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A little preview

Theorem (Löwenheim-Skolem)

If A |= φ then there is a countable B |= φ.

Proof.

Let Hθ be sufficiently large, containing A, and Hθ |= (A |= φ). Let
M ≺ Hθ be a countable elementary submodel with A ∈ M. Let
π : M ∼= M̄ be the transitive collapse and B = π(A). Since M̄ is countable
and transitive, B is countable. By elementarity M |= (A |= φ), so
M̄ |= (B |= φ). But “B |= φ” is ∆1, so by absoluteness B |= φ.
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A little preview

Is this (only) a joke?

Notice that we only used that “A |= φ” is ∆1. In fact Σ1 would have been
sufficient.

Theorem

Let L be any logic extending FOL, such that “A |=L φ” is Σ1. Then the
(downward) Löwenheim-Skolem Theorem holds for L.

Remark: For most interesting extensions L of FOL, the satisfaction relation is not Σ1.
But if our set theory satisfies a stronger reflection principle then the same argument
can work.
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Model Theory vs. Set Theory

Logicians have two ways to describe a class of structures:

definining in set theory: {A | Φ(A)}
axiomatizing by logic: {A | A |= φ}

Example 1

Describe the class of all structures with 3 or more elements.

In set theory: {A | Φ(A)}, where Φ(x) is “|x | ≥ 3”

In logic: {A | A |= φ} where φ is

∃x1x2x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

Note: Φ can be ∆0
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Model Theory vs. Set Theory

Example 2

Describe the class of infinite structures.

In set theory: {A | Φ(A)}, where Φ(x) is “|ω| ≤ A”.

Impossible in Lωω. But using Lω1ω1 , A is infinite iff A |= φ, where

φ ≡ ∃x0, x1, · · ·
∧
i 6=j

xi 6= xj

Alternatively, we can add a generalized quantifier Q∞ saying “there
are infinitely many”. Then A is infinite iff A |= Q∞x(x = x)

Note: Φ can be ∆1
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Model Theory vs. Set Theory

Example 3

Describe the class of structures (A,P) such that

|{x ∈ A | P(x)}| = |{x ∈ A | ¬P(x)}|

In set theory: {A | Φ(A)}, where Φ(x) is as above.

In Lωω impossible. In Lω1ω1 or Lωω(Q∞) also impossible. But we can add the
so-called Härtig quantifier I defined by

A |= Ixy φ(x)ψ(y) :⇔ |{a ∈ A : A |= φ[a]}| = |{b ∈ A : A |= ψ[b]}|
Then this model class is axiomatizable by φ ≡“IxyP(x)¬P(x)” in the logic Lωω(I).

Note: Φ can be ∆2 but not ∆1 (cardinalities are not absolute).
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Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory {A | Φ(A)} or logic {A | A |= φ}?

This is an uneven competition—so let’s give logic more power, and give set theory a
handicap—consider only Φ of limited complexity.

1 Since the satisfaction relation for Lωω is ∆1, any Lωω model class Mod(φ) is ∆1.

2 But not vice versa, e.g., {A | A is infinite}.

3 One can show that every ∆1 class (if closed under isomorphisms), is axiomatizable
by the logic ∆(Lωω(I)).

4 But not vice versa, e.g., |{x ∈ A | P(x)}| = |{x ∈ A | ¬P(x)}| is
∆(Lωω(I))-axiomatizable but not ∆1.

5 It is ∆2, but that’s again too strong . . .
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Set theoretic vs. logical strength

∆2

OO

∆(LI )

OO

ii

∆1

55

Lωω

ii

Set Theory Logic
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Symbiosis

In his PhD Dissertation (1977), Väänänen introduced the concept
Symbiosis, aiming to find an exact ballance of power between
set-theoretic and model-theoretic strength.

