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If A |= ¢ then there is a countable B |= ¢. I
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A little preview

Theorem (Léwenheim-Skolem)
If A = ¢ then there is a countable B |= ¢.

Proof.

Let Hy be sufficiently large, containing A, and Hy = (A | ¢). Let

M < Hgy be a countable elementary submodel with A € M. Let

7 : M 22 M be the transitive collapse and B = 7(.A). Since M is countable
and transitive, B is countable. By elementarity M |= (A = ¢), so

M = (B = ¢). But “B = ¢" is A1, so by absoluteness B = ¢. O
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A little preview

Is this (only) a joke?

Notice that we only used that “A = ¢" is Aj. In fact 1 would have been
sufficient.

Theorem

Let L be any logic extending FOL, such that “A =, ¢" is £1. Then the
(downward) Léwenheim-Skolem Theorem holds for L.

Remark: For most interesting extensions £ of FOL, the satisfaction relation is not ;.
But if our set theory satisfies a stronger reflection principle then the same argument
can work.
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Model Theory vs. Set Theory

Logicians have two ways to describe a class of structures:
o definining in set theory: {A | ®(A)}
o axiomatizing by logic: {A | A ¢}
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Model Theory vs. Set Theory

Logicians have two ways to describe a class of structures:
o definining in set theory: {A | ®(A)}
o axiomatizing by logic: {A | A ¢}

Example 1

Describe the class of all structures with 3 or more elements.
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Model Theory vs. Set Theory

Logicians have two ways to describe a class of structures:
o definining in set theory: {A | ®(A)}
o axiomatizing by logic: {A | A ¢}

Example 1
Describe the class of all structures with 3 or more elements.

o In set theory: {A | ®(A)}, where ®(x) is “|x| > 3"
o In logic: {A | A= ¢} where ¢ is

E|X1X2X3(X1 #x0 N Xxq 75 X3 N\ Xo £ X3)

Note: & can be Ag
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Model Theory vs. Set Theory

Example 2
Describe the class of infinite structures.
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Model Theory vs. Set Theory

Example 2
Describe the class of infinite structures.

o In set theory: {A | ®(A)}, where ®(x) is “lw| < A”.
o Impossible in L,,,. But using L,,.,, A is infinite iff A |= ¢, where

<Z553X0,X1,"'/\Xi75><j
i#j

o Alternatively, we can add a generalized quantifier Q. saying “there
are infinitely many”. Then A is infinite iff A = Qsox(x = x)

Note: ® can be A4
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Model Theory vs. Set Theory

Example 3
Describe the class of structures (A, P) such that

{xe A | PG ={xeA | =P(x)}

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 6 / 47



Model Theory vs. Set Theory

Example 3
Describe the class of structures (A, P) such that

{xe A | PG ={xeA | =P(x)}

O In set theory: {A | ®(A)}, where ®(x) is as above.

9 In Ly impossible. In Lo, of L. (Qx) also impossible. But we can add the
so-called Hartig quantifier | defined by

AE by o(x)¢(y) = {aeA: Ao} ={be A : AE¢[bl}|
Then this model class is axiomatizable by ¢ ="“IxyP(x)=P(x)" in the logic L.w(l).

Note: ® can be Aj but not A; (cardinalities are not absolute).
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Who is stronger: set theory {A | ®(A)} or logic {A | A= ¢}? I
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Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.
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Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.

@ Since the satisfaction relation for L., is A1, any L., model class Mod(¢) is A;.
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Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.

@ Since the satisfaction relation for L., is A1, any L., model class Mod(¢) is A;.

@ But not vice versa, e.g., {A | A is infinite}.
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Set Theory vs. Logic: who is stronger?

Question
Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.

@ Since the satisfaction relation for L., is A1, any L., model class Mod(¢) is A;.
@ But not vice versa, e.g., {A | A is infinite}.

@ One can show that every A; class (if closed under isomorphisms), is axiomatizable
by the logic A(Lww(1)).
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Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.

@ Since the satisfaction relation for L., is A1, any L., model class Mod(¢) is A;.
@ But not vice versa, e.g., {A | A is infinite}.

@ One can show that every A; class (if closed under isomorphisms), is axiomatizable
by the logic A(Lww(1)).

