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Abstract. A family F ⊆ [ω]ω is called Rosenthal if for every Boolean algebra
A, bounded sequence

〈
µk : k ∈ ω

〉
of measures on A, antichain

〈
an : n ∈ ω

〉
in A, and ε > 0, there exists A ∈ F such that

∑
n∈A,n 6=k µk(an) < ε for every

k ∈ A. Well-known and important Rosenthal’s lemma states that [ω]ω is a

Rosenthal family. In this paper we provide a necessary condition in terms of

antichains in ℘(ω) for a family to be Rosenthal which leads us to a conclusion
that no Rosenthal family has cardinality strictly less than cov(M), the covering

of category. We also study ultrafilters on ω which are Rosenthal families — we

show that the class of Rosenthal ultrafilters contains all selective ultrafilters
(and consistently selective ultrafilters comprise a proper subclass).

1. Introduction

Rosenthal’s lemma is one of the most fundamental results in vector measure the-
ory with numerous applications to the theory of operators on Banach spaces and
the study of weak topologies, cf. e.g. Diestel [9, Chapter VII], Diestel and Uhl
[10, Section I.4], Haydon [13, Propositions 1B and 1C], Koszmider and Shelah [18,
Lemma 2.2]. The lemma in its particular form reads as follows.

Rosenthal’s lemma. Given an antichain
〈
an : n ∈ ω

〉
in a Boolean algebra A,

a sequence of non-negative finitely additive measures
〈
µk : k ∈ ω

〉
on A satisfying

for every k ∈ ω the inequality
∑
n∈ω µk

(
an
)
≤ 1, and ε > 0, there exists an infinite

set A ∈ [ω]
ω

such that for every k ∈ A the following holds:∑
n∈A
n6=k

µk
(
an
)
< ε.

In this paper we are interested in addressing the following question concerning
possible choices of the set A.

Question 1.1. Can the set A in the conclusion of Rosenthal’s lemma be chosen
from a previously fixed family F ⊆ [ω]

ω
?

An easy analysis of common proofs of the lemma, e.g. of simple Kupka’s
proof ([20, Lemma 1]), shows that they only appeal to the numbers µk

(
an
)
’s,

not to the measures µk’s or elements of the Boolean algebra A as such, hence
to prove the lemma it is sufficent only to consider the infinite real-entried matrix〈
mk
n : n, k ∈ ω

〉
, where mk

n = µk
(
an
)

for each n, k ∈ ω.

Definition 1.2. An infinite matrix
〈
mk
n : n, k ∈ ω

〉
is called Rosenthal if mk

n ≥ 0

for every n, k ∈ ω and
∑
n∈ωm

k
n ≤ 1 for every k ∈ ω.
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2 D. SOBOTA

Definition 1.3. A non-empty family F ⊆ [ω]
ω

is called Rosenthal if for every
Rosenthal matrix

〈
mk
n : n, k ∈ ω

〉
, and ε > 0, there exists A ∈ F such that for

every k ∈ A the following inequality holds:∑
n∈A
n 6=k

mk
n < ε.

Thus, Question 1.1 asks whether a given family F ⊆ [ω]
ω

is Rosenthal (and
Rosenthal’s lemma asserts that [ω]

ω
is).

In Section 2 we provide a necessary condition for a family to be Rosenthal in
terms of antichains in ℘(ω). We then use it to prove that no Rosenthal family
can be simpler than every family of meager subsets covering the real line R, i.e.
we prove that no family of cardinality strictly less than cov(M), the covering of
category, is a Rosenthal family (Corollary 2.6).

On the other hand, in Theorem 3.6 of Section 3 we will answer Question 1.1
affirmatively for a family F being a base of a selective ultrafilter (assuming such an
ultrafilter exists). Selective ultrafilters, as well as their weaker variants like P-points
and Q-points, constitute an important tool of infinite Ramsey theory or transfinite
combinatorics in general; see e.g. Blass [5, 6, 7], Comfort and Negrepontis [8],
Grigorieff [12], Laflamme [21] or Laflamme and Leary [22]. However, their existence
is independent of ZFC (cf. Section 3).

The converse to Theorem 3.6 does not hold — in Theorem 3.17 under the as-
sumption of Martin’s axiom for σ-centered partially ordered sets we construct an
example of a P-point ultrafilter which is a Rosenthal family but not a Q-point.

