
CCC without random reals

Teruyuki Yorioka

Shizuoka Univeristy

June 18, 2009



A topic and goal of this talk

Notation. For a forcing notion P, let a(P) be the forcing notion consists

of finite antichains in P,

σ ≤a(P) τ : ⇐⇒ σ ⊇ τ.

Theorem (Zapletal). Let T be an Aronszajn tree, N a countable elemen-

tary submodel N of H(θ) which has the set {T}, σ ∈ a(T )∩N , and f ∈ ωω.

If f is not captured by any slalom in N , then there exists τ ≤a(T ) σ which

is (N, a(T ))-generic such that

τ °a(T )“ f is not captured by any slalom in N ”.

That is, a(T ) keeps add(N ) small (by the countable support iterations).

We argue that a(T ) doesn’t add random reals, so it keeps cov(N ) small.



Known examples of ccc forcing notions not adding random reals

There are many kinds of non-ccc forcing notions not adding random reals.

But it seems that we don’t know ccc forcing notions not adding random

reals so much.

The following forcing notions are such examples.

• σ-centered forcing notions

• Suslin algebras (ccc complete Boolean algebras not adding new reals)

• ccc forcing notions with the Sacks property

• ?Talagrand’s counterexample of the Control Measure Problem ?

Note that for a Suslin tree T , a(T ) doesn’t have the property K, and we

will see an example of the form a(P) which doesn’t add random reals and

not ωω-bounding.



Properties of Aronszajn trees

Proposition. For an ω1-tree T , T is Aronszajn iff

∀ I ∈ [T ]ℵ1

∃ s0, s1 ∈ T such that s0 ⊥T s1 and

both {u ∈ I; s0 ≤T u} and {u ∈ I; s1 ≤T u} are uncountable.

Proof. If T is not Aronszajn, i.e. there exists an uncountable branch I

through T , then for any s0 and s1 in T with s0 ⊥T s1, at least one of the

sets {u ∈ I; s0 ≤T u} and {u ∈ I; s1 ≤T u} have to be countable.

If there exists an uncountable branch I through T such that for any s0
and s1 in T with s0 ⊥T s1, at least one of the sets {u ∈ I; s0 ≤T u} and

{u ∈ I; s1 ≤T u} is countable, then the set

{t ∈ T ; {u ∈ I; t ≤T u} is uncountable}

forms an uncountable branch thorugh T , so T is not Aronszajn.



Properties of Aronszajn trees

Proposition. For an ω1-tree T , T is Aronszajn iff

∀ I ∈ [T ]ℵ1

∃ s0, s1 ∈ T such that s0 ⊥T s1 and

both {u ∈ I; s0 ≤T u} and {u ∈ I; s1 ≤T u} are uncountable.

Corollary. For an Aronszajn tree T ,

∀ I ∈ [T ]ℵ1 ∀ J ∈ [T ]ℵ1

∃ I ′ ∈ [I]ℵ1 ∃ J ′ ∈ [J]ℵ1 such that ∀ p ∈ I ′, ∀ q ∈ J ′, p ⊥T q.

Proof. For I and J in [T ]ℵ1, there are s0, s1, t0 and t1 in T such that

s0 ⊥T s1, t0 ⊥T t1 and for each i ∈ {0,1}, both {u ∈ I; si ≤T u} and

{u ∈ J; ti ≤T u} are uncountable.

Then there are i ∈ {0,1} and j ∈ {0,1} such that si ⊥T tj, and then let

I ′ := {u ∈ I; si ≤T u} and J ′ := {u ∈ J; ti ≤T u} .



Properties of Aronszajn trees

Definition (Y.).A forcing notion P has the anti-rectangle refining property

(arec) if P is uncountable and

∀ I ∈ [P]ℵ1 ∀ J ∈ [P]ℵ1

∃ I ′ ∈ [I]ℵ1 ∃ J ′ ∈ [J]ℵ1 such that ∀ p ∈ I ′, ∀ q ∈ J ′, p ⊥P q.