@ But not vice versa, e.g., [{x €A | P(x)}| =|{x€ A | =P(x)}] is
A(Luw(1))-axiomatizable but not A;.
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Set Theory vs. Logic: who is stronger?

Question
Who is stronger: set theory {A | ®(A)} or logic {A | A ¢}?

This is an uneven competition—so let's give logic more power, and give set theory a
handicap—consider only ® of limited complexity.

@ Since the satisfaction relation for L., is A1, any L., model class Mod(¢) is A;.
@ But not vice versa, e.g., {A | A is infinite}.

@ One can show that every A; class (if closed under isomorphisms), is axiomatizable
by the logic A(Lww(1)).

@ But not vice versa, e.g., [{x €A | P(x)}| =|{x€ A | =P(x)}] is
A(Luw(1))-axiomatizable but not A;.

® Itis Ay, but that's again too strong ...
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Symbiosis

In his PhD Dissertation (1977), Vaananen introduced the concept
Symbiosis, aiming to find an exact ballance of power between
set-theoretic and model-theoretic strength.

It turns out that the interesting cases take place between A; and A,

If R is a set-theoretic predicate, focus on Aj(R)-classes, for a fixed ¥ or
My predicate R.
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A;(R)-classes

Definition
Let R be a fixed set-theoretic predicate. Then a formula ¢ is £1(R) if it is

> 1 in the extended language of set theory with the R-predicate. The same
holds for M1 (R) and A1(R).

Example:
@ Cd(x) <> xis a cardinal.
@ Rg(x) <> xis a regular cardinal'.
@ PwSt(x,y) < y =P(x).
For instance “x is uncountable” can be expressed in a ¥1(Cd) way:

JaIf(Cd(a) Na #wAf:a— x)

If Ris 1y or X1 then Al(R) C As.
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The complexity of =,

Using this notion, we can compute the set-theoretic power of = more
accurately.

Lemma
Fr..(1) is A1(Cd)

Proof.

Call a model M of set theory Cd-correct if M |= Cd(«) iff Cd(a). Then “A =, ) ¢"
is absolute between models of set theory which are Cd-correct. Thus

Al ¢ iff
IM(M trans. A M [= ZFC* A A € MAVQ(M = Cd(a) ¢ Cd(a)) AM = (A =) 8)
iff
VM(M trans. A M |= ZFC* A A € M AYa(M = Cd(a) ¢ Cd(a)) = M = (A=, q) 9))

This gives a X1(Cd) and a N1(Cd) definition. O
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Symbiosis

By Symbiosis, we want to capture the idea that £ has the same

expressive power as A1(R), for some [; predicate R.

Ay = Aq(PwSt) A(L?)
| |
Aq(Cd) A(Luw (1)
|
Aq A(Luw(WO))
|
Set Theory Logic
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Applications of Symbiosis

Applications:

@ Large Cardinal strength of principles of £ (such as Lowenheim-Skolem
and Compactness)

@ Relating properties of L to set-theoretic reflection principles for
Y1(R)- and A1(R)- classes

@ Large Cardinal strength of reflection principles
@ Probably more . ..
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L and R are symbiotic if

0 IZL is Al(R),
@ ...7

What should ... say?
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Symbiosis

Definition (Vaananen)

L and R are symbiotic if
@ k=, is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say?
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Symbiosis

Definition (Vaananen)
L and R are symbiotic if

@ k=, is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say? First attempt: “every Aj(R)-class of T-structures
is of the form Mod(¢)".
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Symbiosis

Definition (Vaananen)
L and R are symbiotic if

@ = is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say? First attempt: “every Aj(R)-class of T-structures
is of the form Mod(¢)".

What if the class is not closed under isomorphisms?

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 14 / 47



Symbiosis

Definition (Vaananen)
L and R are symbiotic if
@ k=, is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).

@ ...7

What should ... say? Firstattempt—every-A+{R)-classof #structures
- I | ‘ P E )11.
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Symbiosis

Definition (Vaananen)

L and R are symbiotic if
@ k=, is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say? Firstattempt—every-A+{R)-classof #structures
- I | ‘ P E )11.

Second attempt: “every A;(R)-class of 7-structures closed under
isomorphisms is of the form Mod(¢)".
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Symbiosis

Definition (Vaananen)

L and R are symbiotic if
@ = is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say? Firstattempt—every-A+{R)-classof #structures
- I | ‘ P E )11.