Recalling the result of Baumgartner and Laver [4] stating that in the model
obtained by iterating the Sacks forcing there exists a selective ultrafilter with a base
of cardinality ω1 while the continuum c is equal to ω2, we get that consistently there
exists a Rosenthal family F of cardinality strictly less than c. Since under Martin’s
axiom every Rosenthal family is of cardinality c (Corollary 2.7), we obtain that the
existence of Rosenthal families of cardinality strictly less than c is undecidable in
ZFC+¬CH (Corollary 3.8).

Acknowledgements. The results of the paper come partially from author’s PhD thesis

[24] written under the supervision of Piotr Koszmider, whom the author would like to

thank for the guidance, inspiring discussions and helpful comments.

2. Rosenthal families and cov(M)

In this section we provide a simple necessary (but not sufficient) condition for a
subfamily of [ω]

ω
to be Rosenthal. We start with the following auxiliary definition.

Recall that a sequence
〈
an : n ∈ ω

〉
of subsets of ω is an antichain if an ∩ am = ∅

for every distinct n,m ∈ ω.

Definition 2.1. A family F ⊆ [ω]
ω

has the antichain property if there exists an
antichain

〈
an ∈ ℘(ω) : n ∈ ω

〉
such that for every A ∈ F there exists n ∈ ω such

that |an| ≥ 2 and an ⊆ A.

Proposition 2.2. If a family F ⊆ [ω]
ω

has the antichain property, then it is not
Rosenthal.

Proof. Assume F has the antichain property and let
〈
an : n ∈ ω

〉
be an antichain

witnessing it. We may assume that |an| = 2 for every n ∈ ω; denote an = {pn, rn}.
Define an infinite matrix

〈
mk
n : n, k ∈ ω

〉
as follows:

mk
n =

{
1 if {k, n} = {pl, rl} for some l ∈ ω,
0 otherwise.
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Since
〈
an : n ∈ ω

〉
is an antichain,

〈
mk
n : n, k ∈ ω

〉
is a Rosenthal matrix.

Let A ∈ F and al = {pl, rl} ⊆ A for some l ∈ ω. We have:∑
n∈A
n 6=k

mpl
n = mpl

rl
= 1,

which proves that F cannot be Rosenthal. �

Proposition 2.3. There exists a family F ⊆ [ω]
ω

which is not Rosenthal and does
not have the antichain property.

Proof. Let
〈〈
aαn : n ∈ ω

〉
: α < c

〉
be an enumeration of all such antichains that∣∣aαn∣∣ ≥ 2 for some n ∈ ω. For every α < c let Aα ∈ [ω]

ω
be such that 0 ∈ Aα and∣∣Aα ∩ aαn∣∣ ≤ 1 for every n ∈ ω. Put F =

{
Aα : α < c

}
.

It is immediate that F does not have the antichain property. Also, since 0 ∈
⋂
F ,

F is not Rosenthal — the matrix
〈
mk
n : n, k ∈ ω

〉
defined as follows witnesses this

fact:

mk
n =

{
1 if n = 0,
0 otherwise.

�

Let us define the following cardinal characteristic of the continuum, which we
have not encountered so far in the literature.

Definition 2.4. The antichain number is defined as follows:

anti = min
{
|F| : F ⊆ [ω]

ω
does not have the antichain property

}
.

By Proposition 2.3, anti ≤ c. The following proposition implies, in particular,
that if F ⊆ [ω]

ω
does not have the antichain property, then F is uncountable.

Recall that MAκ(countable) denotes Martin’s axiom for countable posets and not
more than κ many dense subsets of them.

Proposition 2.5. Let κ be a cardinal number. Assuming MAκ(countable), anti >
κ.

Proof. Define a poset P as follows:

P =
{

(a1, . . . , an) : n ∈ ω, a1, . . . , an ∈ ℘(ω) mutually disjoint pairs
}
,

where
(
a1, . . . , an

)
≤
(
b1, . . . , bm

)
if n ≥ m and ai = bi for every i ≤ m. Then, P is

countable.
Let F ⊆ [ω]

ω
be an arbitrary family such that |F| ≤ κ. We shall show that F

has the pair property. For every A ∈ F and every n ∈ ω put:

DA =
{(
a1, . . . , am

)
∈ P : am ⊆ A

}
,

En =
{(
a1, . . . , ak

)
∈ P : k ≥ n}.

