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A topic and goal of this talk

Notation. For a forcing notion P, let a(IP) be the forcing notion consists
of finite antichains in P,

O‘§a<IP>)7‘I<:,> oT.
Theorem (Zapletal). Let T' be an Aronszajn tree, N a countable elemen-
tary submodel N of H(0) which has the set {T}, c € a(T)NN, and f € w¥.

If f is not captured by any slalom in N, then there exists T <,y o which
is (N,a(T))-generic such that

T lFgq(ry “ f is not captured by any slalom in N .

That is, a(T) keeps add(N') small (by the countable support iterations).

We argue that a(7T) doesn’'t add random reals, so it keeps cov(N) small.



Known examples of ccc forcing notions not adding random reals

There are many kinds of non-ccc forcing notions not adding random reals.
But it seems that we don’t know ccc forcing notions not adding random
reals so much.

T he following forcing notions are such examples.

e o-centered forcing notions
e Suslin algebras (ccc complete Boolean algebras not adding new reals)
e ccc forcing notions with the Sacks property

e 7 Talagrand’s counterexample of the Control Measure Problem ?

Note that for a Suslin tree T, a(T) doesn’t have the property K, and we
will see an example of the form a(P) which doesn’'t add random reals and
not w*“-bounding.



Properties of Aronszajn trees

Proposition. For an wq-tree T', T' is Aronszajn iff

VI e [T]™
dsp, s1 € 1T such that sg L1 s1 and
both {u € I;sqg <ru} and {u € I, s1 < u} are uncountable.

Proof. If T is not Aronszajn, i.e. there exists an uncountable branch I
through T, then for any sg and s in T with sg L7 s1, at least one of the
sets {u € I; sog <pu} and {u € I;s1 <7 u} have to be countable.

If there exists an uncountable branch I through T such that for any sg
and sq1 in T with sg L1 s1, at least one of the sets {u € I;sqg <7 u} and
{u € I;s1 <pu} is countable, then the set

{teT;{uel;t<pu} is uncountable}

forms an uncountable branch thorugh 7', so T is not Aronszajn. [ ]



Properties of Aronszajn trees

Proposition. For an wq-tree T', T' is Aronszajn iff

VI e [T]™
dsp, s1 € 1T such that sg L1 s1 and
both {u € I;sqg <ru} and {u € I, s1 < u} are uncountable.
Corollary. For an Aronszajn tree T,

VIe TN VJ e [T]™
3 e [I™1 3T € [JINr such thatVpel ,VYqe J, pLlypq.

Proof. For I and J in [T]®1, there are sg, s1, tg and t; in T such that
so L1 s1, to Lp t1 and for each ¢ € {0,1}, both {uel;s; <pu} and
{u € J;t; < u} are uncountable.

Then there are i € {0,1} and j € {0,1} such that s; Ly t;, and then let

I''={ucl;s;<pu} and J :={uec J;t; <pu}.



Properties of Aronszajn trees

Definition (Y.). A forcing notion P has the anti-rectangle refining property
(arec) if P is uncountable and

VI e [PI¥1 vV J e [P
31 e [I™1 3T € [JI®r such thatVpel,Yqe J, plpqg.
Proposition. If P has the arec, then

VI E [aP)]®1 VJ e [a(P)N1, if TUJ forms a A-system,
then 31 € [II™1 3J' € [JI®™ such thatVo el VYre J, o Loy T -

Proof. Let I and J in [a(P)]N1 be such that I UJ forms a A-system with
root v. By shrinking I and J if necessary, we may assume that there are
m,n € w such that for every c € I and 7 € J, |o\v| =m and |7\ v| = n.

Using the arec m-n many times, we can find I’ € [I]®1 and J’ € [J]®1 such
that for every o€ I’, T€ J’, i €m and j € n,

(i-th member of o\ v) Lp (j-th member of 7\ v).



Properties of Aronszajn trees

Proposition. For an wq-tree T', T' is Aronszajn iff

VI e [T]™
dsp, s1 € 1T such that sg L1 s1 and
both {u € I;sqg <ru} and {u € I, s1 < u} are uncountable.

Corollary. For an Aronszajn tree T,

V countable N < H(Ro) withT € N YI € [T]"*NN VYpe T\ N
31’ € [I1"1 NN such thatVge I, p Ly q.

Definition (Y.). A forcing notion P has the anti-Ry x, (the anti-R) if
P is uncountable and

V countable N < H(Xp) withPe N VYpeP\ N VIe[P[®1nNN
3I' € [II"1 N N such thatVYqe I, p 1pqg.

Proposition. If P has the anti-R, then

V countable N < H(N5) with P € N Vo € a(P) \ N
VI € [a(P)]® NN which forms a A-system with root o N N
I € [II" N N such that VT e I',0 L,y T



Motivations of two properties

Definition (Larson—Todorcevi¢). A partition Ko U K1 on [w1]? has the
rectangle refining property if

VI e [w]N VJ e [w]N
3I' € [I1M 3J' € [JIN1 such thatVa el VB e J ifa<p,
then {a, 8} € Kp.
Theorem (VY.). TFAE:

e Every partition Ko U K1 on [w1]? with the rectangle refining property
has an uncountable Kg-homogeneous subset of wy.

e For every forcing notion P with the arec, a(IP) has the property K.