Second attempt: “every A;(R)-class of 7-structures closed under
isomorphisms is of the form Mod(¢)".

Unfortunately, this is still too much to ask in general.
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Symbiosis

Definition (Vaananen)

L and R are symbiotic if
@ = is A1(R), equiv: for every L-sentence ¢, Mod(¢) is A1(R).
@ ...7

What should ... say? Firstattempt—every-A+{R)-classof #structures
- ‘ | ‘ P E )11.

Second attempt: “every A;(R)-class of 7-structures closed under
isomorphisms is of the form Mod(¢)".

Unfortunately, this is still too much to ask in general.

Symbiosis only works for strong logics of a special form: A(L)
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A-operation

Definition

Let 7 C 7/ be many-sorted vocabularies. If A is a 7/-structure, then the
7-reduct A|7 is defined by ignoring all symbols not in 7’ and restricting
the domain to the sorts in 7.

Definition

A class K of T-structures is ¥ (L£)-axiomatizable if £ = {A|T : A . ¢}
for some ¢ in an extended language 7. A class K is A(L)-axiomatizable
if both K and its complement are X (L£)-axiomatizable.
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A-operation

The A-operation has many applications in abstract model theory.

@ It is convenient to regard A(L) itself as an abstract logic.
@ A(Eww) = Eww
@ If L satisfies Craig interpolation then A(L) = L.

@ The A-operation preserves many properties of the logic £, in
particular downward Léwenheim-Skolem theorems.
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Symbiosis

Definition (Vaananen)
L and R are symbiotic if
@ F,is Ai(R), and

@ Every A1(R)-class closed under isomorphisms is A(L)-axiomatizable.
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Symbiosis

Definition (Vaananen)
L and R are symbiotic if
@ . is Ai(R), and

@ Every A1(R)-class closed under isomorphisms is A(L)-axiomatizable.

Theorem (Bagaria & Vaananen)
@ Low(l) and Cd are symbiotic.
@ L2 and PwSt are symbiotic.

@ ... and many others.
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The class Qg

Definition (Vaananen)
L and R are symbiotic if
@ E,is A1(R), and
@ Every A;(R)-class closed under isomorphisms is A(L)-axiomatizable.

Instead of @, we can consider a special case which is easier to both prove
and apply.
Definition

For a predicate R, let Qg be the class of all R-correct ZFC*-models
closed under isomorphisms, i.e.,

Qr ={(N,E) | (N,E) = (M,€) for some R-correct model (M, €) = ZFC*}
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Equivalent formulation of condition 3

Lemma

The following conditions (of Symbiosis) are equivalent:

@ Every Ai(R)-class closed under isomorphisms is A(L)-axiomatizable.
Q" Qr is A(L)-axiomatizable.

Proof.

D =2

(N, E) € Qr iff

IM (M, e) =2 (N,E) A (M, €) E ZFC* AVx € M ((M E R(x)) + R(x)))

iff

E wellfounded & extensional A VM

((M,e) =2 (N, E) AM transitive — (M,€) =ZFC* AVx € M ((M = R(x)) <+ R(x)))
Therefore Qr is A1(R) and we are done. O
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Equivalent formulation of condition 3

Proof.

="

Let K be a class of 7-structures and consider first the ¥1(R) formula ® defining the
class, i.e., A € K & ®(A).

For simplicity, assume 7 has only one unary predicate symbol P.

@ Consider 7 as being of sort s;.

O Extend the language with a new sort sp, with a binary relation E and a constant c.

o New function symbol F, from s; to sp.
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Equivalent formulation of condition 3

Proof.
d=9"

Let K be a class of 7-structures and consider first the ¥1(R) formula ® defining the
class, i.e., A € K & ®(A).

For simplicity, assume 7 has only one unary predicate symbol P.
@ Consider 7 as being of sort s;.

O Extend the language with a new sort sp, with a binary relation E and a constant c.

o New function symbol F, from s; to sp.

Let K* be the class of all models N’ = (N, A, E, c, P, F) in the extended language, such
that

@ (N, E) is an R-correct ZFC*-model
@ (N, E) ': q)(C) (expressed in E)
@ N [ F is an isomorphic between “c written using E” and (A, P).
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Equivalent formulation of condition 3

Proof.