DA’s and En’s are dense in P. By MAκ(countable), there exists a P-generic ultra-
filter G intersecting every DA and every En. Put g =

⋃
G. By properties of G, the

sequence g witnesses that F has the pair property. �

Keremedis [16, Theorem 1] (see also Bartoszyński and Judah [3, Theorem 2.4.5])
proved that given a cardinal number κ, MAκ(countable) holds if and only if cov(M) >
κ, where cov(M) denotes the covering of category. Hence, we immediately get that
cov(M) ≤ anti as well as that no Rosenthal family is of cardinality strictly less
than cov(M).

Corollary 2.6. If F ⊆ [ω]
ω

is a Rosenthal family, then |F| ≥ cov(M).
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Corollary 2.7. Assuming MAκ(countable), every Rosenthal family has cardinality
c.

It is easy to see that no base of an ultrafilter may have the antichain property
and thus anti is bounded from above by the ultrafilter number u. The following
proposition provides a stronger upper bound for anti — the reaping number r.

Proposition 2.8. anti ≤ r.

Proof. Let F ⊆ [ω]
ω

be unsplittable, i.e. for every B ∈ [ω]
ω

there exists A ∈ F
such that one of the sets A ∩ B and A \ B is finite. Without loss of generality
we may assume that if A ∈ F and n ∈ ω, then A \ n ∈ F . Assume that F has
the antichain property, i.e. there exists an antichain

〈
an : n ∈ ω

〉
such that for

every A ∈ F there exists n ∈ ω for which an ⊆ A and |an| ≥ 2. It is immediate
that for every A ∈ F there exists a subantichain

〈
ank : k ∈ ω

〉
for which we have⋃

k∈ω ank ⊆ A. For each n ∈ ω pick kn ∈ an and put B =
{
kn : n ∈ ω

}
. Then, for

every A ∈ F both sets A ∩B and A \B are infinite — a contradiction. �

It is also worth of noting that using measure-theoretic methods it can be shown
that anti ≤ d, where d is the dominating number, however, the proof of this fact lies
beyond the scope of this paper (see Sobota [24, Propositions 6.5.14 and 6.5.15]).
Note that min(r, d) = min(u, d) due to Aubrey [2, Corollary 6.4].

3. Rosenthal families and ultrafilters

In the previous section we have found a necessary condition for a subfamily of
[ω]

ω
to be Rosenthal, namely, such a family cannot have the antichain property.

This led us to exclude from being Rosenthal those families which have too simple
combinatorics, i.e. those with the cardinality strictly less than cov(M). In this
section we will look for some Rosenthal families which are non-trivial, i.e. much
different than [ω]

ω
.

Let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix and fix ε > 0. Let F for a moment

be a family of all such A ∈ [ω]
ω

that:∑
n∈A
n 6=k

mk
n < ε

for every k ∈ A. Note that if A,B ∈ F , then [A]
ω ⊆ F and [A ∩B]

ω ⊆ F (the
latter may be empty). Hence, it seems reasonable to look for a non-trivial Rosen-
thal family among such substructures of [ω]

ω
like ultrafilters or ideals. Also, the

apparent similarity between Rosenthal’s lemma and the infinite Ramsey theorem
suggests that Ramsey (selective) ultrafilters may be good candidates and — as
mentioned in the introductory section — they in fact are.

3.1. Selective ultrafilters. Recall that an antichain P ⊆ ℘(ω) is a partition of ω
if ω =

⋃
P. By an ultrafilter we always mean a non-principal ultrafilter on ω, since

principal ultrafilters are never Rosenthal families.

Definition 3.1. An ultrafilter F is selective (or Ramsey) if for every partition
P ⊆ ℘(ω) \ F there is A ∈ F such that |A ∩B| ≤ 1 for every B ∈ P.

Selective ultrafilters are easy to construct under the Continuum Hypothesis or
Martin’s axiom, see e.g. Jech [14, Theorem 7.8] or Just and Weese [15, Section
19.3]. On the other hand, Kunen [19] proved that it is consistent that there are no
selective ultrafilers.

There are many characterizations of selective ultrafilters, see e.g. Comfort and
Negrepontis [8, Theorem 9.6], Argyros and Todorčević [1, Section B.I.1] or Grigorieff
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[12, Corollary 16]. We will especially use Grigorieff’s characterization in terms of
trees.

