Construction with opposition: cardinal invariants and games

Víctor Torres-Pérez

(joint work with J. Brendle and M. Hrusak)
Technische Universität Wien
Funded by the Research Project P 29860-N35 of the Austrian Science Fund
(FWF)

KGRC, Research Seminar Vienna, Austria. January, 2019

Remember Jensen's diamond principle \diamondsuit :

Remember Jensen's diamond principle \diamondsuit :

```
Definition (♦)
```

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

There is a sequence $\langle d_{\alpha} : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subset \omega_1$, the set

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

There is a sequence $\langle d_{\alpha} : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subseteq \omega_1$, the set

$$\{\alpha \in \omega_1 : X \cap \alpha = d_\alpha\}$$

Remember Jensen's diamond principle \diamondsuit :

Definition (\diamondsuit)

There is a sequence $\langle d_{\alpha} : \alpha < \omega_1 \rangle$ of subsets of ω_1 such that for every $X \subseteq \omega_1$, the set

$$\{\alpha \in \omega_1 : X \cap \alpha = d_\alpha\}$$

is stationary.

Lemma

Lemma

$$\diamondsuit \to \mathfrak{c} = \omega_1.$$

Lemma

$$\diamondsuit \to \mathfrak{c} = \omega_1.$$

Is \diamondsuit equivalent to $\mathfrak{c} = \omega_1$?

Lemma

$$\diamondsuit \to \mathfrak{c} = \omega_1.$$

Is \diamondsuit equivalent to $\mathfrak{c} = \omega_1$?

Theorem

Lemma

$$\diamondsuit \to \mathfrak{c} = \omega_1.$$

Is \diamondsuit equivalent to $\mathfrak{c} = \omega_1$?

$\mathsf{Theorem}$

 \diamondsuit implies there is an ω_1 -Suslin tree, i.e. a tree of cardinality \aleph_1 with only countable chains and antichains.

Lemma

$$\diamondsuit \to \mathfrak{c} = \omega_1.$$

Is \diamondsuit equivalent to $\mathfrak{c} = \omega_1$?

$\mathsf{Theorem}$

 \diamondsuit implies there is an ω_1 -Suslin tree, i.e. a tree of cardinality \aleph_1 with only countable chains and antichains.

Theorem

 $\mathfrak{c} = \omega_1$ does not imply there is an ω_1 -Suslin tree.

Lemma

$$\Diamond \to \mathfrak{c} = \omega_1.$$

Is \diamondsuit equivalent to $\mathfrak{c} = \omega_1$?

$\mathsf{Theorem}$

 \Diamond implies there is an ω_1 -Suslin tree, i.e. a tree of cardinality \aleph_1 with only countable chains and antichains.

Theorem

 $\mathfrak{c} = \omega_1$ does not imply there is an ω_1 -Suslin tree.

Corollary

$$\mathfrak{c} = \omega_1 \not\to \diamondsuit.$$

Definition			
			J

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$.

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$,

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in S : X \cap \alpha = d_{\alpha}\}$$

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\diamondsuit_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_\alpha : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in \mathcal{S} : X \cap \alpha = d_{\alpha}\}$$

is stationary.

Definition

Let $\kappa > \omega$ be a regular cardinal and $S \subseteq \kappa$. $\Diamond_{\kappa}(S)$ is the following principle:

There is a sequence $\langle d_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set

$$\{\alpha \in S : X \cap \alpha = d_{\alpha}\}$$

is stationary. We write just \diamondsuit_{κ} when $S = \kappa$.

Lemma

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$.

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \lozenge_{κ^+} holds.

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more,

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}$.

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}$.

For example,

Diamond principle

Lemma

$$\diamondsuit_{\kappa^+}$$
 implies $2^{\kappa} = \kappa^+$.

Theorem (Shelah)

Suppose κ is a cardinal satisfying $2^{\kappa} = \kappa^+ > \aleph_1$. Then \diamondsuit_{κ^+} holds. Even more, we can get $\diamondsuit_{\kappa^+}(S)$ for any stationary set $S \subseteq \{\alpha < \kappa^+ : \operatorname{cof}(\alpha) \neq \kappa\}$.

For example, $2^{\omega_1} = \omega_2$ implies $\diamondsuit_{\omega_2}(E_{\omega}^{\omega_2})$.

The tower number game
The ultrafilter number game
The almost disjoint number game

Parametrized Diamonds

We recall Shelah's weak diamond:

We recall Shelah's weak diamond:

Definition (Φ)

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$,

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$,

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

Theorem (Devlin-Shelah)

We recall Shelah's weak diamond:

Definition (Φ)

For every $F: 2^{<\omega_1} \to 2$, there is $g: \omega_1 \to 2$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha < \omega_1 : F(f|_{\alpha}) = g(\alpha)\}$$

is stationary.

Theorem (Devlin-Shelah)

 Φ is equivalent to $2^{\aleph_0} < 2^{\aleph_1}$.

The tower number game
The ultrafilter number game
The almost disjoint number game

Parametrized Diamonds

Definition

Definition

An *invariant* is a triple (A, B, R) such that

Definition

An *invariant* is a triple (A, B, R) such that

1 A and B are sets of cardinality at most \mathfrak{c} ,

Definition

An invariant is a triple (A, B, R) such that

1 A and B are sets of cardinality at most \mathfrak{c} ,

$$2 R \subseteq A \times B,$$

Definition

An invariant is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- **3** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,

Definition

An invariant is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- **1** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

An invariant is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- \mathbf{Q} $R \subseteq A \times B$,
- **3** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

Definition

An invariant is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- \mathbf{Q} $R \subseteq A \times B$,
- **3** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant,

Definition

An *invariant* is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- \mathbf{Q} $R \subseteq A \times B$,
- **3** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its *evaluation* (A, B, R) is given by

Definition

An *invariant* is a triple (A, B, R) such that

- **1** A and B are sets of cardinality at most \mathfrak{c} ,
- \mathbf{Q} $R \subseteq A \times B$,
- **3** for every $a \in A$, there is $b \in B$ such that $(a, b) \in R$,
- for every $b \in B$, there is $a \in A$ such that $(a, b) \notin R$.

Definition

If (A, B, R) is an invariant, then its *evaluation* (A, B, R) is given by

$$\langle A, B, R \rangle = \min\{|X| : X \subseteq B \text{ and } \forall a \in A \exists b \in X(aRb)\}.$$

The tower number game
The ultrafilter number game
The almost disjoint number game

Parametrized Diamonds

Definition

Definition

An invariant (A, B, R) is Borel

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A.

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is Borel

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is Borel if for every $\delta < \omega_1$,

Definition

An invariant (A, B, R) is *Borel* if A, B and R are Borel subsets of some Polish space.

Definition

Suppose that A is a Borel subset of some Polish space A. A map $F: 2^{<\omega_1} \to A$ is *Borel* if for every $\delta < \omega_1$, the restriction of F to 2^{δ} is a Borel map.

Definition

Definition

Let (A, B, R) a Borel invariant.

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$,

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$,

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

Definition

Let (A, B, R) a Borel invariant. $\diamondsuit(A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f) \mid Rg(\alpha)\}$$

is stationary.

Definition

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_{a}) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\Diamond(A, R)$.

Definition

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_{a}) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\Diamond(A, R)$. Also, if an invariant (A, B, R) has already a common representation,

Definition

Let (A, B, R) a Borel invariant. $\Diamond (A, B, R)$ is the following statement:

For every Borel map $F: 2^{<\omega_1} \to A$, there is $g: \omega_1 \to B$ such that for every $f: \omega_1 \to 2$, the set

$$\{\alpha \in \omega_1 : F(f|_a) Rg(\alpha)\}$$

is stationary.

If A = B, we write just $\diamondsuit(A, R)$. Also, if an invariant (A, B, R) has already a common representation, we use such representation instead.

The tower number game
The ultrafilter number game
The almost disjoint number game

Parametrized Diamonds

In this talk we deal with the following instances:

In this talk we deal with the following instances: $\Diamond(2, \neq)$,

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$ and $\Diamond(\mathfrak{b})$.

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$ and $\Diamond(\mathfrak{b})$.

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$ and $\Diamond(\mathfrak{b})$.

$$\bullet \ \diamondsuit(2,\neq) \to \mathfrak{t} = \omega_1$$
,

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$ and $\Diamond(\mathfrak{b})$.

- $\bullet \ \diamondsuit(2,\neq) \to \mathfrak{t} = \omega_1$,
- $\Diamond(\mathfrak{r}) \to \mathfrak{u} = \omega_1$,

In this talk we deal with the following instances: $\Diamond(2, \neq)$, $\Diamond(\mathfrak{r})$ and $\Diamond(\mathfrak{b})$.

- $\bullet \ \diamondsuit(2,\neq) \to \mathfrak{t} = \omega_1$,
- $\bullet \ \diamondsuit(\mathfrak{r}) \to \mathfrak{u} = \omega_1$,
- $\diamondsuit(\mathfrak{b}) \to \mathfrak{a} = \omega_1$.