Let £* be the class of all models A" = (N, A, E, c, P, F) in the extended language, such
that

@ (N,E) is an R-correct ZFC*-model
@ (N, E) ': ¢(C) (expressed in E)

@ N E F is an isomorphic between “c written using E” and (A, P).
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Equivalent formulation of condition 3

Proof.

Let £* be the class of all models A" = (N, A, E, c, P, F) in the extended language, such

that
@ (N,E) is an R-correct ZFC*-model

@ (N, E) ': ¢(C) (expressed in E)
@ N E F is an isomorphic between “c written using E” and (A, P).

Now @ essentially says “(N, E) € Qr". By assumption (2)*, this statement is
A(L)-axiomatizable, in particular X(£)-axiomatizable.

@ and @ are in FOL.
Therefore the class K£* is ¥;(L£)-axiomatizable.

So we will be done if we can prove that K = {N|7 | N € K*}.
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Equivalent formulation of condition 3

Proof.
Claim: K={N|7 | N e K }.

First suppose (A, P) € K. Let V, be sufficiently large so that V, = ZFC* and R is
absolute for V, (if R is Iy, use My-reflection). Then

(VOthv €, (A7 P)7 P: ’dA)

is an element of K*.
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Equivalent formulation of condition 3

Proof.
Claim: K={N|7 | N e K }.
First suppose (A, P) € K. Let V, be sufficiently large so that V, = ZFC* and R is
absolute for V, (if R is Iy, use My-reflection). Then
(Va, A7 €, (A7 P)7 P: ’dA)
is an element of K*.

Conversely, suppose (N, A, E,c,P,F) € K*. Let w: (N, E) = (M, €) and let B = 7(c).
Then M = ®(B). But since ® is X1(R) and M is R-correct, by absoluteness ®(B) is
true. Therefore, B € K. But by condition (3), B is isomorphic to (A, P). Since K was
assumed to be closed under isomorphisms, it follows that (A, P) € K, as we had to
show. O

v
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Symbiosis

Lemma
The following conditions (of Symbiosis) are equivalent:
@ Every Ai(R)-class closed under isomorphisms is A(L)-axiomatizable.

@" Qr is A(L)-axiomatizable.
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Symbiosis

Lemma
The following conditions (of Symbiosis) are equivalent:
@ Every Ai(R)-class closed under isomorphisms is A(L)-axiomatizable.

@" Qr is A(L)-axiomatizable.

Definition (Vaananen)
L and R are symbiotic if
@ FEcis Ai(R), and
@* Qg is A(L)-axiomatizable.
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Leow(l) and Cd are symbiotic.
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Examples of Symbiosis

Theorem (Bagaria & Vaananen)

Luw(1) and Cd are symbiotic.

Proof.
We already saw that =, () is A1(Cd).

For the converse, it suffices to prove that Qcqg is A(Lww(l)). We have (N, E) € Qg iff

@ E is wellfounded
@ (N,E) | ZFC*
@ For (M, €) = (N, E) we have M = Cd(«) iff Cd(a)

For @, note that M |= Cd(a) iff M =, ) =3x < alyz(y € x)(z € a)
So @ + @ hold iff

(N, E) Ez.,.) ZFC" AVa (o is a cardinal < —3x < a lyz (yEx) (zE)

which is an L. (1)-sentence.
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Examples of Symbiosis

Theorem (Bagaria & Vainanen)

Leow(l) and Cd are symbiotic.

Proof.
It remains to take care of @.

o (N, E) is ill-founded iff there exists X such that X has no E-minimal element.
Add a new predicate X and consider K* = {(N, E, X) | (N, E, X) |= (X has no
E-minimal element)} (which can be expressed in FOL). Then (N, E) is ill-founded
iff (N, E) = M|7e for some M € K*. So being ill-founded is (L), thus being
well-founded is M(Lww ), so also M(Luw(1)).

0 “Lindstrom's trick”: (X, <) is well-founded iff there are sets A, for every a € X
such that a < b iff |As| < |Ap|. So add a new sort and new binary relation between
two sorts. Consider the class K* of structures M = (M, A, E, R) such that

MEVa,beM(a<b—|R(a,.)| <|R(b,.)|)

This can be expressed in L, (). So (N, E) is well-founded iff it is the restriction
of a model in . O
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More symbiosis

Actually, an even easier proof shows the following:

Theorem

L.,.,(WO) is symbiotic to @ (empty predicate, i.e., just Ai-sentences).

