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Souslin trees — higher cardinals

Recall:
Definition
For any regular cardinal κ, a tree T is κ-Souslin if:
I it has height κ,
I it has no chain of size κ,
I it has no antichain of size κ.

What does it take to construct a κ-Souslin tree for arbitrary
regular cardinal κ?
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What does it take to build a κ-Souslin tree?

Theorem (Jensen, 1972)

I Suppose λ is a regular cardinal.
Assuming λ<λ = λ and ♦(Eλ+

λ ), there exists a λ+-Souslin
tree.

I Suppose λ is a singular cardinal.
Assuming GCH and �λ, there exists a λ+-Souslin tree.

I If V = L, then for every regular uncountable cardinal κ that is
not weakly compact, there exists a κ-Souslin tree.
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Weakening the axioms

We write CHλ for the assertion that 2λ = λ+.
Theorem (Gregory, 1976)
If λ<λ = λ, CHλ, and there exists a non-reflecting stationary
subset of Eλ+

<λ, then there exists a λ+-Souslin tree.

Theorem (Shelah, 1984)
If CH holds and NS is saturated, then there exists an ℵ2-Souslin
tree.

Theorem (Ben-David & Shelah, 1986)
If �λ,≥χ and CHλ for cardinals χ < λ where λ is a singular strong
limit cardinal, then there exists a λ+-Souslin tree.
Baumgartner proved that �λ,≥χ is consistent with the failure of
�λ and even �∗λ.
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Weakening the axioms

Theorem (König, Larson & Yoshinobu, 2007)
If λ<λ = λ, CHλ, and f∗(λ,Eλ+

λ ) holds for a regular uncountable
cardinal λ, then there exists a λ+-Souslin tree.

Theorem (Rinot, 2011)
If λ<λ = λ and 〈λ〉−Eλ+

λ

holds for a regular uncountable cardinal λ,
then there exists a λ+-Souslin tree.

These principles (f∗(λ,Eλ+
λ ), 〈λ〉−Eλ+

λ

) are consistent with the
failure of ♦(Eλ+

λ ).
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Limitations of the classical constructions

I The classical constructions of κ-Souslin trees generally depend
on the nature of κ: successor of regular, successor of singular,
or inaccessible.

I Constructions include extensive bookkeeping, counters, timers,
coding and decoding whose particular nature makes it difficult
to transfer the process from one cardinal to another.

I For inaccessible κ, there is a dearth of axiom-based
constructions.

I The classical ♦-based constructions all require ♦ to
concentrate on a non-reflecting stationary set, in order to
ensure that we don’t get stuck when sealing antichains.

Can we overcome these limitations?
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Souslin trees with extra properties

What additional properties might a κ-Souslin tree satisfy?



Example: Free trees

Theorem (Kurepa)
The square of a κ-Souslin tree T cannot be κ-Souslin.

How close can we get?
Definition
A κ-Souslin tree 〈T , <T 〉 is said to be free if for every nonzero
n < ω, any β < κ, and any sequence of distinct nodes
〈w0, . . . ,wn−1〉 ∈ nTβ, the derived tree w0

↑ ⊗ · · · ⊗ wn−1
↑ is again

a κ-Souslin tree.
Here, the derived tree w0

↑ ⊗ · · · ⊗ wn−1
↑ stands for the tree

(T̂ , <T̂ ), as follows:
I T̂ = {〈z0, . . . , zn−1〉 ∈ nT | ∃δ < κ∀i < n(zi ∈ Tδ and

zi is <T -compatible with wi )};
I ~y <T̂ ~z iff yi <T zi for all i < n.

Can we construct a free κ-Souslin tree?
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Example: Constructing free Souslin trees

Theorem (Jensen)
Assuming λ<λ = λ and ♦(Eλ+

λ ), there exists a free λ+-Souslin
tree.

This is the only classical construction of a free Souslin tree.
What if we replace ♦(Eλ+

λ ) by the axiom f∗(λ,Eλ+
λ ), which was

sufficient to construct a λ+-Souslin tree for regular λ?
Can we construct a κ-Souslin tree for κ inaccessible?
What about κ successor of singular?
What about successor of singular when �∗λ fails (as in the
Ben-David & Shelah scenario).
Are we going to go over each of these models and tailor each of
these particular constructions in order to get a free Souslin tree?
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Order in the jungle?