The tower number game
The ultrafilter number game
The almost disjoint number game

The tower number game

Definition (Almost contained)

Definition (Almost contained)

X is almost contained in Y,

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$,

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if,

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

- $\mathbf{2}$ if $\beta < \alpha$ then $X_{\alpha} \subseteq^* X_{\beta}$,

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

$$\mathbf{0} \ X_{\alpha} \in [\omega]^{\omega}$$
,

and for every $X \in [\omega]^{\omega}$,

Definition (Almost contained)

X is almost contained in Y, and denoted by $X \subseteq^* Y$, if $X \setminus Y$ is finite.

Definition (Tower)

A sequence $\langle X_{\alpha} : \alpha < \delta \rangle$ is a *tower* if, for every $\alpha < \delta$:

- $\mathbf{0} \ X_{\alpha} \in [\omega]^{\omega}$,
- \circ if $\beta < \alpha$ then $X_{\alpha} \subseteq^* X_{\beta}$,

and for every $X \in [\omega]^{\omega}$, there is $\alpha < \delta$ such that $X \nsubseteq^* X_{\alpha}$.

Consider the following game of length ω_1 :

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows.

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subseteq *-decreasing.

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subseteq *-decreasing.

The Builder plays during $pair(\omega_1)$, i.e.

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		• • •
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subset *-decreasing.

The Builder plays during $pair(\omega_1)$, i.e. ordinals of the form $\beta + 2k$,

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subseteq *-decreasing.

The Builder plays during $pair(\omega_1)$, i.e. ordinals of the form $\beta + 2k$, with β limit and $k \in \omega$.

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subseteq *-decreasing.

The Builder plays during $\operatorname{pair}(\omega_1)$, i.e. ordinals of the form $\beta+2k$, with β limit and $k\in\omega$. The Spoiler plays during $\operatorname{odd}(\omega_1)=\omega_1\backslash\operatorname{pair}(\omega_1)$.

Consider the following game of length ω_1 :

Builder	Y_0		• • •	Y_{α}		• • •
Spoiler		Y_1			$Y_{\alpha+1}$	

The game G_t is played as follows. Each player plays infinite sets of ω such that the partial sequence $\langle Y_\alpha : \alpha \leq \beta \rangle$ is always \subset *-decreasing.

The Builder plays during $\operatorname{pair}(\omega_1)$, i.e. ordinals of the form $\beta+2k$, with β limit and $k\in\omega$. The Spoiler plays during $\operatorname{odd}(\omega_1)=\omega_1\backslash\operatorname{pair}(\omega_1)$.

The Builder wins the match if $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is a tower.

The tower number game

We have the following:

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

 $\ \, \diamondsuit(2,\neq) \to \mbox{ the Builder has a winning strategy in the tower game G_t}$

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

1 $\diamondsuit(2, \neq) \rightarrow$ the Builder has a winning strategy in the tower game $G_t \rightarrow \mathfrak{t} = \omega_1$.

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

- **2** $\diamondsuit(2, \neq) \not\leftarrow$ the Builder has a winning strategy in the tower game G_t

We have the following:

Theorem (Brendle-Hrušák-T., 2019)

- $\diamondsuit(2, \neq) \to$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \to \mathfrak{t} = \omega_1$.
- ② $\diamondsuit(2, \neq) \not\leftarrow$ the Builder has a winning strategy in the tower game $G_{\mathfrak{t}} \not\leftarrow \mathfrak{t} = \omega_1$.

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

$\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

Lemma

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}$.

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}.$

Proof.

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}.$

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}\$ be an enumeration of $[\omega]^{\omega}$.

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}.$

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}\$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match,

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}.$

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} .

Lemma

 $\mathfrak{c}=\omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}$.

Proof.

Let $\{A_{\alpha} : \alpha \in \text{odd}(\omega_1)\}$ be an enumeration of $[\omega]^{\omega}$. Suppose $\langle Y_{\alpha} : \alpha \leq \beta \rangle$ is a partial match, where the Spoiler played Y_{β} . Let

$$Y_{eta+1} = \left\{ egin{array}{ll} Y_eta ackslash A_eta & ext{if } Y_eta ackslash A_eta & ext{is infinite}, \ Y_eta \cap A_eta & ext{otherwise}. \end{array}
ight.$$

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

$\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}$

Fact

Fact

Every infinite countable \subseteq *-decreasing sequence can always be extended.

Fact

Every infinite countable \subseteq *-decreasing sequence can always be extended.

Since any infinite countable \subseteq *-decreasing sequence can be always extended.

Fact

Every infinite countable \subseteq *-decreasing sequence can always be extended.

Since any infinite countable \subseteq *-decreasing sequence can be always extended, if $\langle Y_{\alpha} : \alpha < \beta \rangle$ is a partial match with β limit,

Fact

Every infinite countable \subseteq^* -decreasing sequence can always be extended.

Since any infinite countable \subseteq^* -decreasing sequence can be always extended, if $\langle Y_\alpha : \alpha < \beta \rangle$ is a partial match with β limit, let the Builder play any Y_β extending it.

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

Let $\mathcal{Y} = \langle Y_{\alpha} : \alpha < \omega_1 \rangle$ be a complete match played by the Builder with the described strategy.

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Every infinite \subseteq^* -decreasing sequence generates a filter.

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Every infinite \subseteq *-decreasing sequence generates a filter.

Claim

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Every infinite \subseteq *-decreasing sequence generates a filter.

Claim

The set

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Every infinite \subseteq *-decreasing sequence generates a filter.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{ X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X) \}$$

Let $\mathcal{Y}=\langle Y_\alpha:\alpha<\omega_1\rangle$ be a complete match played by the Builder with the described strategy.

Fact

Every infinite \subseteq *-decreasing sequence generates a filter.

Claim

The set

$$\mathscr{U}_{\mathcal{Y}} = \{ X \in [\omega]^{\omega} : \exists \alpha < \omega_1(Y_{\alpha} \subseteq^* X) \}$$

is an ultrafilter.

The tower number game
The ultrafilter number game
The almost disjoint number game

 $\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

The tower number game
The ultrafilter number game
The almost disjoint number game

$\mathfrak{c} = \omega_1$ implies the Builder has a winning strategy in $G_\mathfrak{t}$

Proof of Claim.

Proof of Claim. Let $X \in [\omega]^{\omega}$.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathcal{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathcal{U}_{\mathcal{Y}}$.

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
.

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$,

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
.

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$,

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathcal{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathcal{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathcal{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1}=Y_{\alpha}\cap A_{\alpha}$$
. Then $A_{\alpha}\supseteq Y_{\alpha}\cap A_{\alpha}=Y_{\alpha+1}$, and so $A_{\alpha}\in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise,

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \setminus A_{\alpha}$$
. Then $\omega \setminus A_{\alpha} \supseteq Y_{\alpha} \setminus A_{\alpha} = Y_{\alpha+1}$, and so $\omega \setminus A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1}=Y_{\alpha}\cap A_{\alpha}$$
. Then $A_{\alpha}\supseteq Y_{\alpha}\cap A_{\alpha}=Y_{\alpha+1}$, and so $A_{\alpha}\in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned,

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_\alpha : \alpha < \omega_1 \rangle$ is an ultrafilter.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathcal{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathcal{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_{\alpha} : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^{\omega}$ such that $X \subseteq^* Y_{\alpha}$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_{\alpha} : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0,1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$,

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathcal{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathcal{U}_{\mathcal{Y}}$. Let $\alpha \in \text{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_\alpha : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0,1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_1$ such that $Y_{\mathcal{E}} \subseteq^* X_i$.

Proof of Claim. Let $X \in [\omega]^{\omega}$. We will show that either $X \in \mathscr{U}_{\mathcal{Y}}$ or $\omega \backslash X \in \mathscr{U}_{\mathcal{Y}}$. Let $\alpha \in \operatorname{odd}(\omega_1)$ be such that $X = A_{\alpha}$. We have two cases:

Case 1:
$$Y_{\alpha+1} = Y_{\alpha} \backslash A_{\alpha}$$
. Then $\omega \backslash A_{\alpha} \supseteq Y_{\alpha} \backslash A_{\alpha} = Y_{\alpha+1}$, and so $\omega \backslash A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Case 2:
$$Y_{\alpha+1} = Y_{\alpha} \cap A_{\alpha}$$
. Then $A_{\alpha} \supseteq Y_{\alpha} \cap A_{\alpha} = Y_{\alpha+1}$, and so $A_{\alpha} \in \mathscr{U}_{\mathcal{Y}}$.

Now we show that the sequence $\langle Y_\alpha : \alpha \in \omega_1 \rangle$ is a tower. Suppose otherwise, and pick $X \in [\omega]^\omega$ such that $X \subseteq^* Y_\alpha$ for every $\alpha < \omega_1$. Let X_0, X_1 be two infinite disjoint subsets of X such that $X = X_0 \cup X_1$. As we have mentioned, the filter generated $\mathscr{U}_{\mathcal{Y}}$ by $\langle Y_\alpha : \alpha < \omega_1 \rangle$ is an ultrafilter. Take $i \in \{0,1\}$ such that $X_i \in \mathscr{U}_{\mathcal{Y}}$, and let $\xi \in \omega_1$ such that $Y_\xi \subseteq^* X_i$. Then, $Y_\xi \cap X_{1-i}$ is finite, and so $X \not\subseteq^* Y_{\mathcal{E}}$.

The tower number game
The ultrafilter number game
The almost disjoint number game

$\diamondsuit(2,\neq)$ implies the Builder has a winning strategy

Proposition

Proposition

 $\diamondsuit(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Proposition

 $\diamondsuit(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}.$

Proof.