Proposition. If P has the arec, then

∀ I ∈ [a(P)]ℵ1 ∀ J ∈ [a(P)]ℵ1, if I ∪ J forms a ∆-system,

then ∃ I ′ ∈ [I]ℵ1 ∃ J ′ ∈ [J]ℵ1 such that ∀σ ∈ I ′ ∀ τ ∈ J ′, σ 6⊥a(P) τ .

Proof. Let I and J in [a(P)]ℵ1 be such that I ∪ J forms a ∆-system with

root ν. By shrinking I and J if necessary, we may assume that there are

m, n ∈ ω such that for every σ ∈ I and τ ∈ J, |σ \ ν| = m and |τ \ ν| = n.

Using the arec m · n many times, we can find I ′ ∈ [I]ℵ1 and J ′ ∈ [J]ℵ1 such

that for every σ ∈ I ′, τ ∈ J ′, i ∈ m and j ∈ n,

(i-th member of σ \ ν) ⊥P (j-th member of τ \ ν).



Properties of Aronszajn trees

Proposition. For an ω1-tree T , T is Aronszajn iff

∀ I ∈ [T ]ℵ1

∃ s0, s1 ∈ T such that s0 ⊥T s1 and

both {u ∈ I; s0 ≤T u} and {u ∈ I; s1 ≤T u} are uncountable.

Corollary. For an Aronszajn tree T ,

∀ countable N ≺ H(ℵ2) with T ∈ N ∀I ∈ [T ]ℵ1 ∩ N ∀p ∈ T \ N

∃I ′ ∈ [I]ℵ1 ∩ N such that ∀q ∈ I ′, p ⊥T q.

Definition (Y.). A forcing notion P has the anti-R1,ℵ1
(the anti-R) if

P is uncountable and

∀ countable N ≺ H(ℵ2) with P ∈ N ∀p ∈ P \ N ∀I ∈ [P]ℵ1 ∩ N

∃I ′ ∈ [I]ℵ1 ∩ N such that ∀q ∈ I ′, p ⊥P q.

Proposition. If P has the anti-R, then

∀ countable N ≺ H(ℵ2) with P ∈ N ∀σ ∈ a(P) \ N

∀I ∈ [a(P)]ℵ1 ∩ N which forms a ∆-system with root σ ∩ N

∃I ′ ∈ [I]ℵ1 ∩ N such that ∀τ ∈ I ′, σ 6⊥a(P) τ .



Motivations of two properties

Definition (Larson–Todorčević). A partition K0 ∪ K1 on [ω1]
2 has the

rectangle refining property if

∀ I ∈ [ω1]
ℵ1 ∀ J ∈ [ω1]

ℵ1

∃ I ′ ∈ [I]ℵ1 ∃ J ′ ∈ [J]ℵ1 such that ∀α ∈ I ′ ∀β ∈ J ′ if α < β,

then {α, β} ∈ K0.

Theorem (Y.). TFAE:

• Every partition K0 ∪ K1 on [ω1]
2 with the rectangle refining property

has an uncountable K0-homogeneous subset of ω1.

• For every forcing notion P with the arec, a(P) has the property K.

This partially answers a question of Todorčević’s fragments of MAℵ1
:

If every ccc partition on [ω1]
2 has an uncountable homogeneous sets, then

every ccc forcing notion has the property K?



Motivations of two properties

Theorem (Y.). It is consistent that there exists a non-special Aronszajn

tree and for every P with the anti-R, a(P) has precaliber ℵ1, i.e.

∀I ∈ [a(P)]ℵ1

∃ I ′ ∈ [I]ℵ1 with the finite compatibility property, i.e.

any finite subsets of I ′ has a common extension.

This partially answers a question of Todorčević’s fragments of MAℵ1
:

MAℵ1
// · · · //Kn+1 //Kn

?
tt

// · · · //K2

?
vv

where a forcing notion Q has the property Kn if

∀ I ∈ [Q]ℵ1

∃I ′ ∈ [I]ℵ1 n-linked i.e.

any subset of I ′ of size n has a common extension in Q,

and Kn says that every ccc forcing notion has the property Kn.



