# Definability of maximal families of reals in forcing extensions

Jonathan Schilhan

# Institute of Mathematics, University of Vienna

KGRC Seminar, 01.10.2020

generous support through FWF Project Y1012-N35

< < >> < <</>

Definability of maximal families of reals in forcing extensions

Many types of special sets of reals are central in field such as set theory, topology, measure theory or algebra:

Well-orders, ultrafilters, mad families, Vitali sets ( $E_0$ -transversals), Hamel bases, maximal independent families (mif), maximal sets of orthogonal measures (mof), maximal Turing-independent families, maximal cofinitary groups (mcg), eventually different families (med), towers, scales (in  $\omega^{\omega}$ ), ...

Their existence is guaranteed by the Axiom of Choice, which has the controversy of not giving explicit definitions.

Under certain circumstances though, these sets can be *nicely definable* (OD, OD( $\mathbb{R}$ ), projective,  $\Delta_2^1$ ,  $\Sigma_2^1$ ,  $\Pi_1^1$ , Borel).

One of the earliest results in this direction is due to Gödel:

Theorem (Gödel 1940)

There is a  $\Delta_2^1$ -definable well-order of the reals in the constructible universe L.

The technique is very general and can be used to construct  $\Delta_2^1$  witnesses in L for all examples above. In some cases, this is the best possible:

#### Fact

A Vitali set is a non-measurable set of reals. In particular, it cannot be  $\Sigma_1^1 \cup \Pi_1^1$ .

E.g. the same holds true for ultrafilters. Also well-orders.

Theorem (Erdős, Kunen, Mauldin 1981)

There is a  $\Pi_1^1$  scale in L.

Their technique was streamlined by A. Miller who applied it to many other examples.

Theorem (Miller 1989)

There is a  $\Pi_1^1$  mad family, maximal independent family, Hamel basis in L.

On the other hand, it was known that  $\Sigma_1^1$  definitions typically do not work.

Theorem (Mathias 1977) There is no  $\Sigma_1^1$ -definable mad family.

Theorem (Miller 1989)

There is no  $\Sigma_1^1$ -definable maximal independent family or Hamel basis.

Some mysterious exceptions:

Theorem (Horowitz, Shelah 2016)

There is a Borel mcg and med.

#### Recent results

In the last decade, research in the area has become very active (with a lot of emphasis on mad families). A few new phenomena have been discovered.

For example:

- If there is a  $\Sigma_2^1(r)$  mad family, then there is also a  $\Pi_1^1(r)$  one. (Törnquist 2013)
- If there is a Σ<sup>1</sup><sub>2</sub>(r) mif, then there is also a Π<sup>1</sup><sub>1</sub>(r) one. (Brendle, Fischer, Khomskii 2019)
- If there is a  $\Sigma_2^1(r)$  ultrafilter, then there is a  $\Pi_1^1(r)$  ultrafilter base. (S. 2019)

Also:

►

• If there is a 
$$\Sigma_2^1(r)$$
 mad family, then  $\omega_1 = \omega_1^{L[r]}$ .

• If there is a 
$$\Sigma_2^1(r)$$
 mif, then  $\omega_1 = \omega_1^{L[r]}$ .

In particular, we can not be too far away from L for  $\Sigma_2^1$  definability.

#### Recent results

So far we have only mentioned positive definability results in *L*. What happens in forcing extensions of *L*?

#### Fact

(V=L) There is a  $\Pi_1^1$ -definable Cohen-, Sacks-, Random-, Miller-indestructible mad family.

Known techniques for indestructible mad families + making the construction  $\Sigma_2^1$ -definable + evaluates to the same set in the extension +  $\Sigma_2^1 \rightarrow \Pi_1^1$ 

What about other forcing notions?

# Theorem (Brendle, Khomskii 2013)

There is a  $\Pi_1^1$  mad family in the Hechler extension of L.

Completely different technique: All mad families in L are destroyed. Really the **definition** is preserved.

# Borelized cardinal invariants

 $\begin{array}{l} \mbox{Definition} \\ \mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \mbox{ is a mad family} \} \\ \mathfrak{a}_{\mathcal{B}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \pmb{\Delta}_1^1, \bigcup \mathcal{B} \mbox{ is a mad family} \} \\ \mbox{Obviously } \mathfrak{a}_{\mathcal{B}} \leq \mathfrak{a}. \mbox{ Note that if there is a } \pmb{\Sigma}_2^1 \mbox{ mad family, then } \mathfrak{a}_{\mathcal{B}} = \aleph_1 \ (\mathfrak{a}_{\mathcal{B}} > \aleph_0 \mbox{ since there is no Borel mad family}). \end{array}$ 

Brendle and Khomskii in fact first showed

Theorem

 $\mathfrak{a}_B = \aleph_1$  in the Hechler model (so  $CON(\mathfrak{a}_B < \mathfrak{b} = \mathfrak{a}))$ ).

They construct a sequence  $\langle B_{\alpha} : \alpha < \omega_1 \rangle$  of Borel sets coded in *L*, such that  $\Vdash \bigcup_{\alpha < \omega_1} B_{\alpha}$  is a mad family. Then, using the standard techniques, this construction can be turned into a  $\Sigma_2^1$ -definition.

# Hypergraphs

Ultimate goal: Understand the definability of various types of families in forcing extensions of L.

Observation: Many of the examples we gave can be framed as maximal independent sets in hypergraphs.

#### Definition

A hypergraph on a set X is a collection E (the edges) of finite non-empty subsets of X, i.e.  $E \subseteq [X]^{\leq \omega} \setminus \{\emptyset\}$ . We say that  $Y \subseteq X$  is *E-independent* if  $[Y]^{\leq \omega} \cap E = \emptyset$ . Y is maximal *E-independent* if Y is maximal under inclusion as an *E*-independent subset of X.