Definition 3.2. Let F be an ultrafilter on ω. Let A ⊆ ω<ω be a tree. A is an
F-tree if for every s ∈ A its ramification ram(s) =

{
n : san ∈ A

}
is in F . A

branch H ∈ ωω of A is an F-branch if ranH ∈ F .

Definition 3.3. An ultrafilter F is a T-ultrafilter if every F-tree A ⊆ ω<ω has an
F-branch.

Theorem 3.4 (Grigorieff [12, Corollary 1.15]). Let F be an ultrafilter on ω. Then,
F is selective if and only if F is a T-ultrafilter. �

Before we go to the proof of the main theorem of this section, we prove the
following auxiliary lemma.

Lemma 3.5. Let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix. Let F be an ultrafilter,

Y ∈ F and δ > 0. Then, there exists Z ∈ F , Z ⊆ Y , such that for every l ∈ Z
there exists Xl ∈ F , Xl ⊆ Z, satisfying the following two conditions:

• l < min
(
Xl

)
, and

• mk
l < δ for every k ∈ Xl.

Proof. For every l ∈ Y put:

Al =
{
k ∈ Y : k > l & mk

l ≥ δ
}

and

Bl =
{
k ∈ Y : k > l & mk

l < δ
}
.

Since Y ∈ F , either Al ∈ F or Bl ∈ F (but not both!). Thus, define:

A =
{
l ∈ Y : Al ∈ F

}
and

B =
{
l ∈ Y : Bl ∈ F

}
.

Let K be the minimal natural number such that Kδ > 1. Then, |A| < K.
Indeed, if there exist l1 < . . . < lK in A, then there exists k ∈ Al1 ∩ . . . ∩ AlK ∈ F
and so mk

l1
, . . . ,mk

lK
≥ δ, whence:

1 ≥
∑
l∈ω

mk
l ≥

K∑
i=1

mk
li ≥ Kδ > 1,

a contradiction.
Let N = max(A) + 1. Then put Z = B \N = Y \N ∈ F and Xl = Z ∩Bl ∈ F

for every l ∈ Z. �

We now prove the main result of this chapter.

Theorem 3.6. Let F be a selective ultrafilter and U its base. Then, U is a Rosen-
thal family.

Proof. Let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix and ε > 0.

We first construct an F-tree A ⊆ ω<ω such that if s ∈ A and sak ∈ A for some
k ∈ ω, then the following conditions are satisfied:

(0) k > max(s),

(1)
∑
n<|s|

mk
s(n) < ε/2,

(2) if sak ( t ∈ A, then
∑

|s|<n<|t|

mk
t(n) < ε/2.
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Note that if such a tree has been constructed, then its every branch H ∈ ωω is
increasing (due to the condition (0)) and for every k ∈ ω we have:∑

n∈ω
n 6=k

m
H(k)
H(n) =

∑
n<k

m
H(k)
H(n) +

∑
n>k

m
H(k)
H(n) =

∑
n<k

m
H(k)
H(n) + lim

N→∞

∑
k<n<N

m
H(k)
H(n) < ε/2 + lim

N→∞
ε/2 = ε.

Let us now build the tree A. The construction will be conducted level by level.
Let the 0-th level consist of the empty sequence ∅. We need to define the ramification
ram(∅), i.e. the 1-st level. Let Y = ω. By Lemma 3.5, there exists a set Z ∈ F ,
Z ⊆ Y , such that for every l ∈ Z there is a set X(l) ∈ F , X(l) ⊆ Z, satisfying the
following two conditions:

• l < min
(
X(l)

)
, and

• mk
l < ε/22 for every k ∈ X(l).