Motivations of two properties

Theorem (Y.). It is consistent that there exists a non-special Aronszajn

tree and for every P with the anti-R, a(P) has precaliber ℵ1, i.e.

∀I ∈ [a(P)]ℵ1

∃ I ′ ∈ [I]ℵ1 with the finite compatibility property, i.e.

any finite subsets of I ′ has a common extension.

Theorem (Todorčević–Veličković). MAℵ1
is equivalent to the statement

that every ccc forcing notion has precaliber ℵ1.



Examples: (ω1, ω1)-gaps

Definition. An (ω1, ω1)-pregap is a sequence 〈aα, bα;α ∈ ω1〉 of infinite sets

of natural numbers such that

• ∀α < β, aα ⊆∗ aβ and bα ⊆∗ bβ, and both aα ∩ bβ and aβ ∩ bα are finite,

• for every α ∈ ω1, aα ∩ bα = ∅,

• it is closed under finite modifications, that is,

∀α ∈ ω1 ∀ 〈c, d〉, if c \ n = aα \ n and d \ n = bα \ n for some n ∈ ω,

then ∃β such that 〈c, d〉 =
〈
aβ, bβ

〉
,

and an (ω1, ω1)-pregap is called a gap if there are no c ⊆ ω such that

∀α ∈ ω1, aα ⊆∗ c and bα ∩ c finite.

Definition. For an (ω1, ω1)-pregap (A,B) = 〈aα, bα;α ∈ ω1〉, the forcing

notion S(S,B) :=
(
ω1,≤S(A,B)

)
is defined such that

α ≤S(A,B) β : ⇐⇒ aβ ⊆ aα and bβ ⊆ bα.



Examples: (ω1, ω1)-gaps

Definition. For an (ω1, ω1)-pregap (A,B) = 〈aα, bα;α ∈ ω1〉, the forcing

notion S(S,B) :=
(
ω1,≤S(A,B)

)
is defined such that

α ≤S(A,B) β : ⇐⇒ aβ ⊆ aα and bβ ⊆ bα.

Proposition (Y.). For an (ω1, ω1)-pregap (A,B), (A,B) is a gap iff S(A,B)

has the arec iff S(A,B) has the anti-R.

We note that a(S(A,B)) is a forcing notion adds an uncountable subset I

of ω1 such that for every α and β in I with α 6= β,(
aα ∩ bβ

)
∪

(
aβ ∩ bα

)
6= ∅,

i.e. a(S(A,B)) forces (A,B) to be indestructible.



Example: Unbounded families

Theorem (Todorčević). For an <∗-increasing sequence F = 〈fα;α ∈ ω1〉
of members of ω↑ω, if F is unbounded, then the following partition K0∪K1

on [ω1]
2 is ccc

{α, β} ∈ K0 : ⇐⇒ α < β and ∃n ∈ ω such that fα(n) > fβ(n)

Therefore K2 (for partitions) implies b > ℵ1.

Theorem (Y.). For an <∗-increasing sequence F = 〈fα;α ∈ ω1〉 of mem-

bers of ω↑ω, define the forcing notion (ordered by superset)

P(F ) :=
{
σ ∈ [ω1]

<ℵ0 ; ∀α ∈ σ ∀n ∈ ω

max
{
fξ(n); ξ ∈ σ ∩ α

}
< fα(n) or fα(n) ∈

{
fξ(n); ξ ∈ σ ∩ α

} }
.

Then F is unbounded, then P(F ) has the arec and the anti-R and ccc.

Therefore, e.g. K2(rec) implies b > ℵ1.



Example: Unbounded families

Theorem (Todorčević). For an <∗-increasing sequence F = 〈fα;α ∈ ω1〉
of members of ω↑ω, if F is unbounded, then the following partition K0∪K1

on [ω1]
2 is ccc

{α, β} ∈ K0 : ⇐⇒ α < β and ∃n ∈ ω such that fα(n) > fβ(n)

Therefore K2 (for partitions) implies b > ℵ1.