If X is a Polish space, then  $[X]^{<\omega}$  also has a natural Polish topology and we can study definable hypergraphs E and definable maximal E-independent sets.

#### Fact

In L, every analytic hypergraph on a Polish space X has a  $\Delta_2^1$  maximal independent set.

Note:  $\mathbf{\Delta}_2^1 \leftrightarrow \mathbf{\Sigma}_2^1$ 

# Examples

# Example (MIF)

 $Y \subseteq \mathcal{P}(\omega)$  is an independent family if for all finite disjoint  $A, B \subseteq Y$ ,  $\bigcap_{x \in A} x \cap \bigcap_{x \in B} \omega \setminus x$  is infinite. Letting

$$E_i := \{A \dot{\cup} B \in [\mathcal{P}(\omega)]^{<\omega} : \bigcap_{x \in A} x \cap \bigcap_{x \in B} \omega \setminus x \text{ is finite} \}$$

an independent family is an  $E_i$ -independent set.

The definability of maximal independent families has been recently studied by Brendle, Fischer and Khomskii. One of their main open questions was

#### Question

Is it consistent that  $i > \aleph_1$ , while there is a  $\Pi_1^1$  maximal independent family? Is  $i_B < i$  consistent?

Can we destroy all ground model mif's while preserving a  $\Pi_1^1$  definition?

# Examples

### Example (Ultrafilter)

Let  $E_{u} := \{A \in [\mathcal{P}(\omega)]^{<\omega} : \bigcap A \text{ is finite}\}$ . Then an ultrafilter is a maximal  $E_{u}$ -independent set.

In a recent paper, we studied the definability of ultrafilters and asked

#### Question

Is it consistent that  $u > \aleph_1$ , while there is a  $\Delta_2^1$  ultrafilter? Is  $u_B < u$  consistent?

Can we destroy all ground model ultrafilters (ultrafilter bases) while preserving a  $\Delta_2^1$  definition?

# Examples

# Example (Hamel basis)

Let  $E_h := \{A \in [\mathbb{R}]^{<\omega} : A \text{ is linearly dependent over } \mathbb{Q}\}$ . Then a Hamel basis is a maximal  $E_h$ -independent set.

Every Hamel basis has size  $2^{\aleph_0}$ . This is reflected by the fact that adding a single real destroys every ground model Hamel basis.

#### Question

Is it consistent that  $\neg$  CH, while there is a  $\Delta_2^1$  Hamel basis?

Can we destroy all ground model Hamel bases (i.e. add a new real) while preserving a  $\Delta_2^1$  definition?

For mad families, Vitali sets or mof's, 2-dimensional hypergraphs (i.e. usual graphs) suffice.

# Theorem (Schrittesser 2016)

After forcing with a csi of Sacks forcing over L, every analytic (2-dimensional hyper)graph on a Polish space has a  $\Delta_2^1$  maximal independent set.

Adding a single real, destroys every ground model maximal orthogonal family of measures.

< □ > < □ > 11/37

How to increase u and i? How to destroy ultrafilters and maximal independent families (and, well, Hamel bases)? Add splitting reals!

#### Definition

```
A real x \in [\omega]^{\omega} is splitting over V if for every y \in [\omega]^{\omega} \cap V, |x \cap y| = \omega and |y \setminus x| = \omega.
```

Classical forcing notions adding splitting reals are: Cohen, Random, Silver and forcings adding dominating reals.

Unfortunately they don't work:

# Theorem (S.)

In extensions via the posets above there are reals that are splitting over any  $\Sigma_2^1(r)$  set with the finite intersection property, for any  $r \in V$ . (for Cohen, Random, Silver: any OD(V) set)

(For a definable independent family, there are countably many (similarly) definable families with the FIP so that any splitting real over all of them witnesses the non-maximality of it.)

# Splitting forcing

There is another less known forcing adding splitting reals.

#### Definition

A set  $A \subseteq 2^{<\omega}$  is called fat if there is  $m = m(A) \in \omega$  so that for every  $n \ge m$ ,  $i \in 2$ , there is  $s \in A$  so that s(n) = i. Let  $T \subseteq 2^{<\omega}$  be a perfect tree. Then T is a splitting tree if for every  $s \in T$ ,  $T_s$  is fat. (Recall:  $T_s = \{t \in T : t \not\perp s\}$ ) Splitting forcing SP consists of all splitting trees ordered by inclusion ( $T \le S$  iff  $T \subseteq S$ ), as usual.

### Fact

- ▶ SP adds a generic splitting real  $x_G \in 2^{\omega} (\cong \mathcal{P}(\omega))$ ,
- ▶ SP is proper (Axiom A),
- ▶ SP has continuous reading of names: whenever  $\dot{y}$  is a name for an element of a Polish space X (coded in the ground model),  $S \in SP$ , there is  $T \leq S$  and  $f : [T] \rightarrow X$  continuous such that  $T \Vdash \dot{y} = f(x_G)$
- V<sup>SP</sup> is a minimal extension of V.

Recall: Sacks forcing S consists of all perfect subtrees of  $2^{<\omega}$ .

< □ > < □ > 13/37

#### How to preserve?

Does splitting forcing work? Can we maybe treat ultrafilters and maximal independent families in the same way? What about Hamel bases?

