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Analytic quasi-orders and Borel reducibility

Definition (Analytic quasi-order)

A quasi-order R on a Polish space or, more generally, on a standard Borel
space X is called analytic if it is an analytic subset of X × X (= projection
of a Borel subset of X × X × ωω).
It is an analytic equivalence relation if it is also symmetric.

Definition (Borel (bi-)reducibility and completeness)

Borel reducibility: R ≤B S iff ∃ Borel f : dom(R)→ dom(S) such that
∀x , y ∈ dom(R) (x R y ⇐⇒ f (x) S f (y)).

Borel bi-reducibility: R ∼B S iff R ≤B S ≤B R.

(Borel-)completeness: S is Borel complete for a class C of analytic
quasi-orders iff R ≤B S for all R ∈ C.

Intuitively: if R ≤B S then R is not more complicated than S .
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Analytic quasi-orders and Borel reducibility

Notation

ER = R ∩ R−1 = the analytic equivalence relation associated to the
analytic quasi-order R.

R̂ = the quotient order of R (w.r.t. ER).

Combinatorially, ∼B is a (definable) bi-embeddability: R ∼B S iff R̂ and Ŝ
are one embeddable into the other via functions admitting Borel liftings.

Definition (Classwise Borel isomorphism)

Classwise Borel isomorphism: R 'B S iff there is an isomorphism f of R̂
and Ŝ such that both f and f −1 admit Borel liftings.
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Examples: isomorphism and embeddability relations

Notation

L = graph language.

ModωL = ω×ω2 = Polish space of countable L-structures.

Modωϕ = {X ∈ ModωL | X |= ϕ} for ϕ an Lω1ω-sentence.

Theorem (Lopez-Escobar)

B ⊆ ModωL is Borel and invariant under isomorphism iff B = Modωϕ for
some Lω1ω-sentence ϕ.

Therefore the isomorphism relation ∼=� Modωϕ and the embeddability
relation v� Modωϕ are examples of an analytic equivalence relation and an
analytic quasi-order, respectively. However:
∼=� Modωϕ is a very special kind of equivalence relation and is far from
being complete for analytic equivalence relations;

v� Modωϕ is complete for analytic quasi-orders for suitable ϕ.
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Invariant universality

Theorem (S.Friedman-M.)

For every analytic quasi-order R there is an Lω1ω-sentence ϕ such that
R ∼B v� Modωϕ, and in fact R 'B v� Modωϕ.

Intuitively: every analytic quasi-order R can be copied in a “faithful” way
as an embeddability relation. This is abbreviated with:

v� ModωL is (strongly) invariantly universal.

Possible generalizations:
1 Replace v with other morphism relations, e.g.:

epimorphisms between countable structures,
continuous embeddability between continua (dendrites),
isometric embeddability between Polish metric spaces,
linear isometric embeddability between separable Banach spaces...

2 Replace “analytic” (= Σ1
1) with: Σ1

n+2, projective, κ-Souslin, L(R) ...
3 Replace countable structures with structures of size κ > ω.
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Other morphism relations

Using the Lopez-Escobar therorem, v� ModωL is strongly invariantly
universal iff for every analytic quasi-order R there is a Borel and invariant
under isomorphism B ⊆ ModωL such that R 'B v� B.

Definition

S analytic quasi-order, E analytic equivalence relation s.t. E ⊆ S . The
pair (S ,E ) is strongly invariantly universal iff for every analytic quasi-order
R there is a Borel and E -invariant B ⊆ dom(S) such that R 'B (S � B).

Intuitively: (S ,E ) is strongly invariantly universal iff S contains in a
“natural” (= sufficiently closed and simply definable) way a “faithful”
copy of all other analytic quasi-orders.

Usually we take (S ,E ) to be pairs of the form (morphism, isomorphism):

(continuous embeddability, homeomorphism) between compacta,
(isometric embeddability, isometry) between Polish metric spaces,
(linear isometric embeddability, linear isometry) between separable
Banach spaces, and so on.
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Other morphism relations

Theorem (Camerlo-Marcone-M.)

The following (complete) analytic quasi-orders are in fact invariantly
universal when paired with the associated “isomorphism” relation E:

1 embeddability/epimorphisms for countable graphs (E = ∼=),

2 color preserving embeddings between countable colored linear orders
(E = color preserving isomorphism),

3 continuous embeddability/open cont. surjections between dendrites,
cont. surjections between compacta (E = homeomorphism),

4 isometric embeddability between (discrete/ultrametric) Polish metric
spaces (E = isometry),

5 linear isometric embeddability between separable Banach spaces (E =
linear isometry),

6 and so on...

Remark: Each proof is different and requires some specific work.
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More complicated quasi-orders

Notation

Given a cardinal κ, consider the generalized Baire space κκ endowed
with the bounded topology (i.e. with the topology generated by basic
clopen sets of the form Ns = {x ∈ κκ | x ⊇ s} for s ∈ <κκ).

ModκL = space of models of size κ (homeomorphic to κ2 ⊆ κκ).

Modκϕ = {X ∈ ModκL | X |= ϕ} for ϕ an Lκ+κ-sentence.

Theorem (Andretta-M.)

Work in ZF and let κ be an uncountable cardinal. For every κ-Souslin
quasi-order R there is an Lκ+κ-sentence ϕ such that R is bi-reducible with
(in fact: classwise isomorphic to) v� Modκϕ.

