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Kurt Gödel Research Center for Mathematical Logic
University of Vienna

Joint work with J. Kąkol, W. Marciszewski and L. Zdomskyy.



Preliminaries

X — an infinite Tychonoff space

Cp(X ) — the space of real-valued continuous functions on X with
the pointwise topology

K — an infinite compact Hausdorff space

C (K ) — the Banach space of real-valued continuous functions on
K with the supremum norm



Preliminaries

Measures

A measure µ on a Tychonoff space X is a real-valued set function
defined on the Borel σ-field Bor(X ) of X , which is regular and
finite, i.e.
‖µ‖ = sup{|µ(A)|+ |µ(B)| : A,B ∈ Bor(X ), A ∩ B = ∅} <∞.

If x ∈ X , then δx is a measure on X (the Dirac measure at x).

A measure µ on X is finitely supported if µ =
∑

x∈F αxδx for some
finite F and non-zero αx ∈ R.

The set F is called the support of µ, denoted by supp(µ), and
‖µ‖ =

∑
x∈F |αx |.



Preliminaries

Measures

A measure µ on a Tychonoff space X is a real-valued set function
defined on the Borel σ-field Bor(X ) of X , which is regular and
finite, i.e.
‖µ‖ = sup{|µ(A)|+ |µ(B)| : A,B ∈ Bor(X ), A ∩ B = ∅} <∞.

If x ∈ X , then δx is a measure on X (the Dirac measure at x).

A measure µ on X is finitely supported if µ =
∑

x∈F αxδx for some
finite F and non-zero αx ∈ R.

The set F is called the support of µ, denoted by supp(µ), and
‖µ‖ =

∑
x∈F |αx |.



The Josefson–Nissenzweig theorem for C (K )-spaces

Theorem (Josefson ’75, Nissenzweig ’75)

For every infinite compact space K there exists a sequence〈
µn : n ∈ ω

〉
of measures on K such that ‖µn‖ = 1 and∫

K fdµn → 0 for every f ∈ C (K ).

An application (one out of many!):

c0 = {x ∈ Rω : x(n)→ 0} with the supremum norm

C (βω× βω) may be written as the sum E ⊕ c0 where E is a closed
subspace, even though C (βω) may not (Cembranos ’84).
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The Josefson–Nissenzweig theorem for Cp(X )-spaces

Theorem (Banakh–Kąkol–Śliwa ’18)

For every infinite Tychonoff space X , TFAE:
1 Cp(X ) may be written as a sum E ⊕ (c0)p where E is a closed

subspace and projections are continuous;
2 X admits a sequence

〈
µn : n ∈ ω

〉
of finitely supported

measures such that ‖µn‖ = 1 and
∫
K fdµn → 0 for every

f ∈ C (X ).

(c0)p = {x ∈ Rω : x(n)→ 0} with the pointwise topology

Definition

For a Tychonoff space X we say that Cp(X ) has the
Josefson–Nissenzweig Property (JNP) if X satisfies (2) of the
theorem. A sequence

〈
µn : n ∈ ω

〉
from (2) is called a

JN-sequence on X .
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The Josefson–Nissenzweig Property of Cp(X )-spaces

Theorem (Banakh–Kąkol–Śliwa ’18)

1 Cp(βω) does not have the JNP.

2 If X contains a non-trivial convergent sequence, then Cp(X )
has the JNP.

3 There exists a compact space K containing many copies of
βω but no non-trivial convergent sequences, yet such that
Cp(K ) has the JNP.
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Properties of JN-sequences

Assume that a space X admits a JN-sequence
〈
µn : n ∈ ω

〉
. Then:

1 for Pn = {x ∈ supp(µn) : µn({x}) > 0} and
Nn = supp(µn) \ Pn we have:

limn ‖µn � Pn‖ = limn ‖µn � Nn‖ = 1/2;

2 every f ∈ C (X ) is bounded on
⋃

n supp(µn);

3 X admits a JN-sequence with pairwise disjoint supports;

4 if X is compact, then either X admits a JN-sequence with
supports of size 2, or limn | supp(µn)| =∞.
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Spaces admitting the JNP

Theorem

If K is a compact space satisfying one of the following conditions,
then Cp(K ) has the JNP:
1 K is the Alexandrov Duplicate of a compact space;

If L is compact, then the Alexandrov Duplicate of L is the space
L× {0, 1} endowed with the topology defined as follows: for every
x ∈ L the point (x , 1) is isolated and basic nhbds of (x , 0) are
given by sets of the form (U × {0}) ∪ ((U \ {x})× {1}), where U
is a nhbd of x in L.