Put ram(∅) = Z, i.e. for every l ∈ Z the 1-element sequence (l) belongs to A. Hence,
the 1-st level has been constructed. Note that ram(∅) ∈ F and X(l) ⊆ ram(∅) for
every l ∈ ram(∅). The next levels of A will be built in such a way that if l ∈ Z and

s ∈ A extends (l), then s(1), . . . , s(|s| − 1) ∈ X(l), whence m
s(i)
l < ε/22 for every

1 ≤ i ≤ |s| − 1.
Let j ≥ 1 and assume we have built the j-th level of A in such a way that for

every s ∈ ωj there is a set Xs ∈ F , Xs ⊆ ram
(
s � j − 1

)
, such that the following

two conditions are satisfied:

• s(j − 1) < min
(
Xs

)
, and

• mk
s(j−1) < ε/2j+1 for every k ∈ Xs,

(i.e. Xs was obtained with the aid of Lemma 3.5). Let thus s ∈ ωj belong to the
tree we have built so far; we want to choose ram(s) ∈ F . There exists N ∈ ω such

that
∑
n>N m

s(j−1)
n < ε/2. Put Y = Xs \ N ∈ F . By Lemma 3.5, there exists

Z ∈ F , Z ⊆ Y , such that for every l ∈ Z there is a set Xsal ∈ F , Xsal ⊆ Z,
satisfying the following two conditions:

• l < min
(
Xsal

)
, and

• mk
l < ε/2j+2 for every k ∈ Xsal.

Put ram(s) = Z, i.e. for every l ∈ Z the sequence sal belongs to the being
constructed tree A. Hence, the level j+1 has been constructed. Note that ram(s) ∈
F and Xsal ⊆ ram(s) ⊆ Xs for every l ∈ ram(s). Also note that s(j − 1) <
min

(
Xs

)
≤ min

(
ram(s)

)
.

Assume we have built the tree A in the way described above. Since ram(s) ∈ F
for every s ∈ A, A is an F-tree. We need to check that the conditions (0)–(2) are
satisfied. Let sak ∈ A.

• The condition (0) is satisfied due to the inequalities s(|s|−1) < min
(
Xs

)
≤

min
(

ram(s)
)
.

• Since k ∈ Xs ⊆ X(s(0),...,s(|s|−2)) ⊆ . . . ⊆ X(s(0)), we have that mk
s(n) <

ε/22+n for every 0 ≤ n ≤ |s| − 1. Thus:∑
n<|s|

mk
s(n) <

∑
n<|s|

ε/22+n < ε/2,

so the condition (1) is satisfied.
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• If sak ( t ∈ A, then t(|s| + 1), . . . , t(|t| − 1) ∈ ram(sak), so for N =
min

(
ram(sak)

)
:∑

|s|<n<|t|

mk
t(n) ≤

∑
n>N

mk
n < ε/2,

which shows that the condition (2) is satisfied.

Since A is an F-tree and F is a T-ultrafilter (by Theorem 3.4), there exists an
F-branch H ∈ ωω. For every k ∈ ω we have:∑

n∈ω
n 6=k

m
H(k)
H(n) < ε.

Let U ∈ U be contained in ranH. Then, for every k ∈ U it obviously holds:∑
n∈U
n 6=k

mk
n < ε,

and the proof of the theorem is finished. �

Since there are models of ZFC where there exists a selective ultrafilter with a
base of cardinality ω1 and also the equality ω2 = c holds (e.g. the Sacks model),
the existence of “small” Rosenthal families is consistent.

Corollary 3.7. It is consistent that there exists a Rosenthal family of cardinality
ω1 whereas c = ω2. �

On the other hand, since under Martin’s axiom every Rosenthal family has car-
dinality c, we have the following independence result.

Corollary 3.8. The existence of a Rosenthal family of cardinality strictly less than
c is undecidable in ZFC + ¬CH. �

Let us remark that the results from the previous and current sections imply
that the minimal cardinality of a Rosenthal family is a cardinal invariant of the
continuum. Let us thus introduce the following number.

Definition 3.9. The Rosenthal number ros is defined as follows:

ros = min
{
|F| : F ⊆ [ω]

ω
is a Rosenthal family

}
.

Let us denote the minimal size of a base of a selective ultrafilter (or c if no such
ultrafilter exists).

Corollary 3.10.

(1) cov(M) ≤ ros ≤ us.
(2) Assuming Martin’s axiom, ros = c. �

3.2. P-points and Q-points. In the previous section we have showed that every
base of a selective ultrafilter is a Rosenthal family. Of course, every selective ultra-
filter must have this property as well. Let us thus introduce the following class of
ultrafilters.

Definition 3.11. An ultrafilter F is Rosenthal if it is a Rosenthal family.

In this section we will show that the class of Rosenthal ultrafilters is broader
than the class of selective ones. More precisely, we will show that consistently there
are Rosenthal P-points which are not selective. This shows that the converse to
Theorem 3.6 does not hold and thus the Rosenthal property does not characterize
selective ultrafilters.