Maybe we should first ask a more general question: What does it mean for a forcing  $\mathbb{P}$  to preserve a union of Borel sets  $Y = \bigcup \mathcal{B} \subseteq X$  maximal *E*-independent? Let  $\dot{y}$  be a  $\mathbb{P}$ -name for an element of X. Potentially  $\dot{y}$  could be a threat to the maximality of (the reinterpretation of) Y. Say  $\mathcal{B}$  is closed under finite unions.

Then, necessarily, for a dense set of  $q \in \mathbb{P}$ , there is  $B \in \mathcal{B}$  so that

- 1. either  $q \Vdash \dot{y} \in B$ ,
- 2. or  $q \Vdash \{\dot{y}\} \cup B$  is not *E*-independent.

On the other hand the following is sufficient:

For every name  $\dot{y}$ , every analytic hypergraph H and  $p \in \mathbb{P}$ , there is  $q \leq p$  and an H-independent Borel set B such that

- 1. either  $q \Vdash \dot{y} \in B$ ,
- 2. or  $q \Vdash \{\dot{y}\} \cup B$  is not *H*-independent.

< □ > < □ > 14/37

# How to construct?

Why?

Let  $\langle \dot{y}_{\alpha}, \boldsymbol{p}_{\alpha} : \alpha < \omega_1 \rangle$  enumerate all pairs of (nice)  $\mathbb{P}$ -names for elements of X( $|\mathbb{P}| = \aleph_1$  for now,  $\mathbb{P}$  proper) and conditions in  $\mathbb{P}$ . We recursively construct Borel sets  $\langle B_{\alpha} : \alpha < \omega_1 \rangle$ .

At stage  $\alpha$ : Let  $H_{\alpha}$  be the hypergraph on X where  $\{x_0, \ldots, x_{n-1}\} \in H_{\alpha}$  iff  $\{x_0, \ldots, x_{n-1}\} \cup \bigcup_{i < \alpha} B_i$  is not E-independent. Then there is  $q \leq p_{\alpha}$  and an  $H_{\alpha}$ -independent Borel set B so that

- 1. either  $q \Vdash \dot{y}_{\alpha} \in B$ ,
- 2. or  $q \Vdash \{\dot{y}_{\alpha}\} \cup B$  is not *H*-independent.

Translated this means that  $B_{\alpha} = B \cup \bigcup_{i < \alpha} B_i$  is *E*-independent and

- 1. either  $q \Vdash \dot{y}_{\alpha} \in B_{\alpha}$ ,
- 2. or  $q \Vdash \{\dot{y}_{\alpha}\} \cup B_{\alpha}$  is not *E*-independent.

Finally let  $Y = \bigcup_{\alpha < \omega_1} B_{\alpha}$ . By genericity, we have taken care of every potential threat  $\dot{y}$ .

< □ > < □ > 15/37

# Combinatorial reformulation

Remember the desirable property:

For every name  $\dot{y}$ , every analytic hypergraph H and  $p \in \mathbb{P}$ , there is  $q \leq p$  and an H-independent Borel set B such that

- 1. either  $q \Vdash \dot{y} \in B$ ,
- 2. or  $q \Vdash \{\dot{y}\} \cup B$  is not *H*-independent.

If  $\mathbb{P}$  is a tree forcing (say subtrees of  $2^{<\omega}$ ) with continuous reading of names, we can forget about names and pull everything back to conditions  $T \in \mathbb{P}$ :

For every analytic hypergraph H on  $2^{\omega}$  and  $T \in \mathbb{P}$ , there is  $S \leq T$  such that

- 1. either [S] is H-independent,
- 2. or there are continuous functions  $\phi_0,\ldots,\phi_{N-1}\colon [S]\to 2^\omega$  so that

$$\bigcup_{i < N} \phi_i''[S] \text{ is } H\text{-independent, but } \forall x \in [S](\{x\} \cup \{\phi_0(x), \dots, \phi_{n-1}(x)\} \in H).$$

This is a purely combinatorial statement about trees in  $\mathbb{P}$ .

16/37

# Mutual Cohen genericity

The key idea is going to be mutual genericity.

#### Definition

Let *M* be a countable transitive model of set theory (ctm),  $X \in M$  a (code for a) Polish space. Then  $x \in X$  is called *Cohen generic in X* over *M* if for every open dense subset  $O \in M$  (coded in *M*) of *X*,  $x \in O$ .  $x_0, \ldots, x_{n-1} \in X$  are *mutually Cohen generic* (*mCg*) *in X* over *M* if  $(y_0, \ldots, y_{n'-1})$  is generic in  $X^{n'}$  over *M*, where  $y_0, \ldots, y_{n'-1}$  enumerate  $x_0, \ldots, x_{n-1}$ .

#### Lemma

Let M be a ctm,  $T \in M$  a perfect subtree of  $2^{<\omega}$ , i.e.  $T \in S$ .

- There is S ≤ T, a perfect tree (i.e. S ∈ S), so that any x<sub>0</sub>,..., x<sub>n-1</sub> ∈ [S] are mCg in [T] over M.
- ▶ If  $T \in SP$ , there is  $S \leq T$ ,  $S \in SP$ , so that any  $x_0, \ldots, x_{n-1} \in [S]$  are mCg in [T] over M.
- ▶ In fact, if  $\mathbb{P}$  is any weighted tree forcing, and  $T \in \mathbb{P}$  then there is  $S \leq T$ ,  $S \in \mathbb{P}$ , so that any  $x_0, \ldots, x_{n-1} \in [S]$  are mCg in [T] over M.

#### Definition

A tree forcing  $\mathbb{P}$  is *weighted*, if ...something technical...

 $\mathbb{S}$  and  $\mathbb{SP}$  are examples + generalizations.