We have a zoo of consistent constructions of κ-Souslin trees!
Construction of a κ-Souslin tree with any desired property seems
to depend on the nature of κ, and in some cases even depends on
whether κ is successor of a singular of countable or of uncountable
cofinality.

Does it have to be this way?
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Looking for an alternative to �

Notation
For any set of ordinals D:

acc(D) = {α ∈ D | sup(D ∩ α) = α > 0}; and
nacc(D) = D \ acc(D).

Recall Jensen’s square principle, designed to enable construction of
λ+-Souslin trees:
Definition (Jensen, 1972)
For an infinite cardinal λ, �λ asserts the existence of a sequence
〈Cα | α < λ+〉 such that:
I Cα is a club in α for all limit α < λ+;
I if ᾱ ∈ acc(Cα), then Cᾱ = Cα ∩ ᾱ;
I otp(Cα) ≤ λ for all α < λ+.
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Looking for an alternative to �

Why is �λ not ideal for our purpose?
I It becomes trivial at the level of ℵ1, that is, �ℵ0 is always

true, thus it provides no information to help us build
ℵ1-Souslin trees

I It has no appropriate analogue for inaccessible cardinals
I It is tied to non-reflecting stationary sets, which we want to

be able to avoid
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A new axiom: �−(κ)

Definition
Fix a regular uncountable cardinal κ. The principle �−(κ) asserts
the existence of a sequence 〈Cα | α < κ〉 such that:

I Cα is a club subset of α for every limit ordinal α < κ;
I Cᾱ = Cα ∩ ᾱ for all ordinals α < κ and ᾱ ∈ acc(Cα);
I for every cofinal subset B ⊆ κ, there exist stationarily many
α < κ satisfying

sup(nacc(Cα) ∩ B) = α.
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Building a κ-Souslin tree from ♦(κ) +�−(κ)
Theorem
For any regular uncountable cardinal κ, ♦(κ) +�−(κ) implies the
existence of a κ-Souslin tree.

What will our tree 〈T , <T 〉 look like?
I 〈T , <T 〉 will be a normal downward-closed subtree of
〈<κ2,⊂〉. In particular:

I Each node t ∈ T is a function t : α→ 2 for some ordinal
α < κ;

I The tree order <T is simply extension of functions ⊂;
I If t : α→ 2 is in T , then t � β ∈ T for every β < α.
I For all t ∈ T , ht(t) = dom(t) and t↓ = {t � β | β < dom(t)}.
I For all α < κ, the level Tα = T ∩ α2.

Motivation: ease of completing a branch at a limit level.
If 〈tα | α < β〉 (for some β < κ) is a ⊆-increasing sequence of
nodes in T , then the (unique) limit of this sequence, which
may or may not be a member of T , is simply ⋃

α<β tα.
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existence of a κ-Souslin tree.
What will our tree 〈T , <T 〉 look like?
I 〈T , <T 〉 will be a normal downward-closed subtree of
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nodes in T , then the (unique) limit of this sequence, which
may or may not be a member of T , is simply ⋃

α<β tα.



Refining an old axiom: From ♦(κ) to ♦(Hκ)
Fix a regular uncountable cardinal κ.
Definition (Jensen, 1972)
♦(κ) asserts the existence of a sequence 〈Zβ | β < κ〉 such that
for every Z ⊆ κ, the set {β < κ | Z ∩ β = Zβ} is stationary in κ.

Here, Hλ denotes the collection of all sets of hereditary cardinality
less than λ.
Proposition
♦(κ) is equivalent to ♦(Hκ).
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Preliminaries

Let 〈Ri | i < κ〉 and 〈Ωβ | β < κ〉 together witness ♦(Hκ).
Fix a sequence 〈Cα | α < κ〉 witnessing �−(κ).
Fix a well-ordering � on Hκ.



The easy part

Let T0 = {∅}.

For every α < κ, define

Tα+1 = {sa〈i〉 | s ∈ Tα, i < 2}.
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The hard part

What do we do at limit levels?
Fix a limit ordinal α < κ, and assume T � α = ⋃

β<α Tβ has
already been defined.
We need to decide which branches through T � α will have their
limits placed in the level Tα of the tree.
We need Tα to contain enough nodes so that the tree is normal.
That is, for every x ∈ T � α, we need to place some node bαx in Tα
above x .
The node bαx will be the limit of some sequence bαx in T � α.
But we have to choose these sequences carefully, so that the
resulting tree doesn’t have large antichains.