Proposition

 $\lozenge(2,\neq)$ implies the Builder has a winning strategy in G_t .

Proof.

Given an infinite \subseteq *-decreasing sequence $s=\{Y^s_\xi:\xi<\delta(s)\}$ with $\delta(s)$ limit,

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I_i^s : i \in \omega\}$ of natural numbers.

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I_i^s : i \in \omega\}$ of natural numbers.

Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$.

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I_i^s : i \in \omega\}$ of natural numbers.

Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$ of natural numbers.

Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$\mathit{I_{0}^{s}}=\min\left(Y_{\delta_{0}}^{s}
ight),$$

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y^s_{\xi} : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I^s_i : i \in \omega\}$ of natural numbers.

Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$I_0^s = \min\left(Y_{\delta_0}^s\right),$$

and

Proposition

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in G_t .

Proof.

Given an infinite \subseteq *-decreasing sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ with $\delta(s)$ limit, we will define a strictly increasing sequence $\{I_i^s : i \in \omega\}$ of natural numbers.

Fix an increasing sequence $\{\delta_i : i \in \omega\} \subseteq \delta(s)$ converging to $\delta(s)$. Let

$$I_0^s = \min\left(Y_{\delta_0}^s\right),$$

and

$$I_{i+1}^s = \min \left(\bigcap_{j \leq i+1} Y_{\delta_j}^s ackslash (I_i^s + 1)
ight).$$

The tower number game
The ultrafilter number game
The almost disjoint number game

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

The tower number game
The ultrafilter number game
The almost disjoint number game

 $\Diamond(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

$\diamondsuit(2, \neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite,

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\Diamond(2, \neq)$ -sequence for F.

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\diamondsuit(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder.

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g:\omega_1\to 2$ be a $\diamondsuit(2,\neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder. Suppose $s=\{Y^s_\xi:\xi<\delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal.

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g: \omega_1 \to 2$ be a $\diamondsuit(2, \neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder.

Suppose $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

For a decreasing \subseteq *-sequence $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ of length an infinite limit ordinal and $C \subseteq \omega$ infinite, define F(s, C) as follows:

$$F(s,C) = \begin{cases} 0 & \text{if } C \subseteq^* \{I_{2i}^s : i \in \omega\}, \\ 1 & \text{otherwise.} \end{cases}$$

Let $g:\omega_1\to 2$ be a $\diamondsuit(2,\neq)$ -sequence for F. We are going to use g to define a winning strategy for the Builder.

Suppose $s = \{Y_{\xi}^s : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ an infinite limit ordinal. The Builder is going to choose $Y_{\delta(s)}$ as follows:

$$Y_{\delta(s)} = \begin{cases} \{l_{2i}^s : i \in \omega\} & \text{if } g(\delta(s)) = 0, \\ \{l_{2i+1}^s : i \in \omega\} & \text{otherwise.} \end{cases}$$

 $\diamondsuit(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

 $\diamondsuit(2,\neq)$ implies the Builder has a winning strategy in $G_{\mathfrak{t}}$.

Let $s = \{Y_{\xi}^s : \xi < \omega_1\}$ be a complete match played by the Builder according to the strategy described above.

Let $s=\{Y^s_{\xi}: \xi<\omega_1\}$ be a complete match played by the Builder according to the strategy described above. Let $C\subset\omega$.

Let $s = \{Y_{\xi}^s : \xi < \omega_1\}$ be a complete match played by the Builder according to the strategy described above.

Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $F(s|_{\delta}, C) \neq g(\delta)$,

Let $s = \{Y_{\xi}^s : \xi < \omega_1\}$ be a complete match played by the Builder according to the strategy described above.

Let $C \subseteq \omega$. Then if δ is an infinite limit ordinal such that $F(s|_{\delta}, C) \neq g(\delta)$, it is straightforward to see that $C \not\subseteq^* Y_{\delta}$.

The Builder having a winning strategy in G_t does not imply $\mathfrak{c} = \omega_1$

The Builder having a winning strategy in G_t does not imply $\mathfrak{c} = \omega_1$

We have the following:

We have the following:

Theorem (Moore-Hrušák-Džamonja)

We have the following:

Theorem (Moore-Hrušák-Džamonja)

 $\mathfrak{c} = \omega_1$ does not imply $\Diamond(2, \neq)$.

We have the following:

Theorem (Moore-Hrušák-Džamonja)

 $\mathfrak{c} = \omega_1$ does not imply $\Diamond(2, \neq)$.

Corollary

We have the following:

Theorem (Moore-Hrušák-Džamonja)

 $\mathfrak{c} = \omega_1$ does not imply $\Diamond(2, \neq)$.

Corollary

 $\Diamond(2,=) \not\leftarrow$ the Builder has a winning strategy in the tower game G_t .

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

Theorem (Brendle, Hrušák, T. 2019)

Theorem (Brendle, Hrušák, T. 2019)

 $\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$.

Theorem (Brendle, Hrušák, T. 2019)

 $\mathfrak{t}=\omega_1$ does not imply the Builder has a winning strategy in $G_\mathfrak{t}$.

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

Proof of the Theorem (sketch).

Proof of the Theorem (sketch). First some preparation.

$\mathbf{t} = \omega_1$ does not imply the Builder has a winning strategy in $G_{\mathbf{t}}$

Proof of the Theorem (sketch). First some preparation. Assume CH.

Proof of the Theorem (sketch).

First some preparation.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower.

Proof of the Theorem (sketch).

First some preparation.

Assume CH. Let $\mathcal{Y} = (Y_{\alpha} : \alpha < \omega_1)$ be a tower. Let $(f_{\alpha} : \alpha < \omega_1)$ list all partial functions from $\omega \to \omega$ with infinite range.

Proof of the Theorem (sketch).

First some preparation.

${f t}=\omega_1$ does not imply the Builder has a winning strategy in $G_{f t}$

Proof of the Theorem (sketch).

First some preparation.

•
$$A_{\alpha} \subseteq^* B_{\alpha}$$
, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,

Proof of the Theorem (sketch).

First some preparation.

- $A_{\alpha} \subseteq^* B_{\alpha}$, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,
- B_{α} is chosen according to a given rule, and

${f t}=\omega_1$ does not imply the Builder has a winning strategy in $G_{f t}$

Proof of the Theorem (sketch).

First some preparation.

- $A_{\alpha} \subseteq^* B_{\alpha}$, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,
- B_{α} is chosen according to a given rule, and
- if $ran(f_{\alpha}|_{B_{\alpha}})$ is infinite,

Proof of the Theorem (sketch).

First some preparation.

- $A_{\alpha} \subseteq^* B_{\alpha}$, $B_{\alpha} \subseteq^* A_{\beta}$ for $\beta < \alpha$,
- B_{α} is chosen according to a given rule, and
- if $ran(f_{\alpha}|_{B_{\alpha}})$ is infinite, then $ran(f_{\alpha}|_{A_{\alpha}})$ is almost disjoint from some $Y_{\beta_{\alpha}}$.

The tower number game
The ultrafilter number game
The almost disjoint number game

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower.

${f t}=\omega_1$ does not imply the Builder has a winning strategy in $G_{f t}$

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}})$.

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}})$. This is as required.

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} .

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}})$. This is as required. Let \mathcal{F} be the filter generated by the A_{α} . Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F} .

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because $\mathcal Y$ is a tower. Now let $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}})$. This is as required. Let $\mathcal F$ be the filter generated by the A_{α} . Consider Laver forcing $\mathbb L_{\mathcal F}$ with $\mathcal F$. Assume the following:

To choose A_{α} note that there is $\beta < \omega_1$ such that $\operatorname{ran}(f_{\alpha} \upharpoonright_{B_{\alpha}}) \backslash Y_{\beta_{\alpha}}$ is infinite because \mathcal{Y} is a tower. Now let

 $A_{\alpha} = f_{\alpha}^{-1}(\operatorname{ran}(f_{\alpha}|_{B_{\alpha}}) \setminus Y_{\beta_{\alpha}})$. This is as required.

Let \mathcal{F} be the filter generated by the A_{α} . Consider Laver forcing $\mathbb{L}_{\mathcal{F}}$ with \mathcal{F} .

Assume the following:

Claim

 $\mathbb{L}_{\mathcal{F}}$ preserves \mathcal{Y} .

The tower number game
The ultrafilter number game
The almost disjoint number game

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH.

Assume $\Diamond (E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y} = (Y_\alpha : \alpha < \omega_1)$ as above.

Assume \diamondsuit $(E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y}=(Y_\alpha:\alpha<\omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder.

Assume $\diamondsuit(E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y}=(Y_\alpha:\alpha<\omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration

Assume $\lozenge\left(E_{\omega_1}^{\omega_2}\right)$ and CH . Fix a tower $\mathcal{Y}=\left(Y_\alpha:\alpha<\omega_1\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_\gamma,\dot{\mathbb{Q}}_\gamma:\gamma<\omega_2\right)$.