Cp(AD(L)) is isomorphic to Cp(L ∪ α(|L|)).

2 K is the limit of an inverse system based on minimal
extensions;

3 K is a product of at least two infinite compact spaces.
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Minimal extensions

Minimal extensions

A compact space K is obtained from a system of minimal
extensions if K is the inverse limit of a system
〈Kα, πβα : α < β < δ〉 such that:

Kγ is the inverse limit of 〈Kα, πβα : α < β < γ〉,
Kα+1 is a minimal extension of Kα, i.e. there is a unique point
xα ∈ Kα such that

∣∣(πα+1
α

)−1(
xα)
∣∣ = 2 and∣∣(πα+1

α

)−1(
x)
∣∣ = 1 for every x 6= xα,

K0 = 2ω and every Kα is perfect.

Remark: Many consistent examples of Efimov spaces are obtained
by minimal extensions, e.g.

Fedorchuk (♦), Dow and Pichardo-Mendoza (CH), Dow and
Shelah (MA+¬CH) etc.
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Products of compact spaces and the JNP or c0

Theorem

For every infinite compact spaces K and L the space Cp(K × L)
has the JNP. In particular, Cp(K × L) contains a complemented
copy of the space (c0)p.

Theorem (Cembranos ’84, Freniche ’84)

For every infinite compact spaces K and L the Banach space
C (K × L) contains a complemented copy of the space c0.
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Idea of the proof

Fix infinite compact K and L.

1 Ωn = {−1, 1}n, Σn = n × {n}, Ω =
⋃

n Ωn, Σ =
⋃

n Σn

2 define a measure µn on Ωn × Σn:

µn =
∑
s∈Ωn

(i ,n)∈Σn

s(i)

n2n
· δ(s,(i ,n))

3
〈
µn : n ∈ ω

〉
is a JN-sequence on βΩ× βΣ with supports in

Ω× Σ

4 βΩ× βΣ ∼= βω × βω, so Cp(βω × βω) has the JNP
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Idea of the proof, cntd.

5 use the Stone Extension Property to prove that Cp(K × L)
has the JNP:

D ⊆ K ,E ⊆ L — countable discrete

ϕ : ω → D, ψ : ω → E — bijections

Φ: βω → K , Ψ: βω → L — cont. extensions of ϕ and ψ

define a measure νn on K × L as follows:

νn =
∑

(x ,y)∈supp(µn)

µn({(x , y)}) · δ(ϕ(x),ψ(y))

6
〈
νn : n ∈ ω

〉
is a JN-sequence on K × L:∫

K×L
f (x , y)dνn(x , y) =

∫
βω×βω

f (Φ(x),Ψ(y))dµn(x , y)
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Product of pseudocompact spaces

Definition

A Tychonoff space X is pseudocompact if every f ∈ C (X ) is
bounded on X .

Theorem

Let X and Y be two infinite pseudocompact spaces.
1 X × Y need not be pseudocompact.

2 If X or Y is compact, then X × Y is pseudocompact.
3 (Glicksberg ’59) X × Y is pseudocompact if and only if
βX × βY = β(X × Y ).

Corollary

If X and Y are infinite pseudocompact spaces such that X × Y is
pseudocompact, then Cp(X × Y ) has the JNP.
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A problem of Arkhangel’ski

Corollary

Let X and Y be Tychonoff spaces. If X × Y is pseudocompact,
then Cp(X × Y ) ∼= Cp(X × Y )⊕ R.

Cp(X × Y ) ∼= E ⊕ (c0)p ∼= E ⊕ (c0)p ⊕ R ∼= Cp(X × Y )⊕ R

Question (Arkhangel’ski ’82)

Is Cp(X ) linearly homoeomorphic to Cp(X )⊕ R for every infinite
space X?

True, e.g., if X contains a non-trivial convergent sequence or is not
pseudocompact.
False for compact spaces (Marciszewski ’97).