Recall the following well-known classes of ultrafilters.
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Definition 3.12. An ultrafilter F is:

• a P-point if for every partition P ⊆ ℘(ω) \F of ω there is A ∈ F such that
A ∩B is finite for every B ∈ P;
• a Q-point if for every partition P ⊆ [ω]

<ω
of ω there is A ∈ F such that

|A ∩B| ≤ 1 for every B ∈ P.

It is immediate that an ultrafilter is selective if and only if it is simultaneously a
P-point and a Q-point. Extensive studies of the classes of ultrafilters may be found
in e.g. Just and Weese [15, Section 19.3], Blass [5, 7], Comfort and Negrepontis [8],
Laflamme [21] or Laflamme and Leary [22]. Note that the existence of P-points or
Q-points is independent of ZFC — all those ultrafilters exist under the assumption
of the Continuum Hypothesis or Martin’s axiom (see Just and Weese [15, Section
19.3]), but Shelah [25] consistently showed that there are no P-points, and Miller
[23] — no Q-points.

We start with lemmas. Recall that given an integer number p > 0 the Ramsey
number R(p) is the minimal number n such that for every 2-colouring c : [n]2 → 2
there exists X ⊆ n such that |X| = p and c � [X]2 is constant. The celebrated
Ramsey theorem states that R(p) exists for every p > 0 — see Graham, Rothschild
and Spencer [11]. Let us call a partition

〈
an : n ∈ ω

〉
of ω uniform if |an| = n for

every n ∈ ω.

Lemma 3.13. Let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix and

〈
an : n ∈ ω

〉
a

uniform partition of ω. Let δ, γ ∈ (0, 1). For every integer N > 1 there exists integer
rN > N such that for every a ∈ [ω]rN and A ∈ [ω \ a]

ω
such that

{
|an∩A| : n ∈ ω

}
is infinite, there are b ∈ [a]N and B ∈ [A]

ω
satisfying the following conditions:

•
∑
n∈bm

k
n < δ for every k ∈ B,

•
∑

n∈b
n 6=k

mk
n < δ for every k ∈ b,

•
∑
n∈Bm

k
n < γ for every k ∈ b,

•
{
|an ∩B| : n ∈ ω

}
is infinite.

Proof. Let K ∈ ω be such a number that (K − 1) · δ/N > 1. Define the following
numbers:

pN = N ·K,
qN = R

(
pN
)
,

rN = R
(
qN
)
.

Clerly, rN > N . We will now show that such defined rN satisfies the thesis of the
lemma. Let thus a ∈ [ω]rN and A ∈ [ω \ a]

ω
be such that

{
|an ∩ A| : n ∈ ω

}
is

infinite.
Define a colouring c : [a]2 → 2 in the following way:

c(i, j) =

{
1 if mj

i < δ/N,
0 otherwise.

for every i < j ∈ a. By the Ramsey theorem there exists X ∈ [a]qN such that
c � [X]2 is constant. If c � [X]2 ≡ 0, then for j = max(X) we have:

1 ≥
∑
i∈X
i 6=j

mj
i ≥ (qN − 1) · δ/N ≥ (pN − 1) · δ/N > (K − 1) · δ/N > 1,

a contradiction. So c � [X]2 ≡ 1.
Now, similarly as above define a colouring d : [X]2 → 2 (note the swap of the

indices i and j with respect to the definition of c!):

d(i, j) =

{
1 if mi

j < δ/N,
0 otherwise.
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for every i < j ∈ X. Again, by the Ramsey theorem and the argument as previously,
there exists Y ∈ [X]pN such that d � [Y ]2 is constantly equal to 1.

We will now find the pair (b, B) — the set b will be an element of [Y ]N . Note
that for every b ∈ [Y ]N and every k ∈ b we have:∑

n∈b
n 6=k

mk
n < δ.

Let b1, . . . , bN ∈ [Y ]K be pairwise disjoint; it follows that Y =
⋃N
i=1 bi.

Since |b1| = K <∞, there are n1 ∈ b1 and B1 ∈ [A]
ω

such that:

• mk
n1
< δ/N for every k ∈ B, and

•
{
|an ∩B1| : n ∈ ω

}
is infinite.