Here L., (WO) is the logic with a generalized quantifier expressing that
something is a well-order.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 26 / 47



More symbiosis

Theorem

£? is symbiotic with PwSt.

Proof.

@ The relation |=,2 is absolute for sufficiently large V.. Moreover, being V, is
A1 (PwSt)-definable. Therefore A |=,2 ¢

& Ve (AeVu AV, = (AE9)
& YWo (A€ Ve = Va E(AE9)).
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More symbiosis

Theorem

£? is symbiotic with PwSt.

Proof.

@ The relation |=,2 is absolute for sufficiently large V.. Moreover, being V, is
A1 (PwSt)-definable. Therefore A |=,2 ¢

& Ve (AeVu AV, = (AE9)
& YWa (A€ Va = Vo E(AE¢)).

@* To show: Qpus: is A(£2). But this is easy since in full £2 we can define the true

power set, i.e., there is a £?-sentence ¢(x,y) such that (M, €) = ¢(x, y) iff
y =P(x).
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More symbiosis

Theorem

£? is symbiotic with PwSt.

Proof.

@ The relation |=,2 is absolute for sufficiently large V.. Moreover, being V, is
A1 (PwSt)-definable. Therefore A |=,2 ¢
< Vo (A e VoAV, E(AE9))
& VWo (Ae Vo — Vo E(AE ).

@* To show: Qpus: is A(£2). But this is easy since in full £2 we can define the true

power set, i.e., there is a £?-sentence ¢(x,y) such that (M, €) = ¢(x, y) iff
y =P(x).

O

v

Remark: In fact, A;(PwSt) = A,. This is because Ax-formulas are absolute for Hy and
“being H¢" can also be defined in a A;(PwSt)-way.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 27 / 47



| |

.......................... A(ﬁ)
| |
AL(Cd) A(Low(1))
A|1 ................................ A(ﬁw|( WO))

‘.
|

Set Theory

it
v

Logic
«O> < Fr «E»r < o



Downward Lowenheim-Skolem

Application of Symbiosis: downward Léwenheim-Skolem (one of many possible versions)
and downward reflection.

Definition

The downwards Léwenheim-Skolem number of L is the least « such that if A =, ¢
then there is a sub-structure B C A s.t. |[B| < x and B [=¢ ¢. Notation: DLST(L) = & |

Definition

The downward structural reflection number for a predicate R is the least « such that
if K is a X1(R)-class of 7-structures (for fixed 7), then for every A € K there is an
elementary sub-structure B < A such that |B| < k and B € K. Notation: DSR(R) = &

Theorem (Bagaria-Vaananen 2015)
Suppose L and R are symbiotic. Then DLST(L) = « iff DSR(R) = k.
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Downward Lowenheim-Skolem

Theorem (Bagaria-Vaananen 2015)
Suppose L and R are symbiotic. Then DLST(L) = & iff DSR(R) = &.

Proof.

0 <« is immediate: let ¢ be an L-sentence and A |= ¢. By condition (1) of
Symbiosis, Mod(¢) is a Ai(R)-class, in particular, a £1(R)-class. So
AE ¢ = Ae Mod(p) = IB < A with |B| < k and B € Mod(¢) = B = ¢.

O = If we just wanted to prove downwards reflection for A;(R) classes and without

elementarity, we could use a direct proof. But this result is stronger. The main
idea is: reflection for ¥;-classes holds in ZFC!

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 30 / 47



Downward Lowenheim-Skolem

Proof.
Let K be a X1(R)-class, let A € K, and let ® be the defining formula.

Let K£* be the class of models (N, E, c¢) such that (N, E) is isomorphic to an R-correct
ZFC*-model (M, €) satisfying (M, €) = ®(c). This is defined using Qr, so by condition
(2) of Symbiosis K* is A(L)-axiomatizable. Therefore there exists ¢ in an extended
language, such that (N, E,c) € K* iff (N, E,c,...) = ¢.