Theorem (Y.). For an <∗-increasing sequence F = 〈fα;α ∈ ω1〉 of mem-

bers of ω↑ω, define the forcing notion (ordered by superset)

P(F ) :=
{
σ ∈ [ω1]

<ℵ0 ; ∀α ∈ σ ∀n ∈ ω

max
{
fξ(n); ξ ∈ σ ∩ α

}
< fα(n) or fα(n) ∈

{
fξ(n); ξ ∈ σ ∩ α

} }
.

Then F is unbounded, then P(F ) has the arec and the anti-R and ccc.

Therefore, e.g. K2(rec) implies b > ℵ1.

Question. What is any other example of forcing notions with the arec or

the anti-R? And are the arec and the anti-R different?



Theorems

Theorem (Y.). Let P be a forcing notion with the arec or the anti-R,

N a countable elementary submodel N of H(θ) which has the set {P},
σ ∈ a(P) ∩ N , and f ∈ ωω.

If f is not captured by any slalom in N , then there exists τ ≤a(P) σ which

is (N, a(P))-generic such that

τ °a(P)“ f is not captured by any slalom in N ”.

That is, a(P) keeps add(N ) small (by the countable support iterations).

Theorem (Y.). Let P be a forcing notion with the arec or the anti-R.

Then a(P) doesn’t add random reals.



A proof that a(P) adds no random reals

Let P be a forcing notion 〈ω1,≤P〉 with the arec or the anti-R, ṙ be an

a(P)-name for a real in 2ω, and σ ∈ a(P).

Let N be a countable elementary submodel of H(ℵ2) with {P, ṙ, σ, ω1} ∈ N ,

and 〈Un;n ∈ ω〉 a sequence of open subsets of 2ω such that for each n ∈ ω,

the Lebesgue measure of Un is less than 2−n and

2ω ∩ N ⊆
⋂

n∈ω

⋃
m≥n

Um.

We show that

σ 6°a(P)“ ṙ 6∈
⋂

n∈ω

⋃
m≥n

Um ”.



A proof that a(P) adds no random reals

P = 〈ω1,≤P〉, ṙ : a(P)-name, σ ∈ a(P), {P, ṙ, σ, ω1} ∈ N , 2ω∩N ⊆
⋂

n∈ω
⋃

m≥n Um.



A proof that a(P) adds no random reals

P = 〈ω1,≤P〉, ṙ : a(P)-name, σ ∈ a(P), {P, ṙ, σ, ω1} ∈ N , 2ω∩N ⊆
⋂

n∈ω
⋃

m≥n Um.

Suppose that

σ °a(P)“ ṙ 6∈
⋂

n∈ω

⋃
m≥n

Um ”,

and take τ ≤a(P) σ and n ∈ ω such that

τ °a(P)“ ∀m ≥ n (ṙ 6∈ Um) ”.

Then, n ∈ N and τ ∩ N ∈ N , and maybe τ 6∈ N . So by strengthning τ if

necessary, we may assume that τ 6∈ N .

Let for each k ∈ N ,

Sk :=
{
s ∈ 2k; ∃α ∈ ω1 such that ∀µ ∈ a(P) with µ ⊇ τ ∩ N,

if µ °a(P)“ ṙ¹k 6= s ”, then min(µ \ (τ ∩ N)) ≤ α
}
.

Note that 〈Sk; k ∈ ω〉 ∈ N .



A proof that a(P) adds no random reals

P = 〈ω1,≤P〉, ṙ : a(P)-name, σ ∈ a(P), {P, ṙ, σ, ω1} ∈ N , 2ω∩N ⊆
⋂

n∈ω
⋃

m≥n Um.

τ ≤a(P) σ, τ 6∈ N , τ °a(P)“ ∀m ≥ n (ṙ 6∈ Um) ”.

Sk :=
{
s ∈ 2k; ∃α ∈ ω1 such that ∀µ ∈ a(P) with µ ⊇ τ ∩ N,

if µ °a(P)“ ṙ¹k 6= s ”, then min(µ \ (τ ∩ N)) ≤ α
}
.