Identifying cofinal branches

Recall that Cα is a club subset of α.
For every x ∈ T � Cα, we will use Cα to identify a cofinal branch
bαx through 〈T � α,⊆〉, containing x , as follows:
I bαx will be an increasing, continuous sequence of nodes.
I dom(bαx ) = Cα \ ht(x).
I bαx (ht(x)) = x .
I We will need to identify bαx (β) ∈ Tβ for all β ∈ Cα with
β > ht(x).
We will do this by recursion over β, considering the cases
β ∈ nacc(Cα) and β ∈ acc(Cα) in turn.



Intersecting a maximal antichain at levels in nacc(Cα)

Suppose β ∈ nacc(Cα) with β > ht(x).
Denote β− = max(Cα ∩ β).
This exists and is in dom(bαx ), so that bαx (β−) has been defined.
We need to identify bαx (β) ∈ Tβ, extending bαx (β−).
Consider two possibilities:
I If there is some y ∈ Ωβ and z ∈ Tβ such that

bαx (β−) ∪ y ⊆ z , then let bαx (β) be the �-least such z .
I Otherwise, let bαx (β) be the �-least element of Tβ extending

bαx (β−). Such a node must exist, because we are ensuring
that the tree is normal as we construct every level.

Notice that if Ωβ is a maximal antichain through T � β, then in
particular there is some y ∈ Ωβ ∩ (T � β) compatible with bαx (β−),
so that bαx (β−) ∪ y ∈ T � β, and then by normality there is z ∈ Tβ
extending this, so that the first option applies.



Will we get stuck at levels in acc(Cα)?

Suppose β ∈ acc(Cα) with β > ht(x).
We want bαx to be continuous, so the only possible definition is:

bαx (β) =
⋃

γ∈dom(bα
x )∩β

bαx (γ).

Clearly bαx (β) ∈ β2, but how do we know that bαx (β) ∈ Tβ?
This question highlights the difference between the classical
approach and our new framework.



Coherence to the rescue!
Since β ∈ acc(Cα), our choice of the sequence satisfying �−(κ)
gives Cβ = Cα ∩ β.
For every γ ∈ dom(bαx ) ∩ β, the value of bβx (γ) was determined in
exactly the same way as bαx (γ):
I starting with bβx (ht(x)) = x = bαx (ht(x));
I for γ ∈ nacc(Cα): depending only on bαx (γ−), Ωγ , and Tγ ;
I for γ ∈ acc(Cα): taking limits.

It follows that

bαx (β) =
⋃

γ∈dom(bα
x )∩β

bαx (γ) =
⋃

γ∈dom(bβ
x )

bβx (γ) = bβx .

Since β < α, the level Tβ has already been constructed, and the
construction guarantees that we have included the limit bβx of the
sequence bβx into Tβ. But we have just shown that this is exactly
bαx (β), so that bαx (β) ∈ Tβ, as required.



Completing the construction of Tα

The sequence bαx just identified determines a cofinal branch
through T � α containing x .
As promised, we take its limit

bαx =
⋃

β∈dom(bα
x )

bαx (β),

which is an element of α2.

Finally, we collect all nodes constructed in this way, and let

Tα = {bαx | x ∈ T � Cα} .

Having constructed all levels of the tree, we then let

T =
⋃
α<κ

Tα.
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Here we use ♦(Hκ)
Claim
Suppose A ⊆ T is a maximal antichain. Then the set

B = {β < κ | A ∩ (T � β) = Ωβ is a maximal antichain in T � β}.

is a stationary subset of κ.

Proof.
Let D ⊆ κ be an arbitrary club. We must show that D ∩ B 6= ∅.
Put p = {A,T ,D}. Using the fact that the sequence 〈Ωβ | β < κ〉
satisfies ♦(Hκ), pick M≺ Hκ+ with p ∈M such that β =M∩ κ
is in κ and Ωβ = A ∩M. Since D ∈M and D is club in κ, we
have β ∈ D. We claim that β ∈ B. For all α < β, by α,T ∈M,
we have Tα ∈M, and by M |= |Tα| < κ, we have Tα ⊆M. So
T � β ⊆M. As dom(z) ∈M for all z ∈ T ∩M, we conclude that
T ∩M = T � β. So, Ωβ = A ∩ (T � β). As
Hκ+ |= A is a maximal antichain in T and T ∩M = T � β, we get
that A ∩ (T � β) is maximal in T � β.



Verifying that T is κ-Souslin
Claim
The tree 〈T ,⊂〉 is a κ-Souslin tree.