Let Ho be sufficiently large so that A € Hy and Hg = ®(A). Then (Ho, €,A) € K*, so
some extension (Hg, €, A,...) = ¢. Using DLST(L), there is

(N,€,A,...) C (He, €,A,...) such that (N,€,B,...) E ¢ and |N| < k. Thus

(N, € A) € K*, and since K* is closed under isomorphisms, also the transitive collapse
(M, €, A) of (N, €,A) is in K*. But then (M, €) = ®(A), and (M, €) was R-correct,
so by upwards ¥1(R)-absoluteness, ®(.A) is true, and |A4]| < |M| < &.

To show that, additionally, A < A, use a more complicated argument by adding Skolem
functions to the models in C*. O
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Large Cardinal strength

Application:

Theorem

DSR(PwSt) = k iff k is the first supercompact cardinal.

Proof.

It is known that DLST(£?) = & iff & is the first supercompact (Magidor).
So by Symbiosis between £2 and PwSt, the same holds for DSR(£2). [
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Downward Lowenheim-Skolem

Definition

The strict downwards Lowenheim-Skolem number of L is the least x such that if
A=z ¢ and |A| = k, then there is a sub-structure B C A s.t. |B| < k and B = ¢.
Notation: DLST™(£) = &

Definition

The strict downward structural reflection number for a predicate R is the least  such
that if Cis a Xi(R)-class of 7-structures (for fixed 7), then for every A € K such that
|A| = K, there is an elementary sub-structure B < A such that |B| < k and B € K.
Notation: DSR™(R) = &

Theorem (Bagaria-Vaananen 2015)
Suppose L and R are symbiotic. Then DLST™ (L) = « iff DSR™(R) = k.
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Large Cardinal Strength

Theorem (Bagaria-Vaananen)

DLST™ (Luww(l)) = & iff DSR™(Cd) = k iff k is weakly inaccessible.

The proof is:
@ DLST (Lww(l)) =k = & weakly inaccessible.
@ & weakly inaccessible = DLST™ (Luw(l)) = k.
@ The theorem follows from Symbiosis between L., (1) and Cd.
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Large Cardinal Strength

Theorem (Bagaria-Vaananen)

DLST ™ (Luww(l)) = & iff DSR™(Cd) = k iff k is weakly inaccessible.

The proof is:

@ DLST (Lww(l)) =k = & weakly inaccessible.

@ & weakly inaccessible = DLST™ (Luw(l)) = k.

@ The theorem follows from Symbiosis between L., (1) and Cd.
Another example:

@ WRe = the generalized quantifier expressing that < is a well-order of order-type a
regular cardinal.

@ Reg = the set-theoretic predicate “« is a regular cardinal”
@ Lowo(l, WR€) and Reg are symbiotic.

Theorem (Bagaria-Vaananen)

DLST ™ (Luw (I, WRE)) = & iff DSR™(Reg) =  iff i is weakly Mahlo.
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Large Cardinal Strength

We also have the basic case:

Corollary
DLST(Ly,w(WO)) = w.

Proof.

Recall that £,,(WO) is symbiotic with @. But downwards structural
reflection for X1 classes is true in ZFC.

O]
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Other properties of logic

Now, let's look at other properties (work in progress).

Originally, we were interested in the question of compactness of strong
logics L.

Question

Is there a set-theoretic reflection principle for ¥1(R)-classes, which could
be related to compactness of £, for symbiotic £ and R?

Compactness is related to upwards Lowenheim-Skolem principles.
Therefore it's natural to look at upwards reflection principles.
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Upwards Lowenheim-Skolem and reflection

Again, one can consider various definitions.
Definition

The upwards Lowenheim-Skolem number of L is the least k such that if A =z ¢ and
|A| > K, then for every £’ > & there is a super-structure B O A with |B| > &’ and
B = ¢. Notation: ULST(L) = &.

Remarks:

@ One may replace “super-structure” by “elementary extension”. This may
(sometimes) give equivalent definitions.

@ The Hanf number is the same but without the requirement of “super-structure”.
Note that the Hanf number is always defined (by diagonalization) in ZFC, but
ULST(L) usually implies Large Cardinals.

@ There are possible variations, e.g., for sets of sentences instead of just ¢, or

requiring that B is an elementary extension, or even an L-elementary extension,
etc.