This partially answers a question of TodorcCevic¢'s fragments of MAle

If every ccc partition on [w1]2 has an uncountable homogeneous sets, then
every ccc forcing notion has the property K?



Motivations of two properties

Theorem (VY.). It is consistent that there exists a non-special Aronszajn
tree and for every P with the anti-R, a(IP) has precaliber N1, i.e.

VI € [a(P)]™M
3I' € [I1N1 with the finite compatibility property, i.e.
any finite subsets of I’ has a common extension.

T his partially answers a question of TodorCeviC's fragments of MANl:

//,_Z\\

MAN1—> _>]Cn_|_1 Kn, v Ko

where a forcing notion Q has the property K, if

VI e [Q]™
31’ € [I1%1 n-linked i.e.
any subset of I’ of size n has a common extension in Q,

and IC,, says that every ccc forcing notion has the property K.



Motivations of two properties

Theorem (VY.). It is consistent that there exists a non-special Aronszajn
tree and for every P with the anti-R, a(IP) has precaliber N1, i.e.

VI € [a(P)]N
3I' € [I1N1 with the finite compatibility property, i.e.
any finite subsets of I’ has a common extension.

Theorem (TodorCevic-VelickoviC). MAy, is equivalent to the statement
that every ccc forcing notion has precaliber N1.



Examples: (w1,w1)-gaps

Definition. An (w1,w1)-pregap is a sequence {aq, ba; @ € w1) Of infinite sets
of natural numbers such that

e Voo < 3, aq C* ag and bg C* bg, and both aq Nbg and agNbq are finite,
e for every o € wi, aq Nba = 0,

e it is closed under finite modifications, that is,
Va € wy Ve, d), ifc\n =aqg\n and d\ n = by \n for somen € w,
then 38 such that {c,d) = (ag, bg),
and an (w1,w1)-pregap is called a gap if there are no ¢ C w such that

Vo € wi,aaq CF ¢ and bq N c finite.

Definition. For an (wi,wi)-pregap (A,B) = (aa,ba; @ € w1), the forcing
notion S(S,B) = (wl, SS(A,B)) is defined such that

O‘SS(A,B)ﬁ:<:> ag C aq and bg C ba.



Examples: (w1,w1)-gaps

Definition. For an (wi,wi)-pregap (A,B) = (aa,ba; o € w1), the forcing
notion §(S,B) := (wl, SS(A,B)) is defined such that

aSS(A,B)ﬁ:<:> ag C aq and bg C ba.

Proposition (VY.). For an (w1,w1)-pregap (A, B), (A,B) is a gap iff S(A, B)
has the arec iff S(A,B) has the anti-R.

We note that a(S(A, B)) is a forcing notion adds an uncountable subset I
of wy such that for every a and g in I with a # 3,

(Qa M bﬁ) U (aﬁ M ba) # @,
i.e. a(S(A,B)) forces (A, B) to be indestructible.



Example: Unbounded families

Theorem (TodorCevi€). For an <*-increasing sequence F = (fq;a € wq)

of members of w!¥, if F is unbounded, then the following partition KqU K1
on [w1]? is ccc

{a, 8} € Ko<= a < B and dn € w such that fo(n) > fz(n)
Therefore Ko (for partitions) implies b > .

Theorem (Y.). For an <*-increasing sequence F = (fq,a € w1) of mem-
bers of wTW, define the forcing notion (ordered by superset)

P(F) = {a € [(,ul]<NO VYa€EoVn Ew

max {fe(n); € € o Na} < fa(n) or fa(n) € {fe(n);i¢ € o na} }

Then F is unbounded, then P(F') has the arec and the anti-R and ccc.
Therefore, e.g. Ko(rec) implies b > Nj.



Example: Unbounded families

Theorem (TodorCevi€). For an <*-increasing sequence F = (fq;a € wq)
of members of w!¥, if F is unbounded, then the following partition KqU K1
on [w1]? is ccc

{a,8} € Ko : <= a < B and 3n € w such that fo(n) > fg(n)

Therefore Ko (for partitions) implies b > .

Theorem (Y.). For an <*-increasing sequence F = (fq,a € w1) of mem-
bers of wTw, define the forcing notion (ordered by superset)

P(F) = {o € [(,ul]<NO VYa€EoVn Ew

max {fe(n); € € o Na} < fa(n) or fa(n) € {fe(n);i¢ € o na} }

Then F is unbounded, then P(F') has the arec and the anti-R and ccc.
Therefore, e.g. Ko(rec) implies b > Nj.

Question. What is any other example of forcing notions with the arec or
the anti-R7? And are the arec and the anti-R different?