Assume $\diamondsuit\left(E_{\omega_1}^{\omega_2}\right)$ and CH . Fix a tower $\mathcal{Y}=\left(Y_\alpha:\alpha<\omega_1\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_\gamma,\dot{\mathbb{Q}}_\gamma:\gamma<\omega_2\right)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma=\mathbb{L}_{\dot{\mathcal{F}}}$

Assume $\diamondsuit\left(E_{\omega_1}^{\omega_2}\right)$ and CH . Fix a tower $\mathcal{Y}=\left(Y_\alpha:\alpha<\omega_1\right)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $\left(\mathbb{P}_\gamma,\dot{\mathbb{Q}}_\gamma:\gamma<\omega_2\right)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from

Assume \diamondsuit $(E^{\omega_2}_{\omega_1})$ and CH . Fix a tower $\mathcal{Y}=(Y_\alpha:\alpha<\omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma,\dot{\mathbb{Q}}_\gamma:\gamma<\omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above

Assume \diamondsuit $(E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y}=(Y_\alpha:\alpha<\omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma, \dot{\mathbb{Q}}_\gamma: \gamma<\omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above and the \dot{B}_α are obtained from the $\dot{A}_\beta, \dot{B}_\beta, \beta<\alpha$, using Builder's (name of a) strategy handed down by $\diamondsuit(E_\omega^{\omega_2})$.

Assume \diamondsuit $(E_{\omega_1}^{\omega_2})$ and CH. Fix a tower $\mathcal{Y}=(Y_\alpha:\alpha<\omega_1)$ as above. Use the diamond to guess (initial segments of) names of strategies for the Builder. Construct a finite support iteration $(\mathbb{P}_\gamma,\dot{\mathbb{Q}}_\gamma:\gamma<\omega_2)$. At stage γ force with $\dot{\mathbb{Q}}_\gamma=\mathbb{L}_{\dot{\mathcal{F}}}$ where $\dot{\mathcal{F}}$ is constructed from \dot{A}_α and \dot{B}_α as above and the \dot{B}_α are obtained from the $\dot{A}_\beta,\dot{B}_\beta,\beta<\alpha$, using Builder's (name of a) strategy handed down by $\diamondsuit(E_{\omega_1}^{\omega_2})$. Force with \mathbb{P}_{ω_2} .

The tower number game
The ultrafilter number game
The almost disjoint number game

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

The tower number game
The ultrafilter number game
The almost disjoint number game

 $t = \omega_1$ does not imply the Builder has a winning strategy in G_t

Since towers are preserved in limit steps of finite support iterations,

$t = \omega_1$ does not imply the Builder has a winning strategy in G_t

Since towers are preserved in limit steps of finite support iterations, the lemma implies the \mathcal{Y} is still a tower in $V^{\mathbb{P}_{\omega_2}}$.

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

On the other hand,

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$,

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F} .

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F} . Hence there is a game according to Σ which the Builder looses,

Since towers are preserved in limit steps of finite support iterations, the lemma implies the $\mathcal Y$ is still a tower in $V^{\mathbb P_{\omega_2}}$. In particular $\mathfrak t=\omega_1$.

On the other hand, for each strategy Σ of the Builder in $V^{\mathbb{P}_{\omega_2}}$, there is $\gamma < \omega_2$ such that $\Sigma \upharpoonright_{V^{\mathbb{P}_{\gamma}}}$ is a strategy in $V^{\mathbb{P}_{\gamma}}$ and was used to construct the B_{α} and \mathcal{F} . Hence there is a game according to Σ which the Builder looses, as witnessed by the $\mathbb{L}_{\mathcal{F}}$ -generic added in $V^{\mathbb{P}_{\gamma+1}}$.

The *ultrafilter game* $G_{\mathfrak{u}}$ is played as before, the Builder and the Spoiler taking turns constructing a \subseteq *-decreasing sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$

The *ultrafilter game* $G_{\mathfrak{u}}$ is played as before, the Builder and the Spoiler taking turns constructing a \subseteq *-decreasing sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ (the Builder playing at $\operatorname{pair}(\omega_1)$ -stages, while the Spoiler plays at $\operatorname{odd}(\omega_1)$ -stages).

The *ultrafilter game* $G_{\mathfrak{u}}$ is played as before, the Builder and the Spoiler taking turns constructing a \subseteq *-decreasing sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ (the Builder playing at $\operatorname{pair}(\omega_1)$ -stages, while the Spoiler plays at $\operatorname{odd}(\omega_1)$ -stages).

Builder	U_0			U_{lpha}		
Spoiler		U_1			$U_{\alpha+1}$	

The *ultrafilter game* $G_{\mathfrak{u}}$ is played as before, the Builder and the Spoiler taking turns constructing a \subseteq *-decreasing sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ (the Builder playing at $\operatorname{pair}(\omega_1)$ -stages, while the Spoiler plays at $\operatorname{odd}(\omega_1)$ -stages).

Builder	U_0		 U_{lpha}		
Spoiler		U_1		$U_{\alpha+1}$	

The Builder wins the match if the filter generated by $\{U_{\alpha}: \alpha < \omega_1\}$ is an ultrafilter; otherwise, the Spoiler wins.

The tower number game
The ultrafilter number game
The almost disjoint number game

The ultrafilter number game

¹Here $B \subseteq^* A$ means that $B \setminus A$ is finite, and $A \cap B =^* \emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subseteq^* A$ or $A \cap B =^* \emptyset^1$.

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subseteq^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

¹Here $B \subseteq^* A$ means that $B \setminus A$ is finite, and $A \cap B =^* \emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subset^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subset^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subseteq^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

 $\bullet \ \diamondsuit(\mathfrak{r}) \to \mbox{the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}}$}$

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subseteq^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

• $\diamondsuit(\mathfrak{r}) \to \text{the Builder has a winning strategy in the ultrafilter}$ game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subset^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

- $\diamondsuit(\mathfrak{r}) \to \text{the Builder has a winning strategy in the ultrafilter}$ game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- **2** $\diamondsuit(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_\mathfrak{u}$

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

Remember the *reaping number* $\mathfrak{r} = \langle [\omega]^{\omega}, [\omega]^{\omega}, \mathbf{R} \rangle$, where $A\mathbf{R}B$ if $B \subseteq^* A$ or $A \cap B =^* \emptyset^1$.

We have also the following:

Theorem (Brendle-Hrušák-T., 2019)

- $\diamondsuit(\mathfrak{r}) \to \text{the Builder has a winning strategy in the ultrafilter}$ game $G_{\mathfrak{u}} \to \mathfrak{u} = \omega_1$.
- $\lozenge(\mathfrak{r}) \not\leftarrow$ the Builder has a winning strategy in the ultrafilter game $G_{\mathfrak{u}} \not\leftarrow \mathfrak{u} = \omega_1$.

¹Here $B \subseteq {}^*A$ means that $B \setminus A$ is finite, and $A \cap B = {}^*\emptyset$ says that $A \cap B$ is finite.

The tower number game
The ultrafilter number game
The almost disjoint number game

\diamondsuit (\mathfrak{r}) implies the Builder has a winning strategy in the game $G_{\mathfrak{u}}$

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proof.

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as follows:

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as

follows: Fix a bijective function $e_{\delta}: \omega \to \delta$ for every infinite ordinal $\delta < \omega$.

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as

follows: Fix a bijective function $e_\delta:\omega\to\delta$ for every infinite ordinal $\delta<\omega$. Let

$$k_0^s = \min\left(U_{e_{\delta(s)}(0)}^s\right),$$

Proposition

 $\diamondsuit\left(\mathfrak{r}\right)$ implies the Builder has a winning strategy in the game $\textit{G}_{\mathfrak{u}}.$

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as

follows: Fix a bijective function $e_\delta:\omega\to\delta$ for every infinite ordinal $\delta<\omega$. Let

$$k_0^s = \min\left(U_{e_{\delta(s)}(0)}^s\right),$$

and

Proposition

 $\diamondsuit(\mathfrak{r})$ implies the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as

follows: Fix a bijective function $e_\delta:\omega\to\delta$ for every infinite ordinal $\delta<\omega$. Let

$$k_0^s = \min\left(U_{e_{\delta(s)}(0)}^s\right),$$

and

$$k_{i+1}^s = \min \left(\bigcap_{j \leq i+1} U_{\mathrm{e}_{\delta(s)}(j)}^s ackslash (k_i^s + 1)
ight).$$

Proposition

 $\diamondsuit(\mathfrak{r})$ implies the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Proof.

For a \subseteq *-decreasing infinite sequence $s = \{U_{\xi}^s : \xi < \delta(s)\}$, we define the strictly increasing sequence $\{k_i^s : i \in \omega\} \subseteq \bigcup_{\xi < \delta(s)} U_{\xi}^s$ as

follows: Fix a bijective function $e_\delta:\omega\to\delta$ for every infinite ordinal $\delta<\omega$. Let

$$k_0^s = \min\left(U_{e_{\delta(s)}(0)}^s\right),$$

and

$$k_{i+1}^s = \min \left(\bigcap_{j \leq i+1} U_{\mathrm{e}_{\delta(s)}(j)}^s ackslash (k_i^s + 1)
ight).$$

Given $C \subseteq \omega$ and an infinite \subseteq *-decreasing sequence s, we define a Borel map F as follows:

Given $C \subseteq \omega$ and an infinite \subseteq *-decreasing sequence s, we define a Borel map F as follows: $F(s, C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Let g be the respective $\Diamond(\mathfrak{r})$ -guessing function for F. We will show that

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Let g be the respective $\diamondsuit(\mathfrak{r})$ -guessing function for F. We will show that g defines a winning strategy for the Builder as follows: If $s = \{U^s_{\xi} : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ even, let $U_{\delta(s)} = \{k^s_i : i \in g(\delta(s))\}$.