< □ > < □ > 17/37

# Key Lemma 1

#### Key Lemma

Let H be an analytic hypergraph on X. Then there is a ctm M so that

- 1. either, for any  $x_0, \ldots, x_{n-1} \in X$  that are mCg over M,  $\{x_0, \ldots, x_{n-1}\}$  is *H*-independent,
- 2. or, there are  $c_0, \ldots, c_{N-1} \in X$  and a non-empty open set  $O \subseteq X$ , so that for any  $x \in O$  Cohen generic over M,  $\{c_0, \ldots, c_{N-1}\}$  is H-independent but  $\{c_0, \ldots, c_{N-1}\} \cup \{x\} \in H$ .

#### Proof.

Let  $M_0$  be the transitive collapse of a countable elementary model containing H and X. Suppose 1. fails for  $M = M_0$ . Then there is a counter-example of minimal size:  $c_0, \ldots, c_{N-1}, c_N$  mCg over M,  $\{c_0, \ldots, c_{N-1}\}$  H-independent, but  $\{c_0, \ldots, c_{N-1}, c_N\} \in H$ . Consider  $M = M_0[c_0, \ldots, c_{N-1}]$ . As  $c_N$  is generic over M, there is an open set (a condition)  $O \in M$  with  $c_N \in O$  and

$$O \Vdash \{\dot{c}\} \cup \{c_0,\ldots,c_{N-1}\} \in H.$$

Thus for any generic  $x \in O$ ,  $M[x] \models \{x, c_0, \dots, c_{N-1}\} \in H$ . By  $\Sigma_1^1$ -absoluteness indeed,  $\{x, c_0, \dots, c_{N-1}\} \in H$ .

# Key Lemma 1

#### Key Lemma

Let H be an analytic hypergraph on X. Then there is a ctm M so that

- 1. either, for any  $x_0, \ldots, x_{n-1} \in X$  that are mCg over M,  $\{x_0, \ldots, x_{n-1}\}$  is *H*-independent,
- 2. or, there are  $c_0, \ldots, c_{N-1} \in X$  and a non-empty open set  $O \subseteq X$ , so that for any  $x \in O$  Cohen generic over M,  $\{c_0, \ldots, c_{N-1}\}$  is H-independent but  $\{c_0, \ldots, c_{N-1}\} \cup \{x\} \in H$ .

Putting things together:

H a hypergraph on [T], T a condition. Applying the key lemma, get the model M:

- 1. Let  $S \leq T$  be as in the first lemma: all  $x_0, \ldots, x_{n-1} \in [S]$  are mCg in [T] over  $M \rightarrow \{x_0, \ldots, x_{n-1}\} \notin H \rightarrow [S]$  is *H*-independent
- Define φ<sub>0</sub>,..., φ<sub>N-1</sub> constant, φ<sub>i</sub>(x) = c<sub>i</sub>. Let s ∈ T, [s] ⊆ O and apply the first lemma to get S ≤ T<sub>s</sub>: every x ∈ [S] is Cohen generic in [T] ∩ O over M →

 $\bigcup_{i < N} \phi_i''[S] \text{ is } H\text{-independent, but } \forall x \in [S](\{x\} \cup \{\phi_0(x), \dots, \phi_{n-1}(x)\} \in H).$ 

< □ > < □ > 19/37

# Partial answer/result

#### Theorem

(V=L) For any  $\Sigma_1^1(r)$  hypergraph E, there is a (ground model coded)  $\Delta_2^1(r)$  maximal E-independent set after adding a single Sacks or a single splitting real (via  $\mathbb{SP}$ ). We can preserve the **definition** of an ultrafilter/mif/Hamel basis while destroying all ultrafilters/mifs/Hamel bases.

More generally: Any proper weighted tree forcing with continuous reading of names.

This is a good first step. But this is far from a model where  $\mathfrak{u}$ ,  $\mathfrak{i}$  or  $\mathfrak{c}$  is greater than  $\aleph_1$ .

What about adding more than one real?  $\mathbb{SP}^k$ ,  $\mathbb{S}^k$  for  $k \in \omega$ ?

- ► Conditions are easy to work with: (T<sub>0</sub>,..., T<sub>k-1</sub>).
- We have a natural analogue of continuous reading of names:  $f: \prod_{i < k} [T_i] \to X$ ,  $(T_0, \ldots, T_{k-1}) \Vdash f(\bar{x}_G) = \dot{y}$ .
- Maybe a similar argument works? The combinatorial reformulation is straightforward: For every hypergraph H on (2<sup>ω</sup>)<sup>k</sup>, T̄ ∈ ℙ<sup>k</sup>, there is S̄ ≤ T̄ so that either, [S̄] = ∏<sub>i < k</sub>[S<sub>i</sub>] is H-independent or, there are φ<sub>0</sub>,..., φ<sub>N-1</sub> continuous, ⋃<sub>i < N</sub> φ<sub>i</sub><sup>''</sup>[S̄] is H-independent, {x̄, φ<sub>i</sub>(x̄) : i < N} ∈ H for x̄ ∈ [S̄].</p>

< □ > < □ > \_20/37

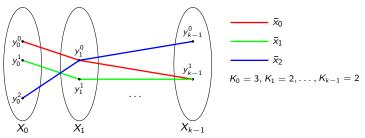
#### Mutual Cohen genericity revisited

#### Definition

Let *M* be a ctm,  $\langle X_l : l < k \rangle \in M$  be (codes for) Polish spaces. Then we say that  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in \prod_{l < k} X_l$  are mutually Cohen generic (mCg) with respect to the product  $\prod_{l < k} X_l$  over *M*, if

$$(y_0^0,\ldots,y_0^{K_0-1},\ldots,y_{k-1}^0,\ldots,y_{k-1}^{K_{k-1}-1})$$
 is Cohen generic in  $\prod_{l < k} X_l^{K_l}$  over  $M$ ,

where  $\langle y_l^i : i < K_l \rangle$  is some, equivalently any, enumeration of  $\{x_i(l) : i < n\}$  for each l < k.