T heorems

Theorem (Y.). Let P be a forcing notion with the arec or the anti-R,
N a countable elementary submodel N of H(6#) which has the set {P},
ceca(P)NN, and f € w¥.

If f is not captured by any slalom in N, then there exists T ga(]p) o Which
is (N, a(IP))-generic such that

T IFG(P) “ f is not captured by any slalom in N .

That is, a(lP?) keeps add(N) small (by the countable support iterations).

Theorem (Y.). Let P be a forcing notion with the arec or the anti-R.
Then a(P) doesn’t add random reals.



A proof that a(IP) adds no random reals

Let P be a forcing notion (w1, <p) with the arec or the anti-R, » be an
a(lP)-name for a real in 2%, and o € a(P).

Let N be a countable elementary submodel of H(Xp) with {P,r,0,w1} € N,
and (Up; n € w) a sequence of open subsets of 2 such that for each n € w,

the Lebesgue measure of U, is less than 27" and

2*NNC () U Unm.

new m>n

We show that
O'U?‘a(P) “or Q/ m U Um "

new m>n



A proof that a(IP) adds no random reals

P = (w1, <p), 7: a(P)-name, o € a(P), {P,7,0,w1} € N, 2NN C Npew Um>n Um.




A proof that a(IP) adds no random reals

P = (w1, <p), 7: a(P)-name, o € a(P), {P,7,0,w1} € N, 2NN C Npew Um>n Um.

Suppose that
o by 7 & N U Un",

ncw m>n

and take 7 <,p) 0 and n € w such that

T II—a(IP’) “VYm Z n (’I“ g Um) ",

Then, n € N and TN N € N, and maybe m € N. So by strengthning 7 if
necessary, we may assume that = € N.

Let for each kK &€ N,

Sp 1= {s c 2’“; Ja € wy such that Vu € a(P) with u O 7N N,
if p by “ 7l 7 s ", then min(p\ (rNN)) < a}.
Note that (S.;k € w) € N.



A proof that a(IP) adds no random reals

P = (w1, <p), 7: a(P)-name, o € a(P), {P,7,0,w1} € N, 2NN C Npecw Um>n Un.
T<aqp) o, TEN, Tlkympy “ Vm>n(r€Umnm) " .
Sy 1= {s € 2%: 3 € wy such that Vu € a(P) with 2 7N N,

if plbgpy Pl # s, then min(p\ (rNN)) < oz}.




A proof that a(IP) adds no random reals

P = (w1, <p), 7: a(P)-name, o € a(P), {P,7,0,w1} € N, 2NN C Npecw Um>n Un.
T<aqp) o, TEN, Tlkympy “ Vm>n(r€Umnm) " .
Sy 1= {s € 2%: 3 € wy such that Vu € a(P) with 2 7N N,

if plbgpy Pl # s, then min(p\ (rNN)) < oz}.

Claim. For every k € w, Si is not empty.

Proof of Claim. If S is empty, i.e.
Vs € 28Vadu € a(P)(u DTOAN&plbypy “ ik #s" & min(u\ (tNN)) > oz),
then construct uncountable subsets <Is;s € 2’“> of a(P) in N such that

e the set US@k Is forms a A-system with root 7N N, and

o for any se2f and pels, plbypy “ rlk#s".

By the property of P, we can find <,us; s € 2k> € [l cok Is such that U, ok ps €
a(lP). And then

U nslha@py 71k ¢ ok
sc2k

which is a contradiction. —



Remember that

Proposition. If P has the arec, then

VI e [a(P)®1 VJ e [a(P)®, ifTUJ forms a A-system,
then 31" € [I1™ 3J' € [JINt such thatVoel'VreJ, o Lypy T .

Proposition. If P has the anti-R, then

V countable N < H(Ny) with P € N Vo € a(P) \ N
VI € [a(P)]N1 N N which forms a A-system with root c N N
I € [II" N N such that VT € I',0 L,y T



A proof that a(IP) adds no random reals

P = (w1, <p), 7: a(P)-name, o € a(P), {P,7,0,w1} € N, 2NN C Npecw Um>n Un.
T<aqp) o, TEN, Tlkympy “ Vm>n(r€Umnm) " .
Sy 1= {s € 2%: 3 € wy such that Vu € a(P) with 2 7N N,

if plbgpy Pl # s, then min(p\ (rNN)) < oz}.

SO Ugew Sk forms an infinite subtree of 2% in .

Take uw € 2 N N such that for every k € w, ulk € Si, and
let m > n and k > m such that [u[k] ;= {v € 2¥; ulk C v} C Upn.

Then there exists a € wy N N such that for every u € a(PP) with D 7N N,
if plbgpy " 7k #ulk ", then min(u \ (N N)) < a.

Since min(r\ (tNN)) Zwi NN >a, Tl py " 7k #ulk".

Thus there is v <, py 7 such that v Ik, py “ 7[k = ulk ".

Then since v Ik, py * [r[k] = [ulk] C Un ", it follows that v Ik, py “ 7 € Un ",
which is a contradiction. L]