It turns out that the interesting cases take place between ∆1 and ∆2

If R is a set-theoretic predicate, focus on ∆1(R)-classes, for a fixed Σ1 or
Π1 predicate R.
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∆1(R)-classes

Definition

Let R be a fixed set-theoretic predicate. Then a formula φ is Σ1(R) if it is
Σ1 in the extended language of set theory with the R-predicate. The same
holds for Π1(R) and ∆1(R).

Example:

1 Cd(x) ↔ x is a cardinal.

2 Rg(x) ↔ x is a regular cardinal’.

3 PwSt(x , y) ↔ y = P(x).

For instance “x is uncountable” can be expressed in a Σ1(Cd) way:

∃α∃f (Cd(α) ∧ α 6= ω ∧ f : α ↪→ x)

If R is Π1 or Σ1 then ∆1(R) ⊆ ∆2.
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The complexity of |=L
Using this notion, we can compute the set-theoretic power of |=L more
accurately.

Lemma

|=Lωω(I) is ∆1(Cd)

Proof.

Call a model M of set theory Cd-correct if M |= Cd(α) iff Cd(α). Then “A |=Lωω(I) φ”
is absolute between models of set theory which are Cd-correct. Thus

A |=Lωω(I) φ iff

∃M(M trans. ∧M |= ZFC∗ ∧ A ∈ M ∧ ∀α(M |= Cd(α)↔ Cd(α)) ∧M |= (A |=Lωω(I) φ))

iff

∀M(M trans. ∧M |= ZFC∗ ∧ A ∈ M ∧ ∀α(M |= Cd(α)↔ Cd(α))→ M |= (A |=Lωω(I) φ))

This gives a Σ1(Cd) and a Π1(Cd) definition.
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Symbiosis

By Symbiosis, we want to capture the idea that L has the same
expressive power as ∆1(R), for some Π1 predicate R.

∆2 = ∆1(PwSt)

OO

∆(L2)

OO

∆1(Cd) ∆(Lωω(I))

∆1 ∆(Lωω(WO))

Lωω

Set Theory Logic
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Applications of Symbiosis

Applications:

1 Large Cardinal strength of principles of L (such as Löwenheim-Skolem
and Compactness)

2 Relating properties of L to set-theoretic reflection principles for
Σ1(R)- and ∆1(R)- classes

3 Large Cardinal strength of reflection principles

4 Probably more . . .
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Symbiosis

Definition (Väänänen)

L and R are symbiotic if

1 |=L is ∆1(R),

equiv: for every L-sentence φ, Mod(φ) is ∆1(R).

2 . . . ?

What should . . . say?

Unfortunately, this is still too much to ask in general.

Symbiosis only works for strong logics of a special form: ∆(L)
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∆-operation

Definition

Let τ ⊆ τ ′ be many-sorted vocabularies. If A is a τ ′-structure, then the
τ -reduct A�τ is defined by ignoring all symbols not in τ ′ and restricting
the domain to the sorts in τ .

Definition

A class K of τ -structures is Σ(L)-axiomatizable if K = {A�τ : A |=L φ}
for some φ in an extended language τ ′. A class K is ∆(L)-axiomatizable
if both K and its complement are Σ(L)-axiomatizable.
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∆-operation

The ∆-operation has many applications in abstract model theory.

1 It is convenient to regard ∆(L) itself as an abstract logic.

2 ∆(Lωω) = Lωω
3 If L satisfies Craig interpolation then ∆(L) = L.

4 The ∆-operation preserves many properties of the logic L, in
particular downward Löwenheim-Skolem theorems.
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Symbiosis

Definition (Väänänen)

L and R are symbiotic if

1 |=L is ∆1(R), and

2 Every ∆1(R)-class closed under isomorphisms is ∆(L)-axiomatizable.

Theorem (Bagaria & Väänänen)

1 Lωω(I) and Cd are symbiotic.

2 L2 and PwSt are symbiotic.

3 . . . and many others.
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The class QR

Definition (Väänänen)

L and R are symbiotic if

1 |=L is ∆1(R), and

2 Every ∆1(R)-class closed under isomorphisms is ∆(L)-axiomatizable.

Instead of 2 , we can consider a special case which is easier to both prove
and apply.