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Let g be the respective $\diamondsuit(\mathfrak{r})$ -guessing function for F. We will show that g defines a winning strategy for the Builder as follows: If $s = \{U^s_\xi : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ even, let $U_{\delta(s)} = \{k^s_i : i \in g(\delta(s))\}$. It is not difficult to see that any complete match $s = \{U^s_\xi : \xi < \omega_1\}$ according to the strategy defined by g is a \subseteq *-decreasing sequence.

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Let g be the respective $\diamondsuit(\mathfrak{r})$ -guessing function for F. We will show that g defines a winning strategy for the Builder as follows: If $s = \{U^s_\xi : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ even, let $U_{\delta(s)} = \{k^s_i : i \in g(\delta(s))\}$. It is not difficult to see that any complete match $s = \{U^s_\xi : \xi < \omega_1\}$ according to the strategy defined by g is a \subseteq *-decreasing sequence. It is also straightforward to show that the set $\mathscr{F}_s = \{X \in [\omega]^\omega : \exists \delta < \omega_1(U^s_\delta \subseteq^* X)\}$ is a filter.

Given $C \subseteq \omega$ and an infinite \subseteq^* -decreasing sequence s, we define a Borel map F as follows: $F(s,C) = \{i \in \omega : k_i^s \in C\}$ if $\{i \in \omega : k_i^s \in C\}$ is infinite, and $F(s,C) = \{i \in \omega : k_i^s \notin C\}$ otherwise.

Let g be the respective $\diamondsuit(\mathfrak{r})$ -guessing function for F. We will show that g defines a winning strategy for the Builder as follows: If $s = \{U^s_\xi : \xi < \delta(s)\}$ is a partial match with $\delta(s)$ even, let $U_{\delta(s)} = \{k^s_i : i \in g(\delta(s))\}$. It is not difficult to see that any complete match $s = \{U^s_\xi : \xi < \omega_1\}$ according to the strategy defined by g is a \subseteq^* -decreasing sequence. It is also straightforward to show that the set $\mathscr{F}_s = \{X \in [\omega]^\omega : \exists \delta < \omega_1(U^s_\delta \subseteq^* X)\}$ is a filter. We are done if \mathscr{F}_s is an ultrafilter.

The tower number game
The ultrafilter number game
The almost disjoint number game

 \diamondsuit (\mathfrak{r}) implies the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Let $C \subseteq \omega$. Since g is a $\Diamond(\mathfrak{r})$ -sequence, we can find $\delta < \omega_1$ such that either $|g(\delta) \cap F(\mathfrak{s}|_{\delta}, C)| < \aleph_0$ or $|g(\delta) \setminus F(\mathfrak{s}|_{\delta}, C)| < \aleph_0$.

Let $C \subseteq \omega$. Since g is a $\diamondsuit(\mathfrak{r})$ -sequence, we can find $\delta < \omega_1$ such that either $|g(\delta) \cap F(\mathfrak{s}|_{\delta}, C)| < \aleph_0$ or $|g(\delta) \setminus F(\mathfrak{s}|_{\delta}, C)| < \aleph_0$. We will show that either $U_{\delta} \subseteq^* C$ or $U_{\delta} \subseteq^* \omega \setminus C$ where $U_{\delta} = U_{\delta}^s$ (note that $\delta(\mathfrak{s}|_{\delta}) = \delta$).

Let $C\subseteq\omega$. Since g is a $\diamondsuit(\mathfrak{r})$ -sequence, we can find $\delta<\omega_1$ such that either $|g(\delta)\cap F(s|_\delta,C)|<\aleph_0$ or $|g(\delta)\backslash F(s|_\delta,C)|<\aleph_0$. We will show that either $U_\delta\subseteq^*C$ or $U_\delta\subseteq^*\omega\backslash C$ where $U_\delta=U_\delta^s$ (note that $\delta(s|_\delta)=\delta$). Case 1: $|g(\delta)\cap F(s|_\delta,C)|<\aleph_0$. Let $j\in\omega$ such that $g(\delta)\cap F(s|_\delta,C)\subseteq J$. Then $U_\delta\backslash k_j^{s|_\delta}\subseteq C$ if $\{i\in\omega:k_i^{s|_\delta}\in C\}$ is finite, and $U_\delta\backslash k_i^{s|_\delta}\subseteq\omega\backslash C$ otherwise.

Let $C \subseteq \omega$. Since g is a $\Diamond(\mathfrak{r})$ -sequence, we can find $\delta < \omega_1$ such that either $|g(\delta) \cap F(s|_{\delta}, C)| < \aleph_0$ or $|g(\delta) \setminus F(s|_{\delta}, C)| < \aleph_0$. We will show that either $U_{\delta} \subseteq^* C$ or $U_{\delta} \subseteq^* \omega \setminus C$ where $U_{\delta} = U_{\delta}^s$ (note that $\delta(s|_{\delta}) = \delta$). Case 1: $|g(\delta) \cap F(s|_{\delta}, C)| < \aleph_0$. Let $j \in \omega$ such that $g(\delta) \cap F(s|_{\delta}, C) \subseteq j$. Then $U_{\delta} \setminus k_{i}^{s|_{\delta}} \subseteq C$ if $\{i \in \omega : k_{i}^{s|_{\delta}} \in C\}$ is finite, and $U_{\delta} \setminus k_i^{s_{\delta}} \subseteq \omega \setminus C$ otherwise. Case 2: $|g(\delta) \setminus \check{F}(s|_{\delta}, C)| < \aleph_0$. Let $j \in \omega$ such that $g(\delta)\setminus j\subseteq F(s|_{\delta},C)$. Then $U_{\delta}\setminus k_{i}^{s|_{\delta}}\subseteq C$ if $\{i\in\omega:k_{i}^{s|_{\delta}}\in C\}$ is infinite, and $U_{\delta} \setminus k_i^{s \mid_{\delta}} \subseteq \omega \setminus C$ otherwise.

The tower number game
The ultrafilter number game
The almost disjoint number game

The Builder having a winning strategy in $G_{\mathfrak{u}}$ does not imply $\diamondsuit(\mathfrak{r})$.

Lemma

CH implies that the Builder has a winning strategy in $G_{\mathfrak{u}}$.

Lemma

CH implies that the Builder has a winning strategy in G_u .

Theorem (Moore-Hrušák-Džamonja)

Lemma

CH implies that the Builder has a winning strategy in G_{u} .

Theorem (Moore-Hrušák-Džamonja)

CH does not imply $\Diamond(\mathfrak{r})$.

Lemma

CH implies that the Builder has a winning strategy in $G_{\mathfrak{u}}$.

Theorem (Moore-Hrušák-Džamonja)

CH does not imply $\Diamond(\mathfrak{r})$.

Corollary

The Builder having a winning strategy in $G_{\mathfrak{u}}$ does not imply $\Diamond(\mathfrak{r})$.

 $\mathfrak{u} = \omega_1$ does not imply that the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

 $\mathfrak{u} = \omega_1$ does not imply that the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Theorem

 $\mathfrak{u} = \omega_1$ does not imply that the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Theorem

 $\mathfrak{u} = \omega_1$ does not imply that the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

$\mathfrak{u} = \omega_1$ does not imply that the Builder has a winning strategy in the game $G_{\mathfrak{u}}$.

Theorem

 $\mathfrak{u}=\omega_1$ does not imply that the Builder has a winning strategy in the game $G_\mathfrak{u}$.

Start with $V \models \mathsf{CH} + 2^{\omega_1} = \omega_2$, and force with \mathbb{P}^{ω_2} , the countable support iteration used by Shelah to construct a model with a unique P-point.

The almost disjoint number game

The almost disjoint number game

The last example we consider here is the maximal almost disjoint game G_a , which is played as follows.

The last example we consider here is the maximal almost disjoint game $G_{\mathfrak{a}}$, which is played as follows. To avoid trivialities, it starts by fixing a partition $\{A_n:n\in\omega\}$ of ω into infinite pieces, and then the Builder and the Spoiler take turns extending it to an AD family $\{A_\alpha:\alpha\leq\beta\}$ (the Builder playing at stages in $\operatorname{pair}(\omega_1)$, while the Spoiler plays at ordinals in $\operatorname{odd}(\omega_1)$).

The last example we consider here is the maximal almost disjoint game $G_{\mathfrak{a}}$, which is played as follows. To avoid trivialities, it starts by fixing a partition $\{A_n:n\in\omega\}$ of ω into infinite pieces, and then the Builder and the Spoiler take turns extending it to an AD family $\{A_\alpha:\alpha\leq\beta\}$ (the Builder playing at stages in $\operatorname{pair}(\omega_1)$, while the Spoiler plays at ordinals in $\operatorname{odd}(\omega_1)$).

Builder	A_0		 A_{α}		
Spoiler		A_1		$A_{\alpha+1}$	

The last example we consider here is the maximal almost disjoint game $G_{\mathfrak{a}}$, which is played as follows. To avoid trivialities, it starts by fixing a partition $\{A_n:n\in\omega\}$ of ω into infinite pieces, and then the Builder and the Spoiler take turns extending it to an AD family $\{A_\alpha:\alpha\leq\beta\}$ (the Builder playing at stages in $\operatorname{pair}(\omega_1)$, while the Spoiler plays at ordinals in $\operatorname{odd}(\omega_1)$).