Proof.
Let A ⊆ T be a maximal antichain. From the previous claim,

B = {β < κ | A ∩ (T � β) = Ωβ is a maximal antichain in T � β}

is a stationary subset of κ.
Thus we apply �−(κ) to obtain a limit ordinal α < κ satisfying

sup(nacc(Cα) ∩ B) = α.

Consider any v ∈ Tα. By construction,
v = bαx = ⋃

β∈dom(bα
x ) bαx (β) for some x ∈ T � Cα. Fix

β ∈ nacc(Cα) ∩ B with ht(x) < β < α. So Ωβ = A ∩ (T � β) is a
maximal antichain in T � β. Thus we chose bαx (β) to extend some
y ∈ Ωβ. Altogether, y ⊆ bαx (β) ⊆ bαx = v , as required.



How does �−(κ) fit with other axioms?

So we’ve built a κ-Souslin tree from ♦(κ) +�−(κ), but how does
this compare with other known axioms?

Theorem
♦(κ) +�−(κ) holds, assuming any of the following:
I κ = ℵ1 and ♦(ℵ1) holds;
I κ = λ+ for λ uncountable, and �λ + CHλ holds;
I κ = λ+, λ is not subcompact, and V is a Jensen-type

extender model of the form L[E ];
I κ is a regular uncountable cardinal that is not weakly

compact, and V = L.

Thus, we get a κ-Souslin tree uniformly in all these scenarios!
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Slim Souslin trees

In the tree we just built, what can we say about how fast the levels
grow?

At each limit level α < κ, we put (at most) one node into Tα for
every x ∈ T � α.
It follows that |Tα| ≤ max{|α| ,ℵ0} for every α < κ.
Thus we say the tree is slim.
What if we consider an opposite property?
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Complete Souslin trees

Definition
For cardinals χ < κ, the κ-Souslin tree 〈T , <T 〉 is χ-complete if
every <T -increasing sequence of elements of T of length < χ has
an upper bound in T .

To get our κ-Souslin tree to be χ-complete, we would like to tweak
our construction so that at levels α with cf(α) < χ we put the
limits of all branches into Tα. Does this work?
For one thing, we can’t let the tree get too wide. So we better
assume λ<χ < κ for all λ < κ.
But if there are elements of Tα that are not of the form bαx , then
how do we kill the antichains using Cα?
We need to tweak an axiom to avoid such levels.
Recall that the previous construction used ♦(κ) +�−(κ).
Which axiom should we strengthen: ♦(κ) or �−(κ)?
Classical constructions of χ-complete Souslin trees would replace
♦(κ) with ♦(Eκ

≥χ). But we’ll try something different. . . .
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A stronger parameter: �−(S)

Recall
Fix a regular uncountable cardinal κ.
The principle �−(κ) asserts the existence of a sequence
〈Cα | α < κ〉 such that:
I Cα is a club subset of α for every limit ordinal α < κ;
I Cᾱ = Cα ∩ ᾱ for all ordinals α < κ and ᾱ ∈ acc(Cα);
I for every cofinal subset B ⊆ κ, there exist stationarily many
α < κ satisfying

sup(nacc(Cα) ∩ B) = α.

Theorem
For any regular uncountable cardinal κ and any infinite χ < κ
satisfying λ<χ < κ for all λ < κ, ♦(κ) +�−(Eκ

≥χ) implies the
existence of a χ-complete κ-Souslin tree.
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A stronger parameter: �−(S)

There exist models satisfying ♦(κ) and �−(Eκ
≥χ) in which ♦(Eκ

≥χ)
fails. The preceding theorem shows that we can build a χ-complete
κ-Souslin tree in such a model, despite the failure of ♦(Eκ

≥χ).

This is because the last clause of �−(S) allows us to separate the
stationary set of approximations to a maximal antichain from the
stationary set of ordinals where we seal those antichains.
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Coherent trees

Definition
A subtree T ⊆ <κκ is coherent if for every α < κ and
s, t ∈ T ∩ ακ, the set {β < α | s(β) 6= t(β)} is finite.