A D > A D > 21/2
A

Definability of maximal families of reals in forcing extensions

# Key Lemma 2: finite products

#### Lemma

Let M be a ctm,  $T_0, \ldots, T_{k-1} \in M \cap \mathbb{P}$ , where  $\mathbb{P}$  is a weighted tree forcing (e.g. S or  $S\mathbb{P}$ ). Then there are  $S_0 \leq T_0, \ldots, S_{k-1} \leq T_{k-1}$  so that any  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in \prod_{i < k} [S_i]$  are mCg wrt  $\prod_{i < k} [T_i]$  over M.

#### Key Lemma

Let H be an analytic hypergraph on  $(2^{\omega})^k$ . Then there is a ctm M so that

- 1. either, for any  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in (2^{\omega})^k$  that are mCg over  $M, \{\bar{x}_0, \ldots, \bar{x}_{n-1}\}$  is *H*-independent,
- 2. or, there are  $\phi_0, \ldots, \phi_{N-1} : (2^{\omega})^k \to (2^{\omega})^k$  continuous,  $\bar{s} \in (2^{<\omega})^k$ , so that for any mCg  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{s}]$  over M,  $\{\phi_i(\bar{x}_j) : i < N, j < n\}$  is H-independent but  $\{\bar{x}_0, \phi_i(\bar{x}_0) : i < N\} \in H$ .

#### Proof.

Much more complicated than before. Uses ideas from Harrington's forcing proof of Halpern-Läuchli.

< □ ▶ < □ ▶ 22/37

# Key Lemma 2: finite products

#### Example

Let k = 2,  $H \subseteq [2^{\omega} \times 2^{\omega}]^2$  where  $\{\bar{x}_0 \neq \bar{x}_1\} \in H$  iff  $x_0(0) = x_1(0)$ .

Case 1 is impossible. So we are in case 2: Let  $c \in 2^{\omega}$  be arbitrary,  $c \in M$  a ctm and let  $\phi(\bar{x}) = (x(0), c)$ . Then  $\{\bar{x}, \phi(\bar{x})\} \in H$  for every  $\bar{x}$  with  $x(1) \neq c$  (e.g.  $\bar{x}$  generic over M). On the other hand, if  $\phi(\bar{x}_0) \neq \phi(\bar{x}_1)$ , then  $\phi(\bar{x}_0)(0) \neq \phi(\bar{x}_1)(0)$  so  $\{\phi(\bar{x}_0), \phi(\bar{x}_1)\} \notin H$ .

#### Example

Let k = 2,  $H \subseteq [2^{\omega} \times 2^{\omega}]^2$  where  $\{\bar{x}_0 \neq \bar{x}_1\} \in H$  iff  $x_0(0) = x_1(0)$  or  $x_0(1) = x_1(1)$ .

Again, case 1 is impossible. Instead of a constant  $c \in 2^{\omega}$ , let  $f: 2^{\omega} \to 1^{\frown}2^{\omega}$  be a continuous injection,  $f \in M$  a ctm and let  $\phi(\bar{x}) = (x(0), f(x(0)))$ ,  $\bar{s} = (\emptyset, \langle 0 \rangle)$ . Then  $\{\bar{x}, \phi(\bar{x})\} \in H$  for every  $\bar{x} \in [\bar{s}]$ . If  $\phi(\bar{x}_0) \neq \phi(\bar{x}_1)$ , then  $x_0(0) \neq x_1(0)$  and then  $\phi(\bar{x}_0)$  and  $\phi(\bar{x}_1)$  are different in both coordinates, so  $\{\phi(\bar{x}_0), \phi(\bar{x}_1)\} \notin H$ .

# Partial answer/result 2

#### Theorem

(V=L) For  $\Sigma_1^1(r)$  hypergraph E, there is a  $\Delta_2^1(r)$  maximal E-independent set after forcing with  $\mathbb{S}^k$  or  $\mathbb{SP}^k$ ,  $k \in \omega$ .

More generally: any finite product of proper weighted tree forcings with crn, e.g.  $\mathbb{S}^{k_0}\times\mathbb{SP}^{k_1}.$ 

Great! We only need to generalize to infinite products. The csp of  $\mathbb{S},\,\mathbb{SP}$  is proper and has continuous reading of names.

#### Counterexample

Consider  $E_1$  on  $(2^{\omega})^{\omega}$  where  $\{\bar{x}_0 \neq \bar{x}_1\} \in E_1$  iff  $\forall^{\infty} n \in \omega(x_0(n) = x_1(n))$ . Let  $(S_i)_{i \in \omega}$  be perfect trees (a condition in  $\mathbb{S}^{\omega}$  or  $\mathbb{SP}^{\omega}$ ). Then  $\prod_{i \in \omega} [S_i]$  is never  $E_1$ -independent (i.e. a partial transversal for  $E_1$ ). On the other hand, any continuous  $\phi \colon \prod_{i \in \omega} [S_i] \to \prod_{i \in \omega} [S_i]$  so that

$$\{\phi(\bar{x}), \bar{x}\} \in E_1$$
 for every  $\bar{x} \in \prod_{i \in \omega} [S_i]$  and  $\phi'' \prod_{i \in \omega} [S_i]$  is  $E_1$ -independent,

is a continuous selector for  $E_1 \upharpoonright \prod_{i \in \omega} [S_i] \cong_B E_1$ .

