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Abstract

A system of foundations of infinitesimal calculus will be discussed.
The system is based on two class-size models, including

1 the surreal numbers , and
2 the K – Shelah set-size-saturated limit ultrapower model.

Some historical remarks will be made, and a few related problems
will be discussed, too.
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Extending the real line

Back

Kanovei (Moscow) Foundations of infinitesimal calculus sdf60 2013 4 / 35



Extending the real line

The idea to extend the real line R by new elements, called initially

indivisible,

later

infinitesimal, and

infinite (or infinitely large),

emerged in the early centuries of modern mathematics in connection
with the initial development of Calculus.
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Nonarchimedean extensions

Definition
A nonarchimedean extension Rext of the real line is

a real-closed ordered field ( rcof , for brevity)

which properly extends the real number field R.

Such a nonarchimedean extension Rext by necessity contains
all usual reals: R $ Rext , along with:

infinitesimals: those x ∈ Rext satisfying 0 < |x | < 1
n for all n ∈ N;

infinitely large elements: x ∈ Rext satisf. |x | > n for all n ∈ N;
and various elements of mixed character, e. g., those of the form
x + α, where x ∈ R and α is infinitesimal.
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The problem

Problem of foundations of infinitesimal calculus
Define an extended real line Rext satisfying

1 technical conditions which allow consistent
“full-scale” treatment of infinitesimals,

and Back

2 foundational conditions of feasibility, plausibility, etc .

Different solutions have been proposed, and among them

the surreal numbers of Conway – Alling.
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Section 2

Section 2.
The Surreal field

Back
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Characterization

Definition
Mathematically, the surreal field is:

the unique modulo isomorphism

Definition (set-size density)

A total order (or any ordered structure) L is set-size-dense if for
any its subsets X ,Y ⊆ L (of any cardinality, but sets): Back
if X < Y then there is an element z such that X < z < Y .

Remark
Such an order has to be a proper class (not a set !)
Indeed if L is a set then taking X = L and Y = ∅ leads to an
element z ∈ L with X < z , which is a contradiction.
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On the set-size density

Remark
In a more traditional notation, the set-size density is equivalent to

being of the order type ηα for each ordinal α.

Definition (Hausdorff 1907, 1914)

A total order (or any ordered structure) L is of type ηα if for any
subsets X ,Y ⊆ L of cardinality card(X ∪ Y ) < ℵα : Sat Back

if X < Y then there is an element z such that X < z < Y .

Digression: Hausdorff
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Surreals: existence

Theorem (the existence thm, Conway 1976, Alling 1985)
There is a set-size-dense rcoF F∞ .

Proof (Conway)
Consecutive filling in of all “gaps” X < Y , with a suitable (very
complex, dosens of pages) definition of the order and the field
operations, by transfinite induction.

Proof (Alling)
A far reaching generalization of the Levi–Civita field construction, on
the base of Hausdorff’s construction of dense ordered sets.

Back
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Surreals: conclusion

F∞ is the surreal Field

Conclusion
The extended rcoF Rext = F∞ is:

rather simply and straightforwardly defined

set-size-dense rcoF ;

unique , as the only set-size-dense rcoF up to isomorphism;

“smooth” , in the sense that the underlying domain consists of
sequences of ordinals — at least in the Alling version;

computable , in the sense that the field operations in F∞ are
directly computable — at least in the Alling version.
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Surreals: conclusion

This likely solves the Problem of foundations of infinitesimal
calculus in Part 2 (foundational conditions) but not yet in Part 1
(technical conditions).

Technical shortcomings of surreals

Back
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Section 3

Digression:
Hausdorff’s studies on pantachies
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Pantachies

Definition ( Hausdorff 1907, 1909 )
A pantachy is any maximal totally ordered subset L of a given
partially ordered set P , e. g., P = 〈Rω ;≺〉 , where, for x , y ∈ Rω ,

x ≺ y iff x(n) < y(n) for all but finite n .

Remark
Any pantachy in P = 〈Rω ;≺〉 is a set of type η1 .

Back
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Two pantachy existence theorems

Theorem (Hausdorff 1909)

There is a pantachy in 〈Rω ;≺〉 with an (ω1, ω1)-gap .

Theorem (Hausdorff 1909)

There is a pantachy in 〈Rω ;≺〉 which is a rcof in the sense of the
eventual coordinate-wise operations — that is,

x + y = z iff x(n) + y(n) = z(n) for all but finite n,
and the same for the product.

Any such a pantachy is a rcof of type η1 .
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The problem of gapless pantachies

Problem (Hausdorff 1907)

Is there a pantachy (in 〈Rω ;≺〉), containing no (ω1, ω1)-gaps ?

The problem is still open, and, it looks like it is

the oldest concrete open problem in set theory.

Gödel and Solovay discussed almost the same problem in 1970s.
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The problem of effective existence of pantachies

Problem (Hausdorff 1907)
1 Is the pantachy existence provable not assuming AC ?
2 Even assuming AC, is there an individual, effectively defined

example of a pantachy ?

Solution (K & Lyubetsky 2012)

In the negative (both parts), whenever P is a Borel partial order,
in which every countable subset has an upper bound .

This result, by no means surprising, is nevertheless based on some
pretty nontrivial arguments, including methods related to Stern’s
absoluteness theorem. But no algebraic structure on P is assumed.

Back to surreals Back
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Section 4.
Technical shortcomings of the surreal
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Shortcomings of the surreal Field

Observation
There is no clear way to naturally define sur-integers ,
most of analytic functions (beginning with ex ), accordingly,
sur-sequences of surreals , sur-sets of surreals , etc , etc , in F∞
— so that they satisfy the same internal laws and principles as
their counterparts defined over the reals R.