Definition

For a predicate R, let QR be the class of all R-correct ZFC∗-models
closed under isomorphisms, i.e.,

QR = {(N,E) | (N,E) ∼= (M,∈) for some R-correct model (M,∈) |= ZFC∗}
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Equivalent formulation of condition 2

Lemma

The following conditions (of Symbiosis) are equivalent:

2 Every ∆1(R)-class closed under isomorphisms is ∆(L)-axiomatizable.

2
∗ QR is ∆(L)-axiomatizable.

Proof.

2
∗ ⇒ 2 :

(N,E) ∈ QR iff

∃M ((M,∈) ∼= (N,E) ∧ (M,∈) |= ZFC∗ ∧ ∀x ∈ M ((M |= R(x))↔ R(x)))

iff

E wellfounded & extensional ∧ ∀M
((M,∈) ∼= (N,E) ∧M transitive → (M,∈) |= ZFC∗ ∧ ∀x ∈ M ((M |= R(x))↔ R(x)))

Therefore QR is ∆1(R) and we are done.
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Equivalent formulation of condition 2

Proof.

2 ⇒ 2
∗:

Let K be a class of τ -structures and consider first the Σ1(R) formula Φ defining the
class, i.e., A ∈ K ⇔ Φ(A).

For simplicity, assume τ has only one unary predicate symbol P.

Consider τ as being of sort s1.

Extend the language with a new sort s0, with a binary relation E and a constant c.

New function symbol F , from s1 to s0.

Let K∗ be the class of all models N = (N,A,E , c,P,F ) in the extended language, such
that

1 (N,E) is an R-correct ZFC∗-model

2 (N,E) |= Φ(c) (expressed in E)

3 N |= F is an isomorphic between “c written using E” and (A,P).
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Equivalent formulation of condition 2

Proof.

Let K∗ be the class of all models N = (N,A,E , c,P,F ) in the extended language, such
that

1 (N,E) is an R-correct ZFC∗-model

2 (N,E) |= Φ(c) (expressed in E)

3 N |= F is an isomorphic between “c written using E” and (A,P).

Now 1 essentially says “(N,E) ∈ QR ”. By assumption (2)∗, this statement is
∆(L)-axiomatizable, in particular Σ(L)-axiomatizable.

2 and 3 are in FOL.

Therefore the class K∗ is Σ1(L)-axiomatizable.

So we will be done if we can prove that K = {N �τ | N ∈ K∗}.
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Equivalent formulation of condition 2

Proof.

Claim: K = {N �τ | N ∈ K∗}.

First suppose (A,P) ∈ K. Let Vα be sufficiently large so that Vα |= ZFC∗ and R is
absolute for Vα (if R is Π1, use Π1-reflection). Then

(Vα,A,∈, (A,P),P, idA)

is an element of K∗.

Conversely, suppose (N,A,E , c,P,F ) ∈ K∗. Let π : (N,E) ∼= (M,∈) and let B = π(c).
Then M |= Φ(B). But since Φ is Σ1(R) and M is R-correct, by absoluteness Φ(B) is
true. Therefore, B ∈ K. But by condition (3), B is isomorphic to (A,P). Since K was
assumed to be closed under isomorphisms, it follows that (A,P) ∈ K, as we had to
show.
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Symbiosis

Lemma

The following conditions (of Symbiosis) are equivalent:

2 Every ∆1(R)-class closed under isomorphisms is ∆(L)-axiomatizable.

2
∗ QR is ∆(L)-axiomatizable.

Definition (Väänänen)

L and R are symbiotic if

1 |=L is ∆1(R), and

2
∗ QR is ∆(L)-axiomatizable.
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Examples of Symbiosis

Theorem (Bagaria & Väänänen)

Lωω(I) and Cd are symbiotic.