Remark: The maps involved in the bi-reducibility are κ+-Borel, absolutely
definable, and so on...

This rather technical result may be applied in a great variety of situations...
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More complicated quasi-orders

Theorem (ZF)

For every Σ1
2 quasi-order R there is an Lℵ2ℵ1-sentence ϕ such that R and

v� Modℵ1ϕ are classwise ℵ2-Borel isomorphic.

Theorem (ZFC + ∀x ∈ R (x# exist))

For every Σ1
3 quasi-order R there is an Lℵ3ℵ2-sentence ϕ such that R and

v� Modℵ2ϕ are classwise ℵ3-Borel isomorphic.

Remark: These results make (more) sense when the continuum is large!

Theorem (ZF + AD)

For every Σ1
3 quasi-order R there is an Lℵω+1ℵω -sentence ϕ such that R

and v� Modℵωϕ are classwise ℵω+1-Borel isomorphic.

Luca Motto Ros (Freiburg, Germany) On the invariant universality property Vienna, July 8th 2013 9 / 15



More complicated quasi-orders

Define j : ω → ω by j(n) =

{
2k+1 − 1 if n = 2k + 1

2k+1 if n = 2k + 2.

Theorem (ZFC + ADL(R))

For every Σ1
n quasi-order R there is an Lℵj(n)+1ℵj(n)-sentence ϕ such that R

and v� Mod
ℵj(n)
ϕ are classwise ℵj(n)+1-Borel isomorphic.

In particular, the above theorem holds if we assume e.g. ZFC+ “there are
ω-many Woodin cardinals with a measurable above”, or ZFC + PFA, ...

Theorem (ZF + AD)

For n > 0, let κn be such that δ1n = κ+n (that is κn = δ1n−1 if n is even and
κn = λ1n if n is odd). For every Σ1

n quasi-order R there is an
Lδ1nκn -sentence ϕ such that R 'L(R) v� Modκnϕ .
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More complicated quasi-orders

Theorem (ZF + AD + V = L(R))

For every Σ2
1 quasi-order R there is an L(δ21)+δ21-sentence ϕ such that

R 'L(R) v� Mod
δ21
ϕ .

Theorem (ZF + AD(R))

For every quasi-order R on a standard Borel space there is κ < Θ and an
Lκ+κ-sentence ϕ such that R and v� Modκϕ are classwise κ+-Borel
isomorphic.

Theorem

Work in Solovay’s model. For every real-ordinal definable (briefly: OD(R))
quasi-order R defined on a standard Borel space, there is an
Lℵ2ℵ1-sentence ϕ such that R 'OD(R) v� Modℵ1ϕ .
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Embeddability between larger structures

So far we considered only the embeddability relation between uncountable
structures of “small” size, i.e. of cardinality smaller than (or incomparable
to) the continuum |R|... what about structures of larger cardinality?

Definition (Standard Borel κ-spaces and analytic quasi-orders)

A topological space is called standard Borel κ-space if it is κ+-Borel
isomorphic to a κ+-Borel subset of κκ.

A quasi-order R on a standard Borel κ-space X is called analytic if it
is the projection of a κ+-Borel subset of X × X × κκ.

Theorem (Mildenberger-M.)

Let κ = κ<κ > ω. Then for every analytic quasi-order R defined on a
standard Borel κ-space, there is an Lκ+κ-sentence ϕ such that R and
v� Modκϕ are classwise κ+-Borel isomorphic.

Remark: The condition κ<κ = κ is nearly optimal.
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Back to the countable case: an application of our method

Example

If ϕLO ∈ Lω1ω axiomatizes linear orders, then ∼=� ModωϕLO
is

S∞-complete and v� ModωϕLO
is a bqo (hence the bi-embeddability

relation on ModωϕLO
has only ℵ1-many classes);

If ϕCT ∈ Lω1ω axiomatizes combinatorial trees, then ∼=� ModωϕCT
is

S∞-complete and v� ModωϕCT
is complete for analytic quasi-orders.

Louveau and Rosendal asked whether it is possible to increase the gap
between the complexities of v and ∼= on the same Modωϕ (for ϕ an
Lω1ω-sentence). More generally:

Question

Given a ∼=-like analytic equivalence relation E and an analytic quasi-order
R, can we find an Lω1ω-sentence ϕ such that E ∼B

∼=� Modωϕ and
R ∼B v� Modωϕ?

“∼=-like” means that E is Borel bireducible with some isomorphism relation.
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Back to the countable case: an application of our method

Since bi-embeddability is obviously refined by the isomorphism relation, we
get a negative answer for the pair E ,R if one of the following holds:

E has at most countably many classes but ER has more classes than
E (that is E ≤B id(ω) but ER �B E );

ER has perfectly many classes while E has at most ℵ1-many classes
(that is id(R) ≤B ER but id(R) �B E ).

Quite surprisingly, these are (almost) the unique limitations:

Theorem (M.)

Let E be a ∼=-like analytic equivalence relation and let R be an analytic
quasi-order. Assume that either

id(R) ≤B E , or

ER ≤B E , id(ω)

Then there is an Lω1ω-sentence ϕ such that E ∼B
∼=� Modωϕ and

R ∼B v� Modωϕ.
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The end

Thank you for your attention!
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