Indeed, for every l ∈ b1 let Cl ∈ ℘(A) be maximal such that mk
n < δ/N for every

k ∈ Cl. Since A =
⋃
l∈b1 Cl, at least for one l ∈ b1 the set

{
|an ∩ Cl| : n ∈ ω

}
is

infinite. Put n1 = l and B1 = Cl.
Similarly, we can find n2 ∈ b2, . . . , nN ∈ bN and B2 ∈ [B1]

ω
, . . . , BN ∈ [BN−1]

ω

such that for every i = 2, . . . , N :

• mk
ni < δ/N for every k ∈ Bi, and

•
{
|an ∩Bi| : n ∈ ω

}
is infinite.

Put b = {n1, . . . , nN}. Note that for every k ∈ BN we have:∑
n∈b

mk
n < N · δ/N = δ.

Let M ∈ ω be such that for every i = 1, . . . , N we have:∑
n∈BN\M

mni
n < γ.

Put B = BN \M . �

The following proposition is a generalization of Rosenthal’s lemma.

Proposition 3.14. Let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix and

〈
an : n ∈ ω

〉
a

uniform partition of ω. Let ε > 0. For every A ∈ [ω]
ω

such that
{
|an ∩A| : n ∈ ω

}
is infinite there is B ∈ [A]

ω
such that

{
|an ∩ B| : n ∈ ω

}
is still infinite and for

every k ∈ B the following inequality holds:∑
n∈B
n 6=k

mk
n < ε.

Proof. To construct the set B we will inductively use Lemma 3.13. For N = 2, δ =
ε/2N and γ = ε/2, let rN be as in Lemma 3.13. Since

{
|an∩A| : n ∈ ω

}
is infinite,

there is MN ∈ ω (MN ≥ rN ) such that
∣∣aMN

∩A
∣∣ ≥ rN . Let KN = max

(
aMN

)
+1.

Due the properites of rM , there exists bN ∈
[
aMN

∩A
]N

and BN ∈ [A \KN ]
ω

such
that the following hold:

•
∑
n∈bN m

k
n < δ for every k ∈ BN ,

•
∑
n∈bN
n 6=k

mk
n < δ for every k ∈ bN ,

•
∑
n∈BN m

k
n < γ for every k ∈ bN ,

•
{
|an ∩BN | : n ∈ ω

}
is infinite.

Now, exactly as above, for any N ≥ 3, δ = ε/2N and γ = ε/2, A = BN−1, use

Lemma 3.13 to obtain rN , MN , aMN
, KN , bN ∈

[
aMN

∩A
]N

and BN ∈ [A \KN ]
ω

.

This way, we obtain an antichain
〈
bN : N ≥ 2

〉
in [A]

<ω
such that:
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(1)
∣∣bN ∩ aRN ∣∣ = N for every N ≥ 2,

(2) for every N ≥ 2 and k ∈ bN we have:∑
n∈bN
n 6=k

mk
n < ε/2N and

∑
n∈

⋃
M>N

bM

mk
n < ε/2,

(3) for every N > M ≥ 2 and k ∈ bN we have:∑
n∈bM

mk
n < ε/2M .

Put: B =
⋃
N≥2 bN . By (1) the set

{
|an ∩B| : ∈ ω

}
is infinite. Let k ∈ B and let

N be such that k ∈ bN . We have:∑
n∈B
n 6=k

mk
n =

∑
n∈

⋃
2≤M<N

bM

mk
n +

∑
n∈BN
n 6=k

mk
n +

∑
n∈

⋃
M>N

bM

mk
n =

∑
2≤M<N

∑
n∈bM

mk
n +

∑
n∈BN
n 6=k

mk
n +

∑
n∈

⋃
M>N

bM

mk
n <

∑
2≤M<N

ε/2M + ε/2N + ε/2 < ε.

�

For a given partition P of ω, let us say that C ∈ [ω]
ω

is a selector of P if either
C ⊆ A for some A ∈ P or C ∩A is finite for every A ∈ P.

Lemma 3.15. Let
〈
an : n ∈ ω

〉
be a uniform partition of ω and P =

〈
Pk : k ∈ ω

〉
a partition of ω. Assume that for a set B ∈ [ω]

ω
the set

{
|an ∩ B| : n ∈ ω

}
is

infinite. Then, there exists a selector C ∈ [B]
ω

of P such that
{
|an ∩ C| : n ∈ ω

}
is infinite.

