, by the famous theorem of H. Friedman, any proof to the effect
that Borel sets are adversarially Ramsey must use ℵ1 iterations of
the power set operation.
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In particular, we cannot hope to adopt the techniques used to
prove that analytic sets are strategically Ramsey sets.

Also, the best we can hope for in ZFC is that Borel sets should be
adversarially Ramsey.

Though, the class of adversarially Ramsey sets is not formally
closed under complementation, if Γ is a point class of adversarially
Ramsey sets, which is closed under continuous preimages, any Γ̌
set is also adversarially Ramsey.
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The techniques introduced by A. M. Pe lczar and V. Ferenczi
essentially give that closed sets are adversarially Ramsey, but the
best current result is

Theorem

Π0
3 and Σ0

3 sets are adversarially Ramsey.

We do not know if Borel sets are adversarially Ramsey, and there
are concrete examples to show that D. A. Martin’s proof of Borel
determinacy at least is not easily adaptable to our setting.

On the other hand, determinacy of Π0
3 games can be fully proved

in second order number theory (this is due to Morton Davis), and
the techniques of the proof commute sufficiently with Ramsey
theory of block sequences to give the above result.
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Rumours have it that A. Montalban and R. Shore have shown that
∆0

4 determinacy for games on N cannot be proved in second order
arithmetic, while it can be proven for a difference of finitely many
Σ0

3 sets.

So are Borel sets adversarially Ramsey?
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