Proof.

We already saw that |=Lωω(I) is ∆1(Cd).

For the converse, it suffices to prove that QCd is ∆(Lωω(I)). We have (N,E) ∈ QR iff

1 E is wellfounded

2 (N,E) |= ZFC∗

3 For (M,∈) ∼= (N,E) we have M |= Cd(α) iff Cd(α)

For 3 , note that M |= Cd(α) iff M |=Lωω(I) ¬∃x < αIyz(y ∈ x)(z ∈ α)

So 2 + 3 hold iff

(N,E) |=Lωω(I) ZFC∗ ∧ ∀α (α is a cardinal ↔ ¬∃x < α Iyz (yEx) (zEα)

which is an Lωω(I)-sentence.
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Examples of Symbiosis

Theorem (Bagaria & Väänänen)

Lωω(I) and Cd are symbiotic.

Proof.

It remains to take care of 1 .

(N,E) is ill-founded iff there exists X such that X has no E -minimal element.
Add a new predicate X and consider K∗ = {(N,E ,X ) | (N,E ,X ) |= (X has no
E -minimal element)} (which can be expressed in FOL). Then (N,E) is ill-founded
iff (N,E) =M�τE for some M∈ K∗. So being ill-founded is Σ(Lωω), thus being
well-founded is Π(Lωω), so also Π(Lωω(I )).

“Lindström’s trick”: (X , <) is well-founded iff there are sets Aa for every a ∈ X
such that a < b iff |Aa| < |Ab|. So add a new sort and new binary relation between
two sorts. Consider the class K∗ of structures M = (M,A,E ,R) such that

M |= ∀a, b ∈ M (a < b → |R(a, .)| < |R(b, .)|)
This can be expressed in Lωω(I). So (N,E) is well-founded iff it is the restriction
of a model in K∗.
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More symbiosis

Actually, an even easier proof shows the following:

Theorem

Lωω(WO) is symbiotic to ∅ (empty predicate, i.e., just ∆1-sentences).

Here Lωω(WO) is the logic with a generalized quantifier expressing that
something is a well-order.
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More symbiosis

Theorem

L2 is symbiotic with PwSt.

Proof.

1 The relation |=L2 is absolute for sufficiently large Vα. Moreover, being Vα is
∆1(PwSt)-definable. Therefore A |=L2 φ

⇔ ∃Vα (A ∈ Vα ∧ Vα |= (A |= φ))

⇔ ∀Vα (A ∈ Vα → Vα |= (A |= φ)).

2 ∗ To show: QPwSt is ∆(L2). But this is easy since in full L2 we can define the true
power set, i.e., there is a L2-sentence φ(x , y) such that (M,∈) |= φ(x , y) iff
y = P(x).

Remark: In fact, ∆1(PwSt) = ∆2. This is because ∆2-formulas are absolute for Hθ and
“being Hθ” can also be defined in a ∆1(PwSt)-way.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 27 / 47



More symbiosis

Theorem

L2 is symbiotic with PwSt.

Proof.

1 The relation |=L2 is absolute for sufficiently large Vα. Moreover, being Vα is
∆1(PwSt)-definable. Therefore A |=L2 φ

⇔ ∃Vα (A ∈ Vα ∧ Vα |= (A |= φ))

⇔ ∀Vα (A ∈ Vα → Vα |= (A |= φ)).

2 ∗ To show: QPwSt is ∆(L2). But this is easy since in full L2 we can define the true
power set, i.e., there is a L2-sentence φ(x , y) such that (M,∈) |= φ(x , y) iff
y = P(x).

Remark: In fact, ∆1(PwSt) = ∆2. This is because ∆2-formulas are absolute for Hθ and
“being Hθ” can also be defined in a ∆1(PwSt)-way.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 27 / 47



More symbiosis

Theorem

L2 is symbiotic with PwSt.