Jensen gave a consistent construction of a coherent ℵ1-Souslin
tree. Velickovic gave a consistent construction of a coherent
ℵ2-Souslin tree.
What about inaccessible κ?
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Strengthening �−(S) to �(S)

Definition
Fix a regular uncountable cardinal κ and a stationary set S ⊆ κ.
The principle �(S) asserts the existence of a sequence
〈Cα | α < κ〉 such that:
I Cα is a club subset of α for every limit ordinal α < κ;
I Cᾱ = Cα ∩ ᾱ for all ordinals α < κ and ᾱ ∈ acc(Cα);
I for every sequence 〈Bi | i < κ〉 of cofinal subsets of κ,

there exist stationarily many α ∈ S such that for all i < α

sup{β < α | succω(Cα \ β) ⊆ Bi} = α,

where

succω(D) := {δ ∈ D | 0 < otp(D ∩ δ) < ω}.



Construction of a coherent tree

Theorem
If κ is a regular uncountable cardinal and �(κ) +♦(κ) holds, then
there exists a coherent κ-Souslin tree.



Construction of a coherent tree

Let 〈Cα | α < κ〉 be a witness to �(κ).
WLOG, assume that 0 ∈ Cα for all α < κ.
Let 〈Ri | i < κ〉 and 〈Ωβ | β < κ〉 together witness ♦(Hκ).
Fix a well-ordering � on Hκ.
Let π : κ→ κ be such that α ∈ Rπ(α) for all α < κ.
By ♦(κ), we have 2<κ = κ, thus let φ : κ↔ <κ2 be some
bijection.
Put ψ := φ ◦ π.

For two elements of η, τ of Hκ, we define η ∗ τ to be the emptyset,
unless η, τ ∈ <κ2 with dom(η) < dom(τ), in which case
η ∗ τ : dom(τ)→ 2 is defined by stipulating:

(η ∗ τ)(β) :=
{
η(β), if β ∈ dom(η);
τ(β), otherwise.



Construction of a coherent tree

Let 〈Cα | α < κ〉 be a witness to �(κ).
WLOG, assume that 0 ∈ Cα for all α < κ.
Let 〈Ri | i < κ〉 and 〈Ωβ | β < κ〉 together witness ♦(Hκ).
Fix a well-ordering � on Hκ.
Let π : κ→ κ be such that α ∈ Rπ(α) for all α < κ.
By ♦(κ), we have 2<κ = κ, thus let φ : κ↔ <κ2 be some
bijection.
Put ψ := φ ◦ π.
For two elements of η, τ of Hκ, we define η ∗ τ to be the emptyset,
unless η, τ ∈ <κ2 with dom(η) < dom(τ), in which case
η ∗ τ : dom(τ)→ 2 is defined by stipulating:

(η ∗ τ)(β) :=
{
η(β), if β ∈ dom(η);
τ(β), otherwise.



Construction of a coherent tree (continued)

We shall now recursively construct a sequence 〈Tα | α < κ〉 of
levels whose union will ultimately be the desired tree T .
Let T0 := {∅}.
For every α < κ, define

Tα+1 = {sa〈i〉 | s ∈ Tα, i < 2}.



Construction of a coherent tree (continued)

Next, suppose that α is a nonzero limit ordinal, and that
〈Tβ | β < α〉 has already been defined.
As before, to each node x ∈ T � α we shall associate some node
bαx : α→ κ above x , and then let Tα := {bαx | x ∈ T � α}.
Unlike the previous proof we first define bα∅ , and then use bα∅ to
define bαx for x 6= ∅.
Define bα∅ ∈

∏
β∈Cα

Tβ by recursion. Let bα∅ (0) := ∅.



Construction of a coherent tree (continued)
Next, suppose β− < β are successive points of Cα, and bα∅ (β−)
has already been defined. In order to decide bα∅ (β), we advise with
the following set:

Qα,β := {t ∈ Tβ | ∃s ∈ Ωβ[(s ∪ (ψ(β) ∗ bα∅ (β−))) ⊆ t]}.

Now, consider the two possibilities:
I If Qα,β 6= ∅, let t denote its �-least element, and put

bα∅ (β) := bα∅ (β−) ∗ t;
I Otherwise, let bα∅ (β) be the �-least element of Tβ that

extends bα∅ (β−).
Note that Qα,β depends only on Tβ,Ωβ, ψ(β) and bα∅ (β−), and
hence for every ordinal γ < κ, if Cα ∩ (β + 1) = Cγ ∩ (β + 1), then
bα∅ � (β + 1) = bγ∅ � (β + 1). It follows that for all β ∈ acc(Cα) such
that bα∅ � β has already been defined, we may let
bα∅ (β) := ⋃ Im(bα∅ � β) and infer that bα∅ (β) = bβ∅ ∈ Tβ. This
completes the definition of bα∅ and its limit bα∅ = ⋃ Im(bα∅ ).