Builder	A_0		 A_{α}		
Spoiler		A_1		$A_{\alpha+1}$	

The Builder wins the match if the family $\{A_{\alpha} : \alpha < \omega_1\}$ is a maximal almost disjoint family; otherwise, the Spoiler wins.

The almost disjoint number game

The almost disjoint number game

Also, we have

The almost disjoint number game

Also, we have

Theorem (Brendle-Hrušák-T., 2019)

The almost disjoint number game

Also, we have

Theorem (Brendle-Hrušák-T., 2019)

 $\Diamond(\mathfrak{b}) \to \text{the Builder has a winning strategy in the almost disjoint game } G_{\mathfrak{a}}$

The almost disjoint number game

Also, we have

Theorem (Brendle-Hrušák-T., 2019)

1 $\diamondsuit(\mathfrak{b}) \to \text{the Builder has a winning strategy in the almost disjoint game <math>G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1$.

Also, we have

Theorem (Brendle-Hrušák-T., 2019)

- $\diamondsuit(\mathfrak{b}) \to \text{the Builder has a winning strategy in the almost disjoint game } G_{\mathfrak{a}} \to \mathfrak{a} = \omega_1.$
- ② $\diamondsuit(\mathfrak{b}) \not\leftarrow$ the Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Proposition

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Proof.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}:\omega\to\delta$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}: \omega \to \delta$. The domain of F is the set of all pairs (s, B) such that:

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}: \omega \to \delta$. The domain of F is the set of all pairs (s, B) such that:

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}: \omega \to \delta$. The domain of F is the set of all pairs (s, B) such that:

• $s = \{A_{\xi}^s : \xi < \delta(s)\}$ with $\delta = \delta(s)$ an infinite countable ordinal,

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}: \omega \to \delta$. The domain of F is the set of all pairs (s, B) such that:

- $s = \{A_{\xi}^s : \xi < \delta(s)\}$ with $\delta = \delta(s)$ an infinite countable ordinal,
- ② the collection $s \cup \{B\}$ is an almost disjoint family of infinite subsets of ω ,

Proof.

For every infinite countable ordinal, consider the bijective function $e_{\delta}: \omega \to \delta$. The domain of F is the set of all pairs (s, B) such that:

- $s = \{A_{\xi}^s : \xi < \delta(s)\}$ with $\delta = \delta(s)$ an infinite countable ordinal,
- ② the collection $s \cup \{B\}$ is an almost disjoint family of infinite subsets of ω .

Choose an increasing enumeration $I(s, B) = \{i_k^{s,B} : k \in \omega\}$ and define F as follows:

Choose an increasing enumeration $I(s, B) = \{i_k^{s,B} : k \in \omega\}$ and define F as follows:

$$F(s,B)(k) = \min \left(B \cap A^s_{e_{\delta}(i_k^{s,B})} \setminus \bigcup_{j < i_k^{s,B}} A^s_{e_{\delta}(j)} \right).$$

Choose an increasing enumeration $I(s, B) = \{i_k^{s,B} : k \in \omega\}$ and define F as follows:

$$F(s,B)(k) = \min \left(B \cap A^s_{e_{\delta}(i_k^{s,B})} \setminus \bigcup_{j < i_k^{s,B}} A^s_{e_{\delta}(j)} \right).$$

Let $g:\omega_1\to\omega^\omega$ be a $\diamondsuit(\mathfrak{b})$ -sequence for F. Without loss of generality, $g(\delta)$ is a strictly increasing function for every $\delta<\omega_1$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that g allows us to construct a winning strategy for the Builder as follows:

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s = \{A_{\xi}^s : \xi < \delta(s)\}$ be a partial match of the game G_{α} with $\delta = \delta(s) \in \mathrm{pair}(\omega_1)$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s=\{A_{\xi}^s: \xi<\delta(s)\}$ be a partial match of the game $G_{\mathfrak{a}}$ with $\delta=\delta(s)\in\mathrm{pair}(\omega_1)$. The Builder plays A_{δ}^s as follows: if

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s = \{A_{\xi}^s : \xi < \delta(s)\}$ be a partial match of the game $G_{\mathfrak{a}}$ with $\delta = \delta(s) \in \operatorname{pair}(\omega_1)$. The Builder plays A_{δ}^s as follows: if

$$A = \omega ackslash igcup_{i \in \omega} \left(A^s_{e_\delta(i)} ackslash \left(igcup_{j < i} A^s_{e_\delta(j)} \cup g(\delta)(i)
ight)
ight)$$

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s = \{A_{\xi}^s : \xi < \delta(s)\}$ be a partial match of the game $G_{\mathfrak{a}}$ with $\delta = \delta(s) \in \operatorname{pair}(\omega_1)$. The Builder plays A_{δ}^s as follows: if

$$A = \omega ackslash igcup_{i \in \omega} \left(A^s_{e_\delta(i)} ackslash \left(igcup_{j < i} A^s_{e_\delta(j)} \cup g(\delta)(i)
ight)
ight)$$

is infinite,

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s=\{A_{\xi}^s: \xi<\delta(s)\}$ be a partial match of the game $G_{\mathfrak{a}}$ with $\delta=\delta(s)\in \mathrm{pair}(\omega_1)$. The Builder plays A_{δ}^s as follows: if

$$A = \omega ackslash igcup_{i \in \omega} \left(A^s_{e_\delta(i)} ackslash \left(igcup_{j < i} A^s_{e_\delta(j)} \cup g(\delta)(i)
ight)
ight)$$

is infinite, we let $A^s_{\delta} = A$.

We show that g allows us to construct a winning strategy for the Builder as follows: Let $s = \{A_{\xi}^s : \xi < \delta(s)\}$ be a partial match of the game $G_{\mathfrak{a}}$ with $\delta = \delta(s) \in \operatorname{pair}(\omega_1)$. The Builder plays A_{δ}^s as follows: if

$$A = \omega ackslash igcup_{i \in \omega} \left(A^s_{e_\delta(i)} ackslash \left(igcup_{j < i} A^s_{e_\delta(j)} \cup g(\delta)(i)
ight)
ight)$$

is infinite, we let $A^s_{\delta}=A$. Otherwise A^s_{δ} is an arbitrary infinite set almost disjoint from the members of s.

 $\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We will see that $\{A^s_{\xi}: \xi \leq \delta\}$ is an almost disjoint family.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We will see that $\{A^s_{\xi}: \xi \leq \delta\}$ is an almost disjoint family. Observe first that the set

We will see that $\{A^s_{\xi}: \xi \leq \delta\}$ is an almost disjoint family. Observe first that the set

$$A^{s}_{e_{\delta}(i)} \cap \left(g(\delta)(i) \cup \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right) = \left(A^{s}_{e_{\delta}(i)} \cap g(\delta)(i) \right) \cup \left(A^{s}_{e_{\delta}(i)} \cap \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right)$$

We will see that $\{A^s_{\xi}: \xi \leq \delta\}$ is an almost disjoint family. Observe first that the set

$$A^{s}_{e_{\delta}(i)} \cap \left(g(\delta)(i) \cup \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right) = \left(A^{s}_{e_{\delta}(i)} \cap g(\delta)(i) \right) \cup \left(A^{s}_{e_{\delta}(i)} \cap \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right)$$

is finite for every $i \in \omega$.

We will see that $\{A^s_{\xi}: \xi \leq \delta\}$ is an almost disjoint family. Observe first that the set

$$A^{s}_{e_{\delta}(i)} \cap \left(g(\delta)(i) \cup \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right) = \left(A^{s}_{e_{\delta}(i)} \cap g(\delta)(i) \right) \cup \left(A^{s}_{e_{\delta}(i)} \cap \bigcup_{j < i} A^{s}_{e_{\delta}(j)} \right)$$

is finite for every $i \in \omega$. Therefore for $i \in \omega$, the intersection

$$A_{e_{\delta}(i)}^{s} \cap A \subseteq A_{e_{\delta}(i)}^{s} \cap \left(g(\delta)(i) \cup \bigcup_{j < i} A_{e_{\delta}(j)}^{s}\right)$$
 is finite.

 $\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that this is a winning strategy.

We show that this is a winning strategy. Let $s = \{A_{\xi}^s : \xi < \omega_1\}$ be a complete match where the Builder played according to the strategy defined by g.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that this is a winning strategy. Let $s=\{A_\xi^s: \xi<\omega_1\}$ be a complete match where the Builder played according to the strategy defined by g. We show that s is maximal. Let $B\in [\omega]^\omega$. Consider $f\in 2^{\omega_1}$ coding (B,s), i.e. f(n)=1 iff $n\in B$, and $f(\omega\cdot (1+\xi)+n)=1$ iff $n\in A_\xi^s$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that this is a winning strategy. Let $s=\{A_\xi^s: \xi<\omega_1\}$ be a complete match where the Builder played according to the strategy defined by g. We show that s is maximal. Let $B\in [\omega]^\omega$. Consider $f\in 2^{\omega_1}$ coding (B,s), i.e. f(n)=1 iff $n\in B$, and $f(\omega\cdot (1+\xi)+n)=1$ iff $n\in A_\xi^s$. We should find $\delta<\omega_1$ such that $B\cap A_\delta^s$ is infinite.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

We show that this is a winning strategy. Let $s=\{A_\xi^s: \xi<\omega_1\}$ be a complete match where the Builder played according to the strategy defined by g. We show that s is maximal. Let $B\in [\omega]^\omega$. Consider $f\in 2^{\omega_1}$ coding (B,s), i.e. f(n)=1 iff $n\in B$, and $f(\omega\cdot(1+\xi)+n)=1$ iff $n\in A_\xi^s$. We should find $\delta<\omega_1$ such that $B\cap A_\delta^s$ is infinite. Aiming towards a contradiction assume that it is not the case, that

is $\{B\} \cup \{A_{\xi}^{s} : \xi < \omega_{1}\}$ is an AD family, and for every

indecomposable ordinal δ (1)-(3) are satisfied.