< □ ▶ < 🗗 ▶ 24/37

# The iteration

### Corollary

In an extension by  $\mathbb{SP}^{\omega}$ , there is no  $\Delta_2^1$ -definable  $E_1$ -transversal. For  $\mathbb{S}^{\omega}$ , this follows by a simpler homogeneity argument and holds for all sets definable over the ground model.

We could ask:

#### Question

Can we characterize hypergraphs for which countable support products of, say  $\mathbb{S},$  work? For which hypergraphs does the combinatorial reformulation hold true?

Iterations on the other hand seem promising, since conditions are "smaller" than in products. For instance, the argument for  $E_1$  fails:

#### Fact

For any  $\bar{p} \in \mathbb{S}^{*\omega}$ , there is  $\bar{q} \leq \bar{p}$  so that for any  $\mathbb{S}^{*\omega}$ -generics  $\bar{x}_0 \neq \bar{x}_1$  with  $\bar{q}$  in the corresponding generic filter,  $x_0(n) \neq x_1(n)$  for all  $n \geq \min\{m : x_0(m) \neq x_1(m)\}$ .

Conditions in iterations are harder to work with though. Also what does continuous reading of names mean now?

< □ > < □ > \_25/37

# Good master conditions

Let  $\langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta \leq \lambda \rangle$  be a countable support iteration, where for each  $\beta < \lambda$ ,  $\mathbb{Q}_{\beta}$  is a tree forcing,  $\mathbb{Q}_{\beta}$  is an analytic subset of a Polish space and there is a sequence  $\langle \leq_{\beta,n} : n \in \omega \rangle$  of analytic partial orders on  $\mathbb{Q}_{\beta}$  witnessing the Axiom A with continuous reading of names.

Assume each  $\mathbb{Q}_{\beta}$  consists of subtrees of  $2^{<\omega}$ .

#### Lemma

For any  $\bar{p} \in \mathbb{P}_{\lambda}$ , M a countable elementary model with  $\mathbb{P}_{\lambda}, \bar{p} \in M$ , there is  $\bar{q} \leq \bar{p}$  a master condition over M together with a unique closed set  $[\bar{q}] \subseteq (2^{\omega})^{\lambda}$  so that

1.  $\bar{q} \Vdash \bar{x}_G \in [\bar{q}]$ ,

for every  $\beta < \lambda$ ,

- 2.  $\bar{q} \Vdash \dot{q}(\beta) = \{ s \in 2^{<\omega} : \exists \bar{z} \in [\bar{q}](\bar{z} \upharpoonright \beta = \bar{x}_G \upharpoonright \beta \land s \subseteq z(\beta)) \},$
- the map sending x̄ ∈ [q̄] ↾ β to {s ∈ 2<sup><ω</sup> : ∃z̄ ∈ [q̄](z̄ ↾ β = x̄ ∧ s ⊆ z(β))} is continuous and maps to Q<sub>β</sub>,

and for every name  $\dot{y} \in M$  for an element of a Polish space X,

4. there is a continuous function  $f : [\bar{q}] \to X$  so that  $\bar{q} \Vdash \dot{y} = f(\bar{x}_G)$ .

Moreover, there is a countable set  $A \subseteq \lambda$  so that  $[\bar{q}] = (2^{\omega})^{\lambda \setminus A} \times [\bar{q}] \upharpoonright A$  and all continuous functions above are supported on A.

 $\bar{q}$  is called a good master condition over M.

< □ > < □ > \_26/37

#### Good master conditions

On the other hand: whenever A is countable,  $C \subseteq (2^{\omega})^A$  is a closed set where for each  $\beta \in A$  and  $\bar{x} \in C \upharpoonright \beta$ :

$$\{s \in 2^{<\omega} : \exists \bar{z} \in C(\bar{z} \upharpoonright \beta = \bar{x} \land s \subseteq z(\beta))\} \in \mathbb{Q}_{\beta},$$

then there is a good master condition  $\bar{q} \in \mathbb{P}_{\lambda}$  such that  $[\bar{q}] \upharpoonright A \subseteq C$ .

Remember that for any perfect tree  $T \subseteq 2^{<\omega}$ , there is a canonical homeomorphism  $\eta_T : [T] \to 2^{\omega}$ . If  $\bar{q}$  is a good master condition and  $A \subseteq \lambda$  as before, we can use this to define a canonical homeomorphism

$$\Phi_{\bar{q}}\colon [\bar{q}] \upharpoonright A \to (2^{\omega})^{\alpha},$$

where  $\alpha = \operatorname{otp}(A)$ , witnessed by  $\iota \colon A \to \alpha$ , and for each  $\beta \in A$ ,  $\bar{x} \in [\bar{q}] \upharpoonright A$ ,

$$\Phi_{\bar{q}}(\bar{x})(\iota(\beta)) = \eta_{\mathcal{T}}(x(\beta)),$$

with  $T = \{ s \in 2^{<\omega} : \exists \bar{z} \in [\bar{q}] \upharpoonright A(\bar{z} \upharpoonright \beta = \bar{x} \upharpoonright \beta \land s \subseteq z(\beta)) \}.$ 

< □ < □ < □ < □ < 27/37</li>

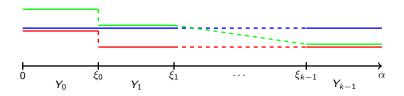
# Mutual Cohen genericity revisited again

This time we have an infinite product  $(2^{\omega})^{\alpha}$ .