Construction of a coherent tree (continued)
Next, for each x ∈ T � α, let bαx := x ∗ bα∅ . This completes the
definition of the level Tα.
Having constructed all levels of the tree, we then let

T :=
⋃
α<κ

Tα.

Claim
For every α < κ, every two nodes of Tα differ on a finite set.

Proof.
Suppose not, and let α be the least counterexample. Clearly, α
must be a limit nonzero ordinal. Pick x , y ∈ T � α such that bαx
differs from bαy on an infinite set. As bαx = x ∗ bα∅ and bαy = y ∗ bα∅ ,
it follows that x and y differ on an infinite set, contradicting the
minimality of α.
Thus, we are left with verifying that (T ,⊂) is κ-Souslin.
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Construction of a coherent tree (continued)

Claim
Suppose A ⊆ T is a maximal antichain. Then |A| < κ.

PROOF:
As in the previous theorem but this time making use of the
sequence 〈Ri | i < κ〉, for every i < κ, the set

Bi := {β ∈ Ri | A ∩ (T � β) = Ωβ is a maximal antichain in T � β}

is stationary. Thus, we apply �(κ) to the sequence 〈Bi | i < κ〉,
and the club D := {α < κ | T � α ⊆ φ[α]} to obtain an ordinal
α ∈ D such that for all i < α:

sup(nacc(Cα) ∩ Bi ) = α.



Construction of a coherent tree (continued)

Claim
Suppose A ⊆ T is a maximal antichain. Then |A| < κ.
PROOF:
As in the previous theorem but this time making use of the
sequence 〈Ri | i < κ〉, for every i < κ, the set

Bi := {β ∈ Ri | A ∩ (T � β) = Ωβ is a maximal antichain in T � β}

is stationary. Thus, we apply �(κ) to the sequence 〈Bi | i < κ〉,
and the club D := {α < κ | T � α ⊆ φ[α]} to obtain an ordinal
α ∈ D such that for all i < α:

sup(nacc(Cα) ∩ Bi ) = α.



Construction of a coherent tree (continued)

To see that A ⊆ T � α, consider any z ∈ T � (κ \ α). Let
y := z � α ∈ Tα. By construction, y = bαx = x ∗ bα∅ for some
x ∈ T � α. As α ∈ D and x ∈ T � α, we can fix i < α such that
φ(i) = x .
Fix β ∈ nacc(Cα) ∩ Bi with ht(x) < β < α. Clearly,
ψ(β) = φ(π(β)) = φ(i) = x . Since β ∈ Bi , we know that
Ωβ = A ∩ (T � β) is a maximal antichain in T � β, and hence
Qα,β 6= ∅. Let t := min(Qα,β,�) and β− := sup(Cα ∩ β). Then
bα∅ (β) = bα∅ (β−) ∗ t, and there exists some s ∈ Ωβ such that
(s ∪ (x ∗ bα∅ (β−))) ⊆ t. In particular, x ∗ bα∅ (β) extends an element
of Ωβ. Altogether, there exists some s ∈ A ∩ (T � β) such that
s ⊆ x ∗ bα∅ (β) ⊆ x ∗ bα∅ = bαx = y ⊆ z , and hence z /∈ A.



How does �(κ) fit with other axioms?
Now we’ve built a coherent κ-Souslin tree from ♦(κ) +�(κ). How
does this compare with other known axioms?

Theorem
♦(κ) +�(κ) holds, assuming any of the following:
I κ = ℵ1 and ♦(ℵ1) holds;
I κ = λ+ for λ singular, and �λ + CHλ holds;
I κ = λ+ for λ regular uncountable, and ♦λ holds;
I κ = λ+, λ is not subcompact, and V is a Jensen-type

extender model of the form L[E ];
I κ is a regular uncountable cardinal that is not weakly

compact, and V = L;
I κ = λ+ for λ regular uncountable and V = W Add(λ,1), where

W |= ZFC +�λ + CHλ + λ<λ = λ.
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Unified result

Thus, we get a coherent κ-Souslin tree uniformly in all these
scenarios!

In fact, we can construct a free κ-Souslin tree from ♦(κ) +�(κ).
Thus there exists a free κ-Souslin tree in all of these scenarios as
well!
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Thus there exists a free κ-Souslin tree in all of these scenarios as
well!