Example
The own system of sur-integers in F∞ defined by Conway 1976 has
the property that

√
2 is sur-rational, which makes little sense.

This crucially limits the role of surreals F∞ as a foundational system,
in the spirit of the Problem of foundations of infinitesimal calculus.
Back
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The problem of surreals

Problem (upgrade of surreals)
Define a compatible Universe over the surreals F∞ ,
sufficient to technically support “full-scale” treatment of
infinitesimals.

Back

To define such a Universe, we employ methods of
nonstandard analysis .
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Section 5

Section 5.
Nonstandard analysis
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Nonstandard analysis

Nonstandard analysis (Robinson) studies elementary extensions ∗V of
different structures over the reals R, in particular, elementary
extensions ∗V of Universes V over R.

1 Such an extension ∗V accordingly contains an extension ∗R of R.
2 Any such an extension ∗R is called hyperreals.
3 Each ∗R is a rcof (or rcoF) and (except for trivialities) a

nonarchimedean one.
4 ∗V is a compatible Universe over ∗R.
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Set-size-dense nonstandard extensions

Elementary extensions ∗V of the ZFC set universe V can be
obtained as ultrapowers or limit ultrapowers of V.

Theorem (K & Shelah 2004)
There exists a limit ultrapower ∗V of V such that

1 the corresponding hyperreal line ∗R ∈ ∗V is set-size-dense,
2 ∗V is an elementary extension of the universe V, and
3 ∗V is a compatible Universe over ∗R. Back

This theorem leads to the following foundational system , solving

the Problem of upgrade of the surreals, and

the Problem of foundations of infinitesimal calculus.
Back
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Superstructure over the surreals

F∞
surreals

a nicely
defined rcoF

Back

∗R
set-size-dense
hyperreals
admit a compatible
Universe

∗V

isomorphic under
Global Choice as two
set-size-dense rcoF

H

isomorphism H induces a Universe over F∞

induced by H

a compatible
Universe
over F∞
QED

A problem
·

definablenon-definable
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Problems

Observation
At the moment, the isomorphism H between F∞ and ∗R can be
obtained only using the Global Choice axiom GC. Accordingly,

both the isomorphism H , and

the induced Universe over the surreals F∞

are non-definable. Schema

Problem
1 Is there a direct construction of H , w/o appeal to GC ? A
2 Is there a definable (OD) compatible Universe over F∞ ?

TOC
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Problems

Problem

Is there an OD isomorphism between the Conway and the Alling
surreals ?

Interesting phenomena related to OD reducibilily were discovered by

SDF

& K

, Some natural equivalence relations in the Solovay model,
Abhandl. Math. Semin. Univ. Hamburg , 2008, 78, 1, pp. 91–98.
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Uniqueness of set-size-dense rcoF modulo isomorphim

Theorem (Alling 1961, 1985, on the base of Hausdorff 1907)
Assuming the Global Choice axiom, any two set-size-dense rcoF
are isomorphic, and hence

a set-size-dense rcoF is unique (mod isomorphism) if exists .

Back

Proof
Use a back-and-forth type argument.

Return to Surreals
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Digression: classes

Definition (capitalization of classes)

1 A Field (a Group, Order, etc .) is a field (resp., group, ordered
domain, etc .) whose underlying domain is a proper class.

2 A rcoF is a rcof whose underlying domain is a proper class.

Back to Surreals

Back
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Universes

Definition (universes)
A Universe over a Structure (set or class) F is a Model (set or
class) V of ZFC, containing F as a set . Back

A Universe V over a rcoF F is compatible, iff it is true in V
that F is an archimedean rcof .

Remark
The universe of all sets V is a compatible Universe over the reals R.
But it is not clear at all how to define a compatible Universe over a
non-archimedean rcoF F .

Back Back to the surreals problem
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Global Choice

Definition
The Global Choice axiom GC asserts that there is a Function (a
proper class!) G such that

the domain domG consists of all sets, and
G(x) ∈ x for all x 6= ∅.

Remark
GC definitely exceeds the capacities of the ordinary set theory ZFC.
However, GC is rather innocuous, in the sense that any theorem
provable in ZFC+ GC and saying something only on sets (not on
classes) is provable in ZFC alone.

Back
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Answer

This question answers in the negative , by the following theorem.

Theorem
1 There is no definable ZFC-provable even bijection between:

the underlying domain of F∞ (in the Alling version), and
the underlying domain of the Universe ∗V of the
K-Shelah theorem .

2 But, there is a definable ZFC-provable injection from the
underlying domain of F∞ to the underlying domain of ∗V.
Back

Back to problems
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Hausdorff’s early papers

1 . F. Hausdorff, Untersuchungen über Ordnungstypen IV, V.
Ber. über die Verhandlungen der Königlich Sächsische Gesellschaft der
Wissenschaften zu Leipzig, Math.-phys. Kl., 1907, 59, pp. 84–159.
2 . F. Hausdorff, Die Graduierung nach dem Endverlauf.
Abhandlungen der Königlich Sächsische Gesellschaft der
Wissenschaften zu Leipzig, Math.-phys. Kl., 1909, 31, pp. 295–334.

The early papers of Hausdorff have been reprinted and commented in
3. F. Hausdorff, Gesammelte Werke, Band IA: Allgemeine
Mengenlehre. Berlin: Springer, 2013.

And translated and commented in
4. F. Hausdorff, Hausdorff on ordered sets, Translated, edited, and
commented by J. M. Plotkin. AMS and LMS, 2005. Back
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Density and saturation

Remark
For orders and rcof of type η0 (= simply dense) being ηα is
equivalent to ℵα -saturation .

Back
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