Proof.

1 The relation |=L2 is absolute for sufficiently large Vα. Moreover, being Vα is
∆1(PwSt)-definable. Therefore A |=L2 φ

⇔ ∃Vα (A ∈ Vα ∧ Vα |= (A |= φ))

⇔ ∀Vα (A ∈ Vα → Vα |= (A |= φ)).

2 ∗ To show: QPwSt is ∆(L2). But this is easy since in full L2 we can define the true
power set, i.e., there is a L2-sentence φ(x , y) such that (M,∈) |= φ(x , y) iff
y = P(x).

Remark: In fact, ∆1(PwSt) = ∆2. This is because ∆2-formulas are absolute for Hθ and
“being Hθ” can also be defined in a ∆1(PwSt)-way.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 27 / 47



Symbiosis

∆2 = ∆1(PwSt)

OO

∆(L2)

OO

∆1(Cd) ∆(Lωω(I))

∆1 ∆(Lωω(WO))

Lωω

Set Theory Logic
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Downward Löwenheim-Skolem

Application of Symbiosis: downward Löwenheim-Skolem (one of many possible versions)
and downward reflection.

Definition

The downwards Löwenheim-Skolem number of L is the least κ such that if A |=L φ
then there is a sub-structure B ⊆ A s.t. |B| < κ and B |=L φ. Notation: DLST(L) = κ

Definition

The downward structural reflection number for a predicate R is the least κ such that
if K is a Σ1(R)-class of τ -structures (for fixed τ), then for every A ∈ K there is an
elementary sub-structure B � A such that |B| < κ and B ∈ K. Notation: DSR(R) = κ

Theorem (Bagaria-Väänänen 2015)

Suppose L and R are symbiotic. Then DLST(L) = κ iff DSR(R) = κ.
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Downward Löwenheim-Skolem

Theorem (Bagaria-Väänänen 2015)

Suppose L and R are symbiotic. Then DLST(L) = κ iff DSR(R) = κ.

Proof.

⇐ is immediate: let φ be an L-sentence and A |= φ. By condition (1) of
Symbiosis, Mod(φ) is a ∆1(R)-class, in particular, a Σ1(R)-class. So
A |= φ⇒ A ∈ Mod(φ)⇒ ∃B � A with |B| ≤ κ and B ∈ Mod(φ)⇒ B |= φ.

⇒ If we just wanted to prove downwards reflection for ∆1(R) classes and without
elementarity, we could use a direct proof. But this result is stronger. The main
idea is: reflection for Σ1-classes holds in ZFC!
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Downward Löwenheim-Skolem

Proof.

Let K be a Σ1(R)-class, let A ∈ K, and let Φ be the defining formula.

Let K∗ be the class of models (N,E , c) such that (N,E) is isomorphic to an R-correct
ZFC∗-model (M,∈) satisfying (M,∈) |= Φ(c). This is defined using QR , so by condition
(2) of Symbiosis K∗ is ∆(L)-axiomatizable. Therefore there exists φ in an extended
language, such that (N,E , c) ∈ K∗ iff (N,E , c, . . . ) |= φ.

Let Hθ be sufficiently large so that A ∈ Hθ and Hθ |= Φ(A). Then (Hθ,∈,A) ∈ K∗, so
some extension (Hθ,∈,A, . . . ) |= φ. Using DLST(L), there is
(N,∈,A, . . . ) ⊆ (Hθ,∈,A, . . . ) such that (N,∈,B, . . . ) |= φ and |N| < κ. Thus
(N,∈ A) ∈ K∗, and since K∗ is closed under isomorphisms, also the transitive collapse
(M,∈, Ā) of (N,∈,A) is in K∗. But then (M,∈) |= Φ(Ā), and (M,∈) was R-correct,
so by upwards Σ1(R)-absoluteness, Φ(Ā) is true, and |Ā| ≤ |M| < κ.