A proof that a(P) adds no random reals

P = 〈ω1,≤P〉, ṙ : a(P)-name, σ ∈ a(P), {P, ṙ, σ, ω1} ∈ N , 2ω∩N ⊆
⋂

n∈ω
⋃

m≥n Um.

τ ≤a(P) σ, τ 6∈ N , τ °a(P)“ ∀m ≥ n (ṙ 6∈ Um) ”.

Sk :=
{
s ∈ 2k; ∃α ∈ ω1 such that ∀µ ∈ a(P) with µ ⊇ τ ∩ N,

if µ °a(P)“ ṙ¹k 6= s ”, then min(µ \ (τ ∩ N)) ≤ α
}
.

Claim. For every k ∈ ω, Sk is not empty.

Proof of Claim. If Sk is empty, i.e.

∀s ∈ 2k ∀α∃µ ∈ a(P)
(
µ ⊇ τ ∩N &µ °a(P)“ ṙ¹k 6= s ”& min(µ\ (τ ∩N)) > α

)
,

then construct uncountable subsets
〈
Is; s ∈ 2k

〉
of a(P) in N such that

• the set
⋃

s∈2k Is forms a ∆-system with root τ ∩ N , and

• for any s ∈ 2k and µ ∈ Is, µ °a(P)“ ṙ¹k 6= s ”.

By the property of P, we can find
〈
µs; s ∈ 2k

〉
∈

∏
s∈2k Is such that

⋃
s∈2k µs ∈

a(P). And then ⋃
s∈2k

µs °a(P)“ ṙ¹k 6∈ 2k ”,

which is a contradiction. a



Remember that

Proposition. If P has the arec, then

∀ I ∈ [a(P)]ℵ1 ∀ J ∈ [a(P)]ℵ1, if I ∪ J forms a ∆-system,

then ∃ I ′ ∈ [I]ℵ1 ∃ J ′ ∈ [J]ℵ1 such that ∀σ ∈ I ′ ∀ τ ∈ J ′, σ 6⊥a(P) τ .

Proposition. If P has the anti-R, then

∀ countable N ≺ H(ℵ2) with P ∈ N ∀σ ∈ a(P) \ N

∀I ∈ [a(P)]ℵ1 ∩ N which forms a ∆-system with root σ ∩ N

∃I ′ ∈ [I]ℵ1 ∩ N such that ∀τ ∈ I ′, σ 6⊥a(P) τ .



A proof that a(P) adds no random reals

P = 〈ω1,≤P〉, ṙ : a(P)-name, σ ∈ a(P), {P, ṙ, σ, ω1} ∈ N , 2ω∩N ⊆
⋂

n∈ω
⋃

m≥n Um.

τ ≤a(P) σ, τ 6∈ N , τ °a(P)“ ∀m ≥ n (ṙ 6∈ Um) ”.

Sk :=
{
s ∈ 2k; ∃α ∈ ω1 such that ∀µ ∈ a(P) with µ ⊇ τ ∩ N,

if µ °a(P)“ ṙ¹k 6= s ”, then min(µ \ (τ ∩ N)) ≤ α
}
.

So
⋃

k∈ω Sk forms an infinite subtree of 2ω in N .

Take u ∈ 2ω ∩ N such that for every k ∈ ω, u¹k ∈ Sk, and

let m ≥ n and k ≥ m such that [u¹k] := {v ∈ 2ω;u¹k ⊆ v} ⊆ Um.

Then there exists α ∈ ω1 ∩ N such that for every µ ∈ a(P) with µ ⊇ τ ∩ N,

if µ °a(P)“ ṙ¹k 6= u¹k ”, then min(µ \ (τ ∩ N)) ≤ α.

Since min(τ \ (τ ∩ N)) ≥ ω1 ∩ N > α, τ 6°a(P)“ ṙ¹k 6= u¹k ”.

Thus there is ν ≤a(P) τ such that ν °a(P)“ ṙ¹k = u¹k ”.

Then since ν °a(P)“ [ṙ¹k] = [u¹k] ⊆ Um ”, it follows that ν °a(P)“ ṙ ∈ Um ”,

which is a contradiction. ¤