Using the full strength of �(κ)

The construction of the coherent and free trees does not use the
full force of the axiom �(κ): We needed only

sup(nacc(Cα) ∩ Bi ) = α,

which is equivalent to

sup{β < α | succ1(Cα \ β) ⊆ Bi} = α,

while �(κ) provides

sup{β < α | succω(Cα \ β) ⊆ Bi} = α.

Why do we need the stronger condition?
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Using the full strength of �(κ): Ascent paths

Using �(κ), we can construct a κ-Souslin tree with a θ-ascent
path, for every cardinal θ < κ.

What is an ascent path?
Instead of defining it, let’s look at its consequences.
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Ascent paths make a tree non-specializable

An ascent path makes a tree hard to specialize.
Recall: Baumgartner, Malitz & Reinhardt (1970) proved that every
ℵ1-Aronszajn tree can be made special in some cofinality-preserving
extension. The next example is of a λ+-Souslin tree that cannot
be specialized without reducing it to the BMR scenario.
Theorem
Assume �λ + CHλ for a given singular cardinal λ of countable
cofinality.
Then there exists a λ+-Souslin tree 〈T , <T 〉 satisfying the
following. If W is a ZFC extension of the universe in which
〈T , <T 〉 is a special |λ|+-tree, then W |= |λ| = ℵ0.



Free trees with ascent paths

Theorem
For any regular uncountable cardinal κ and any infinite cardinal
θ < κ, ♦(κ) +�(κ) implies that there exists a free κ-Souslin tree
with a θ-ascent path.



Reduced-power trees
Ascent paths provide a branch through the reduced-power tree,
while freeness can prevent such branches from existing. With
careful control over both, we obtain:
Theorem
Assume V = L.
Then there exist trees T0,T1,T2,T3, and selective ultrafilters U0
over ω and U1 over ω1, such that:

T Tω/U0 Tω1/U1
T0 ℵ3-Souslin ℵ3-Aronszajn ℵ3-Aronszajn
T1 ℵ3-Souslin ℵ3-Kurepa ℵ3-Kurepa
T2 ℵ3-Souslin ℵ3-Aronszajn ℵ3-Kurepa
T3 ℵ3-Souslin ¬ℵ3-Aronszajn ℵ3-Aronszajn

This is new: Previous results addressed θ-power trees with respect
to a single power θ, but here we control different powers
simultaneously and independently.



The proxy principle
The axioms we have defined so far, �−(S) and �(S), are special
cases of a parametrized proxy principle.

Definition (Proxy principle)
The principle P−(κ, µ,R, θ,S, ν, σ, E) asserts the existence of a
sequence 〈Cα | α < κ〉 such that:
I for every limit α < κ, Cα is a collection of club subsets of α;
I for every ordinal α < κ, 0 < |Cα| < µ, and C E D for all

C ,D ∈ Cα;
I for every ordinal α < κ, every C ∈ Cα, and every ᾱ ∈ acc(C),

there exists D ∈ Cᾱ such that D R C ;
I for every sequence 〈Ai | i < θ〉 of cofinal subsets of κ, and

every S ∈ S, there exist stationarily many α ∈ S for which:
I |Cα| < ν; and
I for every C ∈ Cα and i < min{α, θ}:

sup{β ∈ C | succσ(C \ β) ⊆ Ai} = α.
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there exists D ∈ Cᾱ such that D R C ;
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The proxy principle

Definition
P(κ, µ,R, θ,S, ν, σ, E) asserts that both P−(κ, µ,R, θ,S, ν, σ, E)
and ♦(κ) hold.

Why so many parameters?
I To calibrate various properties of Souslin trees, by identifying

the weakest vector of parameters necessary to construct a tree
satisfying any desired property;

I To capture all of the axioms used in classical ♦-based
constructions of Souslin trees.
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The proxy principle

Recall:
We constructed a slim κ-Souslin tree from �−(κ) +♦(κ), and a
χ-complete κ-Souslin tree from �−(Eκ

≥χ) +♦(κ).
We can restate �− in terms of the proxy principle as follows:

�−(S) ⇐⇒ P−(κ, 2,v, 1, {S}, 2, 1, Eκ),

so that we get a slim κ-Souslin tree from

P(κ, 2,v, 1, {κ}, 2, 1, Eκ),

and a χ-complete κ-Souslin tree (assuming λ<χ < κ for all λ < κ)
from

P(κ, 2,v, 1, {Eκ
≥χ}, 2, 1, Eκ).