To show that, additionally, Ā � A, use a more complicated argument by adding Skolem
functions to the models in K∗.
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Large Cardinal strength

Application:

Theorem

DSR(PwSt) = κ iff κ is the first supercompact cardinal.

Proof.

It is known that DLST (L2) = κ iff κ is the first supercompact (Magidor).
So by Symbiosis between L2 and PwSt, the same holds for DSR(L2).
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Downward Löwenheim-Skolem

Definition

The strict downwards Löwenheim-Skolem number of L is the least κ such that if
A |=L φ and |A| = κ, then there is a sub-structure B ⊆ A s.t. |B| < κ and B |=L φ.
Notation: DLST−(L) = κ

Definition

The strict downward structural reflection number for a predicate R is the least κ such
that if K is a Σ1(R)-class of τ -structures (for fixed τ), then for every A ∈ K such that
|A| = κ, there is an elementary sub-structure B � A such that |B| < κ and B ∈ K.
Notation: DSR−(R) = κ

Theorem (Bagaria-Väänänen 2015)

Suppose L and R are symbiotic. Then DLST−(L) = κ iff DSR−(R) = κ.
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Large Cardinal Strength

Theorem (Bagaria-Väänänen)

DLST−(Lωω(I)) = κ iff DSR−(Cd) = κ iff κ is weakly inaccessible.

The proof is:

1 DLST−(Lωω(I)) = κ ⇒ κ weakly inaccessible.

2 κ weakly inaccessible ⇒ DLST−(Lωω(I)) = κ.

3 The theorem follows from Symbiosis between Lωω(I) and Cd .

Another example:

1 W Reg = the generalized quantifier expressing that < is a well-order of order-type a
regular cardinal.

2 Reg = the set-theoretic predicate “α is a regular cardinal”

3 Lωω(I,W Reg ) and Reg are symbiotic.

Theorem (Bagaria-Väänänen)

DLST−(Lωω(I,W Reg )) = κ iff DSR−(Reg) = κ iff κ is weakly Mahlo.
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Large Cardinal Strength

We also have the basic case:

Corollary

DLST(Lωω(WO)) = ω.

Proof.

Recall that Lωω(WO) is symbiotic with ∅. But downwards structural
reflection for Σ1 classes is true in ZFC.
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Other properties of logic

Now, let’s look at other properties (work in progress).

Originally, we were interested in the question of compactness of strong
logics L.

Question

Is there a set-theoretic reflection principle for Σ1(R)-classes, which could
be related to compactness of L, for symbiotic L and R?

Compactness is related to upwards Löwenheim-Skolem principles.
Therefore it’s natural to look at upwards reflection principles.
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Upwards Löwenheim-Skolem and reflection

Again, one can consider various definitions.

Definition

The upwards Löwenheim-Skolem number of L is the least κ such that if A |=L φ and
|A| ≥ κ, then for every κ′ > κ there is a super-structure B ⊇ A with |B| ≥ κ′ and
B |=L φ. Notation: ULST(L) = κ.

Remarks:

1 One may replace “super-structure” by “elementary extension”. This may
(sometimes) give equivalent definitions.

2 The Hanf number is the same but without the requirement of “super-structure”.
Note that the Hanf number is always defined (by diagonalization) in ZFC, but
ULST(L) usually implies Large Cardinals.

3 There are possible variations, e.g., for sets of sentences instead of just φ, or
requiring that B is an elementary extension, or even an L-elementary extension,
etc.

Compactness ⇒ upwards Löwenheim-Skolem, but not (always) vice versa.
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Upwards reflection

First attempt: “for every Σ1(R)-class K of τ -structures, if there is A ∈ K with |A| ≥ κ,
then for every κ′ > κ there is B ∈ K with A � B and |B| ≥ κ′.”

But there are several problems.