Fact

If X is not pseudocompact, then
Cp(X ) ∼= E ⊕ Rω ∼= E ⊕ Rω ⊕ R ∼= Cp(X )⊕ R.
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Haydon spaces

Construction of a Haydon space

For every A ∈ [ω]ω let uA ∈ A
βω

. Put:

X = ω ∪ {ua : A ∈ [ω]ω}

X with the topology inherited from βω is a Haydon space.

Characterization of Haydon spaces

Let X be a subspace of βω containing ω. TFAE:
1 X is a Haydon space;
2 X is pseudocompact and |X | = 2ω;
3 |X | = 2ω and every A ∈ [ω]ω has a limit point in X .
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Haydon spaces

Properties of Haydon spaces

Let X be a Haydon space. Then:
1 every compact subset of X is finite;

2 Cp(X ) does not have the JNP.

Proof

C (βω) does not have any complemented copy of c0 (Grothendieck
’53, Cembranos ’84). Since βω = βX , the same applies to C (X ).
By the Closed Graph Theorem, Cp(X ) does not have any
complemented copy of (c0)p, so it does not have the JNP.
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Products of Haydon spaces

Theorem

Let X = ω ∪ {uA : A ∈ [ω]ω} be a Haydon space such that for
distinct A,B ∈ [ω]ω the ultrafilters uA, uB are not isomorphic.
Then, the square X × X is not pseudocompact.

Proof

For every disjoint A,B ∈ [ω]ω and bijection f : A→ B the graph
G = {(x , f (x)) : x ∈ A} is a discrete clopen subset of X × X .
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Products of Haydon spaces

Theorem

There exists a Haydon space Y such that Y × Y is
pseudocompact. Consequently, Cp(Y × Y ) has the JNP.

Proof

{Aα : α < 2ω} — an enumeration of [ω]ω

{Bα : α < 2ω} — an enumeration of [ω × ω]ω

for each α < 2ω choose limit points uα ∈ ω∗ of Aα and
(pα, qα) ∈ βω × βω of Bα

Y = ω ∪ {uα, pα, qα : α < 2ω}

Corollary

Let Z = X t Y . Then Z × Z is not pseudocompact, but
Cp(Z × Z ) has the JNP.
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Non-pseudocompact squares of Haydon spaces

Theorem

If any of the axioms from the below list holds, then there exists a
Haydon space X such that Cp(X × X ) does not have the JNP.

1 the Continuum Hypothesis
2 Martin’s axiom
3 there exists an antichain in the Rudin-Keisler ordering

consisting of weak P-points in ω∗

4 d = 2ω ¬ u+

5 axiom (†)

Theorem

Assume that there exist two RK-incompatible weak P-points in ω∗.
Then, there exist Haydon spaces X and Y such that Cp(X × Y )
does not have the JNP.
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Axiom (†)

Axiom (†)
There exists a function A 7→ uA assigning to each A ∈ [ω]ω a weak

P-point uA ∈ A
βω

such that

for every pair (f1, f2) ∈ ωω × ωω there exists a family A ⊆ [ω]ω of
size < 2ω such that

for every A1 6∈ A and A2 ∈ [ω]ω \ {A1}, if f1(uA1), f2(uA2) ∈ ω∗,
then f1(uA1) 6= f2(uA2).

Question

Does (†) hold in ZFC?
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Proof of the theorem

Let X be constructed using (†). Assume X 2 admits a JN-sequence〈
µn : n ∈ ω

〉
.

1 We construct a new disjointly supported JN-sequence〈
νn : n ∈ ω

〉
such that

⋃
n supp(νn) is discrete.

(HERE WE USE WEAK P-POINTS.)
2 We prove that limn |νn|(∆c

X ) = 0 by constructing a disjoint
sequence of clopens

〈
V 1k × V 2k : n ∈ ω

〉
outside of ∆X such

that lim supk |νk |(V 1k × V 2k ) > 0 and
⋃

k V
1
k × V 2k

X×X
is

clopen.

(HERE WE USE THE REST OF (†).)
3 limn |νn|(∆X ) = 1, but ∆X

∼= X and Cp(X ) does not have the
JNP, a contradiction.
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Open questions

Question

Is it consistent that for any infinite pseudocompact space X the
space Cp(X × X ) has the JNP?

Question

Is it consistent that there exists an infinite countably compact
space X such that the space Cp(X × X ) does not have the JNP?
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The end

Thank you for the attention!