#### Definition

Let  $\alpha < \omega_1$ , M a ctm with  $\alpha \in M$ . Then we say that  $\bar{x}_0, \ldots, \bar{x}_{n-1}$  are mCg with respect to the product  $\prod_{\beta < \alpha} 2^{\omega}$  over M, if there is a partition  $\xi_0 = 0 < \cdots < \xi_k = \alpha$ ,  $k \in \omega$ , so that

$$ar{x}_0,\ldots,ar{x}_{n-1}$$
 are mCg with respect to  $\prod_{l< k} Y_l$  over M,



where  $Y_l = (2^{\omega})^{[\xi_l, \xi_{l+1})}$ , l < k.

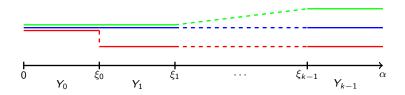
Definability of maximal families of reals in forcing extensions

Institute of Mathematics, University of Vienna

# Mutual Cohen genericity revisited again

#### Definition

Let  $\alpha < \omega_1$ , M a ctm with  $\alpha \in M$ . Then we say that  $\bar{x}_0, \ldots, \bar{x}_{n-1}$  are strongly mCg with respect to the product  $\prod_{\beta < \alpha} 2^{\omega}$  over M, if they are mCg (as before) and for any i, j < n if  $\xi = \min\{\beta : x_i(\beta) \neq x_j(\beta)\}$ , then for all  $\beta \ge \xi$ ,  $x_i(\beta) \neq x_j(\beta)$ .



#### Key Lemma 3: infinite products

#### Key Lemma

Let  $\alpha < \omega_1$  and H an analytic hypergraph on  $(2^{\omega})^{\alpha}$ . Then there is a ctm M,  $\alpha \in M$ , so that

- 1. either, for any  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in (2^{\omega})^{\alpha}$  that are strongly mCg over M (wrt  $\prod_{\beta < \alpha} 2^{\omega}$ ),  $\{\bar{x}_0, \ldots, \bar{x}_{n-1}\}$  is H-independent,
- 2. or, there are  $\phi_0, \ldots, \phi_{N-1} : (2^{\omega})^{\alpha} \to (2^{\omega})^{\alpha}$  continuous,  $\bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega}$ , so that for any strongly mCg  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{s}]$  over M (wrt  $\prod_{\beta < \alpha} 2^{\omega}$ ),  $\{\phi_i(\bar{x}_j) : i < N, j < n\}$  is H-independent but  $\{\bar{x}_0, \phi_i(\bar{x}_0) : i < N\} \in H$ .

 $\bigotimes_{\beta < \alpha} 2^{<\omega} \text{ is the set of finite partial functions } \alpha \to 2^{<\omega}. \ \bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega} \text{ defines a basic open set } [\bar{s}] \text{ of } (2^{\omega})^{\alpha}.$ 

#### Sketch of the limit case.

Assume the statement is true for all  $\xi < \alpha$ . We define a hypergraph  $H_{\xi}$  on  $(2^{\omega})^{\xi}$  for every  $\xi < \alpha$ , where  $\{\bar{x}_0, \ldots, \bar{x}_{n-1}\} \in H_{\xi} \cap [(2^{\omega})^{\xi}]^n$  iff  $\exists p \in (\bigotimes_{\beta \in [\xi, \alpha)} 2^{<\omega})^n$  so that

$$p \Vdash \{\bar{x}_0 \frown \dot{c}_0, \ldots, \bar{x}_{n-1} \frown \dot{c}_{n-1}\} \in H.$$

If 1. holds true for every  $H_{\xi}$ , as witnessed by  $M_{\xi}$ , then we find  $M \ni M_{\xi}$  for every  $\xi < \alpha$  and 1. holds true for H and M.

Definability of maximal families of reals in forcing extensions

#### Key Lemma 3: infinite products

If 2. holds for some  $H_{\xi}$ , witnessed by M' and  $\phi'_0, \ldots, \phi'_{N-1}$ ,  $\bar{s}'$ , then we can assume wlog that there is a fixed p so that

$$p \Vdash \{\bar{x}^{\frown}\dot{c}_0, \phi'_0(\bar{x})^{\frown}\dot{c}_1, \dots \phi'_{N-1}(\bar{x})^{\frown}\dot{c}_N\} \in H.$$

Now we force continuous functions  $\chi_i: (2^{\omega})^{\xi} \to (2^{\omega})^{[\xi,\alpha)} \cap [p(i+1)]$  for i < N over M' and let  $M = M'[\langle \chi_i : i < N \rangle]$ . Finally:

$$\phi_i(\bar{x}) = \phi'(\bar{x})^{\frown} \chi_i(\phi'(\bar{x})), i < N$$

and

$$\overline{s} = \overline{s}^{\prime \frown} p(0).$$

Together with the lemma for finite products this lets us induct up to  $\omega$ .

< □ ▶ < □ ▶ < 31/37</li>

# MCG for conditions

Now assume that the  $\mathbb{Q}_{\beta}$  in the iteration  $\langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta \leq \lambda \rangle$  are either  $\mathbb{S}$  or  $\mathbb{SP}$  (or any "Borel-" weighted tree forcing).