We show that this is a winning strategy. Let $s = \{A_{\varepsilon}^s : \xi < \omega_1\}$ be a complete match where the Builder played according to the strategy defined by g. We show that s is maximal. Let $B \in [\omega]^{\omega}$. Consider $f \in 2^{\omega_1}$ coding (B, s), i.e. f(n) = 1 iff $n \in B$, and $f(\omega \cdot (1+\xi) + n) = 1 \text{ iff } n \in A_{\varepsilon}^{s}.$ We should find $\delta < \omega_1$ such that $B \cap A^s_{\delta}$ is infinite. Aiming towards a contradiction assume that it is not the case, that is $\{B\} \cup \{A_{\xi}^{s} : \xi < \omega_{1}\}$ is an AD family, and for every indecomposable ordinal δ (1)-(3) are satisfied. Let δ be an indecomposable ordinal where $g(\delta)$ guesses f, so in particular, $F(s,B) \not>^* g(\delta)$.

 $\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Let
$$\{i_k = i_k^{s|_{\delta},B} : k \in \omega\}$$
 be the increasing enumeration of $I(s,B)$.

Let $\{i_k = i_k^{s \mid s, B} : k \in \omega\}$ be the increasing enumeration of I(s, B). For $k \in \omega$, let $I_k = F(s, B)(k)$, i.e.

$$I_k = \min \left(B \cap A_{e_\delta(i_k)}^{\mathfrak s} ackslash \bigcup_{j < i_k} A_{e_\delta(j)}^{\mathfrak s}
ight).$$

Let $\{i_k = i_k^{s_{\delta},B} : k \in \omega\}$ be the increasing enumeration of I(s,B). For $k \in \omega$, let $I_k = F(s,B)(k)$, i.e.

$$I_k = \min \left(B \cap A^s_{e_\delta(i_k)} ackslash \bigcup_{j < i_k} A^s_{e_\delta(j)}
ight).$$

Observe that the family $\{A_{e_{\delta}(i)}^{s} \setminus \bigcup_{j < i} A_{e_{\delta}(j)}^{s} : i \in \omega\}$ is disjoint, so the application $k \mapsto l_{k}$ is injective.

 $\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

$\diamondsuit(\mathfrak{b})$ implies the Builder has a winning strategy in $G_{\mathfrak{a}}$.

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s,B)(k)\}$$

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s, B)(k)\}$$

is infinite. It is enough to show $X \subseteq A_{\delta}^{s}$.

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s, B)(k)\}$$

is infinite. It is enough to show $X\subseteq A^s_\delta$. Indeed let $I_k\in X$. Then $I_k< g(\delta)(k)\leq g(\delta)(i_k)$ and so

$$I_k \notin A_{e_\delta(i_k)}^s \setminus \left(\bigcup_{j < i_k} A_{e_\delta(j)}^s \cup g(\delta)(i_k)\right).$$

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s, B)(k)\}$$

is infinite. It is enough to show $X\subseteq A^s_{\delta}$. Indeed let $I_k\in X$. Then $I_k< g(\delta)(k)\leq g(\delta)(i_k)$ and so

$$I_k \notin A^s_{e_\delta(i_k)} \setminus \left(\bigcup_{j < i_k} A^s_{e_\delta(j)} \cup g(\delta)(i_k)\right).$$

Since $g(\delta)$ is increasing we see that for all $i \geq i_k$,

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s, B)(k)\}$$

is infinite. It is enough to show $X \subseteq A^s_{\delta}$. Indeed let $I_k \in X$. Then $I_k < g(\delta)(k) \le g(\delta)(i_k)$ and so

$$I_k \notin A_{e_\delta(i_k)}^s \setminus \left(\bigcup_{j < i_k} A_{e_\delta(j)}^s \cup g(\delta)(i_k)\right).$$

Since $g(\delta)$ is increasing we see that for all $i \geq i_k$,

$$I_k \notin A^s_{e_\delta(i)} \setminus \left(\bigcup_{j < i} A^s_{e_\delta(j)} \cup g(\delta)(i) \right).$$

Since we have $F(s, B) \not\geq^* g(\delta)$, the set

$$X = \{I_k : g(\delta)(k) > F(s, B)(k)\}$$

is infinite. It is enough to show $X \subseteq A^s_{\delta}$. Indeed let $I_k \in X$. Then $I_k < g(\delta)(k) \le g(\delta)(i_k)$ and so

$$I_k \notin A^s_{e_\delta(i_k)} \setminus \left(\bigcup_{j < i_k} A^s_{e_\delta(j)} \cup g(\delta)(i_k)\right).$$

Since $g(\delta)$ is increasing we see that for all $i \geq i_k$,

$$I_k \notin A_{e_\delta(i)}^s \setminus \left(\bigcup_{j < i} A_{e_\delta(j)}^s \cup g(\delta)(i)\right).$$

This implies that $I_k \in A$. In particular, A is infinite and $A^s_\delta = A$. Hence $X \subseteq A^s_\delta$ follows.

Open question

The Builder has a winning strategy in the almost disjoint game $G_{\mathfrak{a}}$ $\not\leftarrow$ $\mathfrak{a}=\omega_1$?

Consider the longer version of the tower game $G_{\mathfrak{t}}^{\delta}$ of length δ played as follows:

Consider the longer version of the tower game $G_{\mathbf{t}}^{\delta}$ of length δ played as follows: Players Builder and Spoiler take turns playing a \subseteq *-decreasing transfinite sequence $\langle Y_{\alpha} : \alpha < \delta \rangle$ of infinite subsets of ω , the Builder playing at even stages $\operatorname{pair}(\delta)$, and the Spoiler playing at odd stages $\operatorname{odd}(\delta)$.

Consider the longer version of the tower game $G_{\mathbf{t}}^{\delta}$ of length δ played as follows: Players Builder and Spoiler take turns playing a \subseteq *-decreasing transfinite sequence $\langle Y_{\alpha} : \alpha < \delta \rangle$ of infinite subsets of ω , the Builder playing at even stages $\operatorname{pair}(\delta)$, and the Spoiler playing at odd stages $\operatorname{odd}(\delta)$.

Builder	Y_0		 Y_{α}		
Spoiler		Y_1		$Y_{\alpha+1}$	

Consider the longer version of the tower game $G_{\mathbf{t}}^{\delta}$ of length δ played as follows: Players Builder and Spoiler take turns playing a \subseteq *-decreasing transfinite sequence $\langle Y_{\alpha} : \alpha < \delta \rangle$ of infinite subsets of ω , the Builder playing at even stages $\operatorname{pair}(\delta)$, and the Spoiler playing at odd stages $\operatorname{odd}(\delta)$.

Builder	Y_0		 Y_{α}		
Spoiler		Y_1		$Y_{\alpha+1}$	

The Spoiler wins the match if $\langle Y_\alpha : \alpha < \delta \rangle$ is not a tower; otherwise, the Builder wins.

Consider the longer version of the tower game $G_{\mathbf{t}}^{\delta}$ of length δ played as follows: Players Builder and Spoiler take turns playing a \subseteq *-decreasing transfinite sequence $\langle Y_{\alpha} : \alpha < \delta \rangle$ of infinite subsets of ω , the Builder playing at even stages $\operatorname{pair}(\delta)$, and the Spoiler playing at odd stages $\operatorname{odd}(\delta)$.

Builder	Y_0		 Y_{α}		
Spoiler		Y_1		$Y_{\alpha+1}$	

The Spoiler wins the match if $\langle Y_\alpha : \alpha < \delta \rangle$ is not a tower; otherwise, the Builder wins.

Given the previous theorem, it is natural to define $\mathfrak{t}_{Builder}$ as the least ordinal δ such that the Builder has a winning strategy in the game $G_{\mathfrak{t}}^{\delta}$.

Given the previous theorem, it is natural to define $\mathfrak{t}_{Builder}$ as the least ordinal δ such that the Builder has a winning strategy in the game $G_{\mathfrak{t}}^{\delta}$. The previous result then says $\mathfrak{t} < \mathfrak{t}_{Builder}$ is consistent.

Given the previous theorem, it is natural to define $\mathfrak{t}_{Builder}$ as the least ordinal δ such that the Builder has a winning strategy in the game $G_{\mathfrak{t}}^{\delta}$. The previous result then says $\mathfrak{t} < \mathfrak{t}_{Builder}$ is consistent. We have the following:

Given the previous theorem, it is natural to define $\mathfrak{t}_{Builder}$ as the least ordinal δ such that the Builder has a winning strategy in the game $G_{\mathfrak{t}}^{\delta}$. The previous result then says $\mathfrak{t} < \mathfrak{t}_{Builder}$ is consistent. We have the following:

Lemma

 $\mathfrak{t}_{Builder}$ is a regular cardinal.