1 We must be careful about the size of the language τ .

2 Symbiosis relies on the ∆-operator. While the ∆-operator preserves downwards
LST, it does not, in general, preserve upwards LST.
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Solution: bounded version of everything

We need something called the bounded ∆-operator (which Väänänen
had already introduced)

But then we must also adept the set-theoretic notion of a Σ1-formula
to a bounded version.

This requires the new concept: bounded Symbiosis.

The reflection principle must also be bounded.
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Bounded ∆

Definition

A class K of τ -structures is ΣB (L)-axiomatisable if there is φ in some extended
language τ ′, such that

1 K = {A | ∃B (B |= φ and A = B�τ)} and

2 for all A there exists a cardinal λA, such that for any τ ′-structure B: if B |= φ and
A = B�τ then |B| ≤ λA.

K is ∆B (L∗)-axiomatisable if both K and its complement are ΣB (L∗)-axiomatisable.

Idea: there is a bound on the size by which we need to extend the model.

Väänänen 1980:

for many logics L we have ∆(L) = ∆B (L).

for some logics, this is consistently false.

∆B preserves the Hanf number of L.
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ΣB
1 formula relation

Well . . . since we changed ∆ to ∆B we also need a corresponding change on the set
theory side!

Definition

A formula φ(x) in set theory is definably bounding if for some ∆0 formula ψ:

∀x(φ(x)↔ ∃y(ψ(x , y) ∧ ρ(y) < F (ρ(x))

where F is a so-called definable bounding function. This essentially means (modulo
some technicalities) that the class

{(A,B) | F (|A|) ≥ |B|}

is FOL-definable.

If R is a predicate, then ΣB
1 (R) and ∆B

1 (R) is defined in the same way, but with an

additional predicate symbol R.
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Bounded Symbiosis

Definition (Galeotti-K-Väänänen)

L and R are bouned-symbiotic if

1 |=L is ∆B
1 (R), and

2 Every ∆B
1 (R)-class closed under isomorphisms is ∆B (L)-axiomatizable.

Lemma (Galeotti-K-Väänänen)

All known examples of pairs L and R which are symbiotic, are in fact bounded symbiotic.
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Upwards structural reflection

We also need a corresponding version of upwards structural reflection.

In addition to bounding, we must also put restrictions on the size of
vocabularies.

Definition

Let τ be a vocabulary of size λ. The upwards structural reflection
number for R is the least κ such that for every ΣB

1 (R)-class K of
τ -structures, if there is A ∈ K with |A| ≥ κ, then for every κ′ > κ there is
B ∈ K with A � B and |B| ≥ κ′. Notation: USRλ(R) = κ.
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Main result

Theorem (Galeotti-K-Väänänen)

Suppose L and R are bounded-symbiotic. Then ULSTω(L) = κ iff USRω(R) = κ.

The bound ω can be replaced by λ if λ satisfies suitable definability conditions.

Remarks:

Since we consider restricted vocabularies, we also need to restrict the ULST
principle accordingly.

This result cannot hold for arbitrary languages, because for λ ≥ κ, USRλ(R) is
always false, while ULSTλ(L) may be true!
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One application (still in progress)

As an application, we provide lower and upper bounds for ULST(L2).

Lemma (Galeotti-K-Väänänen)

If κ is an extendible cardinal, then USRω(PwSt) ≤ κ. By the main theorem, also
ULSTω(L2) ≤ κ.

Lemma (Galeotti-K-Väänänen)

If ULSTω(L2) = κ then there is an n-extendible cardinal, for every n.

Conjecture

ULSTω(L2) = κ iff κ is extendible.
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Connections between logic and set theory

Logic Set Theory Need

Downward-LST Downward-SR Symbiosis (Bagaria-Väänänen)

Upward-LST Upward-SR Bounded Symbiosis (Galeotti-K-Väänänen)

⇑ ⇑
Compactness “Every well-order can be

extended to a longer

one, within the same

class”

???
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Thank You!
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