#### Lemma

Let  $\alpha < \omega_1$ , M be a ctm with  $\alpha \in M$  and  $\bar{q} \in \mathbb{P}_{\lambda}$  a good master condition,  $\Phi_{\bar{q}} : [\bar{q}] \upharpoonright A \to (2^{\omega})^{\alpha}$  as before. Let  $\bar{s} \in \bigotimes_{\beta < \alpha} 2^{<\omega}$ . Then there is  $\bar{r} \leq \bar{q}$  a good master condition so that any  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in [\bar{r}] \upharpoonright A$ ,

$$\Phi_{ar{q}}(x_0),\ldots,\Phi_{ar{q}}(x_{n-1})\in (2^\omega)^lpha\cap[ar{s}]$$
 are strongly mCg wrt  $\prod_{eta over M.$ 

#### Proof Idea.

We can assume without loss of generality that  $[\bar{q}] \upharpoonright A = (2^{\omega})^{\alpha}$ , via the map  $\Phi_{\bar{q}}$ , and imagine  $\bar{q}$  to be the trivial condition in an iteration of length  $\alpha$  of (slightly different) weighted tree forcings, let's call it  $\langle \mathbb{R}_{\beta}, \dot{\mathbb{S}}_{\beta} : \beta \leq \alpha \rangle$ .

We construct a closed set  $C \subseteq (2^{\omega})^{\alpha} \cap [\bar{s}]$  in a way that there is  $\bar{r} \in \mathbb{R}_{\alpha}$  with  $[\bar{r}] \subseteq C$ . We recursively construct  $C_{\beta} = C \upharpoonright \beta \subseteq (2^{\omega})^{\beta} \cap [\bar{s} \upharpoonright \beta]$  for  $\beta \leq \alpha$  "generically" over M in a finite support iteration. Each  $C_{\beta}$  is a set of mCgs over M wrt  $\prod_{\xi < \beta} 2^{\omega}$ .

At each step  $\beta$  the iteration adds a continuous function  $F: C_{\beta} \to \mathcal{T}$  (perfect subtrees of  $2^{<\omega}$ ) over  $M[C_{\beta}]$  so that  $[F(\bar{x}_0)] \cap [F(\bar{x}_1)] = \emptyset$  and  $\bigcup_{i < n} [F(\bar{x}_i)]$  consists of mCgs in  $2^{\omega}$  over  $M[\bar{x}_0, \ldots, \bar{x}_{n-1}]$  for  $\bar{x}_0, \ldots, \bar{x}_{n-1} \in C_{\beta}$  pairwise distinct.

Also, we ensure that  $F(\bar{x}) \in \mathbb{S}_{\beta}$  for every  $\bar{x} \in C_{\beta}$ . Then

$$C_{\beta+1} := \{ \bar{x}^{\frown} z : z \in [F(\bar{x})] \}.$$

# Main result

Whenever H is an analytic hypergraph on a Polish space X,  $f: [\bar{q}] \upharpoonright A \to X$  continuous, we can pull back H to  $(2^{\omega})^{\alpha}$  via f and  $\Phi_{\bar{q}}$  and apply the lemmas to get the desirable property of  $\mathbb{P}_{\lambda}$ .

#### Altogether:

#### Theorem

After forcing with a csi of Sacks or splitting forcing over L, every analytic hypergraph in a Polish space has a  $\Delta_2^1$  maximal independent set.

#### Remark

- There is a universal analytic hypergraph on 2<sup>\u03c6</sup> × 2<sup>\u03c6</sup>, which is coded in the ground model. A maximal independent set then induces one for every analytic hypergraph.
- ▶  $|\mathbb{P}_{\lambda}| > \aleph_1$  and there are more than  $\aleph_1$  many names for reals. But we can treat good master conditions and names as reals themselves (of which there are  $\aleph_1$  many) through their representation as spaces  $[\bar{q}] \upharpoonright A$  and continuous functions  $f: [\bar{q}] \upharpoonright A \to X$ .
- This is a key ingredient to make the construction  $\Sigma_2^1$ -definable.

< □ > < □ > 34/37

# Answering the questions

# Corollary

It is consistent that there is a  $\Pi_1^1$  mif, a  $\Delta_2^1$  ultrafilter and a  $\Delta_2^1$  Hamel basis while  $\aleph_1 < i, \mathfrak{u}, \mathfrak{c}$ . In particular, it is consistent that  $\mathfrak{i}_B, \mathfrak{u}_B < \mathfrak{i}, \mathfrak{u}$ .

#### Proof.

Force with  $\mathbb{SP}$  in a  $\omega_2$ -length countable support iteration.

### Corollary

The reaping number v is never a (ZFC provable) lower bound of "Borelized cardinal invariants" (if they fit in the framework of analytic hypergraphs).

# Corollary of the construction

There is a  $(\Delta_2^1)$  P-point after iterating  $\mathbb{SP}$  or  $\mathbb{S}$  over L.

The key point is that the Borel sets  $\langle B_{\alpha} : \alpha < \omega_1 \rangle$  that we construct can be chosen to be compact (due to  $[\bar{q}]$  being compact). For an  $F_{\sigma}$  filter *B* there is a single compact set *K* so that  $B \cup K$  generates a filter and *K* has a pseudointersection for every countable subset of *B*.

# Concluding remarks

What about other tree forcings?

# Theorem (Schrittesser, Törnquist 2018)

After adding a single Miller real over L every  $\Sigma_1^1$  (2-dimensional hyper)graph on a Polish space has a  $\Delta_2^1$  maximal independent set.

A strengthening to the csi should not be too hard. Consider:

# Theorem (Spinas 2001)

For every Miller tree T there is a master condition  $S \leq T$  so that any  $x_0 \neq x_1 \in [S]$  are  $\mathbb{M}^2$  generic (over some countable model M).

On the other hand, Miller genericity behaves very different from Cohen genericity. Also,  $\mathbb{M}^3$  adds a Cohen real, so finite products of  $\mathbb M$  do not work.

#### Question

Does the main result (for hypergraphs) hold true for csi of Miller forcing?

Laver forcing and  $G_{\delta}$  hypergraphs?

# Thank you!



Definability of maximal families of reals in forcing extensions

Institute of Mathematics, University of Vienna