Also, $\mathfrak{t}_{Spoiler}$ can be characterized as the least δ such that the Spoiler has no winning strategy in the game $G_{\mathfrak{t}}^{\delta}$.

Also, $\mathfrak{t}_{Spoiler}$ can be characterized as the least δ such that the Spoiler has no winning strategy in the game $G_{\mathfrak{t}}^{\delta}$. We have the following:

Also, $\mathfrak{t}_{Spoiler}$ can be characterized as the least δ such that the Spoiler has no winning strategy in the game $G_{\mathfrak{t}}^{\delta}$. We have the following:

Lemma

t_{Spoiler} is a regular cardinal.

We have the following:

We have the following:

Theorem (Brendle, Hrusak, T. 2019)

It is consistent that $\mathfrak{t} = \mathfrak{t}_{Spoiler} = \omega_1 < \mathfrak{t}_{Builder} = \omega_2 = \mathfrak{c}$.

We have the following:

Theorem (Brendle, Hrusak, T. 2019)

It is consistent that
$$\mathfrak{t} = \mathfrak{t}_{Spoiler} = \omega_1 < \mathfrak{t}_{Builder} = \omega_2 = \mathfrak{c}$$
.

However we do not know:

We have the following:

Theorem (Brendle, Hrusak, T. 2019)

It is consistent that $\mathfrak{t} = \mathfrak{t}_{Spoiler} = \omega_1 < \mathfrak{t}_{Builder} = \omega_2 = \mathfrak{c}$.

However we do not know:

Open question

Is $\mathfrak{t} < \mathfrak{t}_{Spoiler}$ consistent?

Note that in general the Builder has a distinct advantage over the Spoiler in that her moves appear on a closed unbounded subset of ω_1 (pair(ω_1) \in Club(ω_1), while odd(ω_1) is not stationary).

Note that in general the Builder has a distinct advantage over the Spoiler in that her moves appear on a closed unbounded subset of ω_1 ($\operatorname{pair}(\omega_1) \in \operatorname{Club}(\omega_1)$), while $\operatorname{odd}(\omega_1)$ is not stationary). Let G_t^* be the game in which the players switch places, that is, the Builder plays at odd steps while the Spoiler plays at even steps.

Note that in general the Builder has a distinct advantage over the Spoiler in that her moves appear on a closed unbounded subset of ω_1 ($\operatorname{pair}(\omega_1) \in \operatorname{Club}(\omega_1)$, while $\operatorname{odd}(\omega_1)$ is not stationary). Let G_t^* be the game in which the players switch places, that is, the Builder plays at odd steps while the Spoiler plays at even steps. It is obvious that a winning strategy of the Builder in G_t^* gives her a winning strategy in G_t as well, while the implication goes the other way round for the Spoiler.

Note that in general the Builder has a distinct advantage over the Spoiler in that her moves appear on a closed unbounded subset of ω_1 ($\operatorname{pair}(\omega_1) \in \operatorname{Club}(\omega_1)$), while $\operatorname{odd}(\omega_1)$ is not stationary). Let $G_{\mathfrak{t}}^*$ be the game in which the players switch places, that is, the Builder plays at odd steps while the Spoiler plays at even steps. It is obvious that a winning strategy of the Builder in $G_{\mathfrak{t}}^*$ gives her a winning strategy in $G_{\mathfrak{t}}$ as well, while the implication goes the other way round for the Spoiler.

Define $\mathfrak{t}^*_{Builder}$ and $\mathfrak{t}^*_{Spoiler}$ similarly as the unstarred versions.

$$\begin{split} \mathfrak{h} &\geq \mathfrak{t}^*_{\textit{Builder}} \geq \max\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \\ &\min\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \mathfrak{t}_{\textit{Spoiler}} \geq \mathfrak{t}, \end{split}$$

where \mathfrak{h} is the *distributivity number* of $\mathcal{P}(\omega)/\mathrm{fin}$.

$$\mathfrak{h} \geq \mathfrak{t}^*_{\textit{Builder}} \geq \max\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \min\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \mathfrak{t}_{\textit{Spoiler}} \geq \mathfrak{t},$$

where \mathfrak{h} is the *distributivity number* of $\mathcal{P}(\omega)/\mathrm{fin}$. We have:

$$\begin{split} \mathfrak{h} &\geq \mathfrak{t}^*_{\textit{Builder}} \geq \max\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \\ &\min\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \mathfrak{t}_{\textit{Spoiler}} \geq \mathfrak{t}, \end{split}$$

where \mathfrak{h} is the *distributivity number* of $\mathcal{P}(\omega)/\mathrm{fin}$. We have:

Theorem (Brendle, Hrusak, T. 2019)

$$\mathfrak{t}_{\textit{Builder}} > \mathfrak{t}^*_{\textit{Spoiler}}.$$

$$\begin{split} \mathfrak{h} &\geq \mathfrak{t}^*_{\textit{Builder}} \geq \max\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \\ &\min\{\mathfrak{t}^*_{\textit{Spoiler}}, \mathfrak{t}_{\textit{Builder}}\} \geq \mathfrak{t}_{\textit{Spoiler}} \geq \mathfrak{t}, \end{split}$$

where \mathfrak{h} is the *distributivity number* of $\mathcal{P}(\omega)/\mathrm{fin}$. We have:

Theorem (Brendle, Hrusak, T. 2019)

 $\mathfrak{t}_{\textit{Builder}} > \mathfrak{t}^*_{\textit{Spoiler}}.$

Open question

Is $\mathfrak{t}^*_{Spoiler} > \mathfrak{t}$ consistent?

Lemma

$$\mathfrak{t}^*_{\mathit{Builder}} = \mathfrak{h}.$$

Lemma

$$\mathfrak{t}_{Builder}^* = \mathfrak{h}.$$

Theorem (Brendle, Hrusak, T. 2019)

It is consistent that $\Diamond(2,\neq)$ holds and the Builder has no winning strategy in G_t^* .

Lemma

$$\mathfrak{t}_{Builder}^* = \mathfrak{h}.$$

Theorem (Brendle, Hrusak, T. 2019)

It is consistent that $\Diamond(2,\neq)$ holds and the Builder has no winning strategy in $G^*_{\mathfrak{t}}$. In particular it is consistent that $\mathfrak{t}^*_{Builder} > \mathfrak{t}_{Builder}$.

Diamond principle Parametrized diamonds and games Games and cardinal invariants

We have also the following:

We have also the following:

Theorem (Brendle, Hrusak, T. 2019)

 $\mathfrak{t}_{Builder} = \mathfrak{c} = \omega_2 > \operatorname{add}(\mathcal{M}) = \omega_1$ is consistent.

We have also the following:

Theorem (Brendle, Hrusak, T. 2019)

 $\mathfrak{t}_{Builder} = \mathfrak{c} = \omega_2 > \operatorname{add}(\mathcal{M}) = \omega_1$ is consistent.

Theorem (Brendle, Hrusak, T. 2019)

We additionally have the consistency of $\mathfrak{t} < \mathfrak{t}_{Builder} = \operatorname{add}(\mathcal{M})$.

The order relationship between the cardinals we considered can be summarized in the following diagram.

The order relationship between the cardinals we considered can be summarized in the following diagram.

1 Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent?

1 Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent? Is $\mathfrak{u}_{Spoiler} < \mathfrak{u}_{Builder}$ consistent?

- **1** Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent? Is $\mathfrak{u}_{Spoiler} < \mathfrak{u}_{Builder}$ consistent?
- **2** Are $\mathfrak{u}_{Builder}$ and $\mathfrak{u}_{Spoiler}$ cardinals?

- **1** Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent? Is $\mathfrak{u}_{Spoiler} < \mathfrak{u}_{Builder}$ consistent?
- 2 Are $\mathfrak{u}_{Builder}$ and $\mathfrak{u}_{Spoiler}$ cardinals?

Open question

- **1** Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent? Is $\mathfrak{u}_{Spoiler} < \mathfrak{u}_{Builder}$ consistent?
- 2 Are $\mathfrak{u}_{Builder}$ and $\mathfrak{u}_{Spoiler}$ cardinals?

Open question

• Obviously $\mathfrak{a} \leq \mathfrak{a}_{Spoiler} \leq \mathfrak{a}_{Builder}$. Are these three numbers maybe equal?

- **1** Is $\mathfrak{u} < \mathfrak{u}_{Spoiler}$ consistent? Is $\mathfrak{u}_{Spoiler} < \mathfrak{u}_{Builder}$ consistent?
- 2 Are $\mathfrak{u}_{Builder}$ and $\mathfrak{u}_{Spoiler}$ cardinals?

Open question

- Obviously $\mathfrak{a} \leq \mathfrak{a}_{Spoiler} \leq \mathfrak{a}_{Builder}$. Are these three numbers maybe equal?
- As for u, we even do not know whether a_{Builder} and a_{Spoiler} necessarily are cardinals.

Diamond principle Parametrized diamonds and games Games and cardinal invariants

Thank you!