Compactness = upwards Léwenheim-Skolem, but not (always) vice versa.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 37 /47



First attempt: “for every X1(R)-class K of 7-structures, if there is A € K with |A| > &,
then for every k' > k there is B € K with A X B and |B| > &'."

«0O>» «Fr < > < > Q>



Upwards reflection

First attempt: “for every X1(R)-class K of T-structures, if there is A € KC with |A] > &,
then for every k' > k there is B € K with A < B and |B| > «’."
But there are several problems.

@ We must be careful about the size of the language .

@ Symbiosis relies on the A-operator. While the A-operator preserves downwards
LST, it does not, in general, preserve upwards LST.
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Solution: bounded version of everything

©

We need something called the bounded A-operator (which Vaananen
had already introduced)

o But then we must also adept the set-theoretic notion of a ¥;-formula
to a bounded version.

©

This requires the new concept: bounded Symbiosis.

o The reflection principle must also be bounded.
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Bounded A

Definition

A class K of 7-structures is ¥ 2(L)-axiomatisable if there is ¢ in some extended
language 7/, such that

@ K={A | IB(BE ¢ and A= B|7)} and

@ for all A there exists a cardinal A4, such that for any 7/-structure B: if B = ¢ and
A = B[ then |B| < Aa.

K is AB(L*)-axiomatisable if both K and its complement are ¥5(£*)-axiomatisable.

Idea: there is a bound on the size by which we need to extend the model.

Vaananen 1980:
o for many logics £ we have A(L) = A®(L).
o for some logics, this is consistently false.

o AP preserves the Hanf number of £.
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> B formula relation

Well . ..since we changed A to AB we also need a corresponding change on the set
theory side!
Definition

A formula ¢(x) in set theory is definably bounding if for some Aq formula v:

Yx(6(x) < Ty (d(x, y) A ply) < Fp(x))

where F is a so-called definable bounding function. This essentially means (modulo
some technicalities) that the class

{(A,B) | F(JA]) = |Bl}

is FOL-definable.

If R is a predicate, then X2(R) and A?(R) is defined in the same way, but with an
additional predicate symbol R.
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Bounded Symbiosis

Definition (Galeotti-K-Vaananen)
L and R are bouned-symbiotic if
@ =, is AB(R), and

@ Every A8(R)-class closed under isomorphisms is AZ(£)-axiomatizable.

Lemma (Galeotti-K-Vaananen)

All known examples of pairs £ and R which are symbiotic, are in fact bounded symbiotic.

Yurii Khomskii (UHH & AUC) Symbiosis and Upwards Reflection 42 / 47



Upwards structural reflection

We also need a corresponding version of upwards structural reflection.

In addition to bounding, we must also put restrictions on the size of
vocabularies.

Definition

Let 7 be a vocabulary of size \. The upwards structural reflection
number for R is the least  such that for every ¥2(R)-class K of
T-structures, if there is A € K with |A| > k, then for every k' > & there is
B € K with A < B and |B| > «’. Notation: USRy(R) = .
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Main result

Theorem (Galeotti-K-Vadnanen)
Suppose L and R are bounded-symbiotic. Then ULST., (L) = k iff USR,(R) = k.

The bound w can be replaced by X\ if \ satisfies suitable definability conditions.

Remarks:

@ Since we consider restricted vocabularies, we also need to restrict the ULST
principle accordingly.

@ This result cannot hold for arbitrary languages, because for A > &, USRA(R) is
always false, while ULST»(£) may be true!
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One application (still in progress)

As an application, we provide lower and upper bounds for ULST(£?).

Lemma (Galeotti-K-Vaananen)

If k is an extendible cardinal, then USR,,(PwSt) < k. By the main theorem, also
ULST.(£?) < &.

Lemma (Galeotti-K-Vaananen)

If ULST,,(L?) = & then there is an n-extendible cardinal, for every n.

Conjecture

ULST.(£?) = & iff » is extendible.
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Connections between logic and set theory

Logic

Set Theory

Need

Downward-LST

Downward-SR

Sym biosis (Bagaria-Vainanen)

Upward-LST Upward-SR Bounded Symbiosis (Galeotti-K-Vasnanen)
Compactness “Every well-order can be 777
extended to a longer
one, within the same
class”
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