Recovering the classical axioms
For any regular uncountable cardinal κ and any stationary S ⊆ κ:

♣w (S) ⇐⇒ P−(κ, 2, κv, 1, {S}, 2, κ, Eκ)
♦(S) ⇐⇒ P(κ, 2, κv, 1, {S}, 2, κ, Eκ)

For any infinite cardinal λ and any stationary S ⊆ λ+:

�λ ⇐⇒ P−(λ+, 2,v, 1, {λ+}, 2, 0, Eλ)
�λ + CHλ ⇐⇒ P(λ+, 2,v, 1, {λ+}, 2, 0, Eλ) (λ > ℵ0)

♦λ ⇐⇒ P(λ+, 2,v, 1, {Eλ+

cf(λ)}, 2, λ+, Eλ)
�λ,≥χ ⇐⇒ P−(λ+, 2,vχ, 1, {λ+}, 2, 0, Eλ) λ > ℵ0;λ ≥ χ ≥ ℵ0

〈λ〉−S ⇐⇒ P(λ+, 2, λv, 1, {S}, 2, 1, Eλ)

Thus any time we carry out a construction from the proxy
principle, we can tell immediately which of the classical axioms are
sufficient for the construction.
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More examples

Theorem
Assuming P(κ, κ, χv, κ, {Eκ

≥χ}, 2, 1, Eκ) and λ<χ < κ for all
λ < κ, there exists a χ-complete, free κ-Souslin tree.

Theorem
Assuming GCH + P(λ+, λ+, χv∗, 1, {Eλ+

λ }, λ+, 1,=∗), there exists
a λ-complete specializable λ+-Souslin tree.
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Still more
By further tweaking the parameters and varying the construction
slightly, we can construct a Souslin tree from weaker axioms than
those mentioned earlier.
Theorem
A form of the proxy principle P(. . . ) holds enabling the
construction of a λ+-Souslin tree for uncountable λ, assuming any
of the following:
I λ<λ = λ+♦(Eλ+

λ );
I V = W Add(λ,1), where W |= ZFC + CHλ + λ<λ = λ;
I V = W Prikry(λ), where W |= ZFC + CHλ + λ is measurable;
I λ<λ = λ+ CHλ + NS � Eλ

θ is saturated where λ = θ+ for
regular θ;

I λ<λ = λ+ CHλ + ∃ a non-reflecting stationary set of Eλ+
<λ.

I 2<λ = λ+�∗λ + CHλ + ∃ a non-reflecting stationary subset of
Eλ+

6=cf(λ).
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Returning to some earlier scenarios

Corollary
If λ<λ = λ, CHλ, and f∗(λ,Eλ+

λ ) holds for a regular uncountable
cardinal λ, then there exists a free λ+-Souslin tree.

Corollary
If λ<λ = λ and 〈λ〉−Eλ+

λ

holds for a regular uncountable cardinal λ,
then there exists a free λ+-Souslin tree.

Corollary
If �λ,≥χ and CHλ for cardinals χ < λ where λ is a singular strong
limit cardinal, then there exists a free λ+-Souslin tree.
The last theorem uses the ascent path to ensure that the
construction goes through despite the possible failure of �∗λ in this
case.
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Even more
Theorem
Assuming the consistency of a supercompact cardinal, there is a
model of ZFC that satisfies:

1. Martin’s Maximum holds, and hence:
1.1 �∗λ fails for every singular cardinal λ of countable cofinality;
1.2 �λ,ℵ1 fails for every regular uncountable cardinal λ;
1.3 There does not exist any ℵ1-Souslin or ℵ2-Souslin tree.

2. P(λ+, 2,vℵ2 , λ
+, {Eλ+

cf(λ)}, 2, ω, Eλ) holds for every singular
cardinal λ;

3. P(λ+, 2, λv, λ+, {Eλ+
λ }, 2, ω, Eλ) holds for every regular

uncountable cardinal λ.

4. There are no inaccessible cardinals;
From (2), (3) and (4), it follows that there exists a free κ-Souslin
tree for every regular cardinal κ > ℵ2.
For λ > cf(λ) = ω, we seal the antichains at points of Eλ+

ω , even
though MM implies that every stationary subset of Eλ+

ω reflects!
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The end?

We’ve reached the end of today’s presentation.
But the story doesn’t end here.
Would you like to join our tree-building adventure?
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