Proof. If Pk is finite for every k ∈ ω, then let C = B. Otherwise, there exists k ∈ ω
such that Pk is infinite. Let bn = an∩B. Without loss of generality we may assume
that the sequence

〈
|bn| : n ∈ ω

〉
is strictly increasing and b0 6= ∅; it follows that

|bn| > n for every n ∈ ω.
If there exists a sequence

〈
nk : k ∈ ω

〉
such that for some l ∈ ω the set

{∣∣bnk ∩
Pl
∣∣ : k ∈ ω

}
is infinite, then put C = Pl ∩B and we are done.

Otherwise, for every l ∈ ω the set
{
|bn ∩Pl| : n ∈ ω

}
is finite. We construct the

set C inductively. Let n0 = 0 and c0 = bn0
. Assume that for some l ∈ ω we have

constructed the sequences c0, . . . , cl of finite sets and n0, . . . , nl ∈ ω such that:

• ci ⊆ bni for every 0 ≤ i ≤ l,
• |ci| < |cj | and Ki ∩Kj = ∅ for every 0 ≤ i < j ≤ l, where Kr =

{
k ∈ ω :

Pk ∩ cr 6= ∅
}

.

Let:

m = max
k∈

⋃
0≤i≤l

Ki

(
max
n∈ω

∣∣bn ∩ Pk∣∣)
and let nl+1 ∈ ω be such that:

nl+1 > |cl|+m ·
∑

0≤i≤l

|Ki|.

Define cl+1 ⊆ bnl+1
as follows:

cl+1 = bnl+1
\
⋃

0≤i≤l

⋃
k∈Ki

Pk.
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Then,
∣∣cl+1

∣∣ > |cl| and Kl+1 ∩
⋃

0≤i≤lKi = ∅.
Put C =

⋃
n∈ω cn. Since for every k ∈ ω there is at most one n ∈ ω such that

Pk ∩ cn 6= ∅, C is a selector of P . The sequence
〈
|cl| : l ∈ ω

〉
is strictly increasing

and for every l ∈ ω we have cl ⊆ bnl ⊆ anl , hence the set
{
|an ∩ C| : n ∈ ω

}
is

infinite. �

The proof of the following lemma can be found in Just and Weese [15, Lemma
19.32]. Recall that MA(σ-centered) denotes Martin’s axiom for σ-centered posets
and strictly less than c many dense subsets of them.

Lemma 3.16. Assume MA(σ-centered). Let
〈
an : n ∈ ω

〉
be a uniform partition

of ω. Let B ⊆ [ω]
ω

be such that |B| < c and for every finite H ⊆ B the set{
|
⋂
H ∩an| : n ∈ ω

}
is infinite. Then, there exists a pseudo-intersection P ∈ [ω]

ω

of B such that
{
|an ∩ P | : n ∈ ω

}
is infinite.

We are in the position to construct a non-selective Rosenthal ultrafilter.

Theorem 3.17. Assume MA(σ-centered). Then, there exists a Rosenthal P-point
which is not a Q-point.

Proof. Fix a uniform partition
〈
an : n ∈ ω

〉
of ω. Denote the following sequences:

•
〈
Cα : α < c

〉
— an enumeration of all subsets of ω,

•
〈
Pα : α < c

〉
— an enumeration of all infinite partitions of ω,

•
〈
Mα : α < c

〉
— an enumeration of all pairs

(〈
mk
n : n, k ∈ ω

〉
, ε
)
, where

the first coordinate is a Rosenthal matrix and the second one is a positive
real number.

We will construct inductively a sequence
〈
Bα : α < c

〉
of infinite subsets of ω such

that for every α < β < c the following hold:

(1) Bβ \Bα is finite,
(2) either Bα ⊆ Cα or Bα ∩ Cα = ∅,
(3) the set

{
|an ∩Bα| : n ∈ ω

}
is infinite,

(4) Bα is a selector of Pα.
(5) if Mα =

(〈
mk
n : n, k ∈ ω

〉
, ε
)
, then for every k ∈ Bα we have:∑

n∈Bα
n 6=k

mk
n < ε.

Having this done, we put:

F =
{
A ∈ [ω]

ω
: Bα \A is finite for some α < c

}
.

F is an ultrafilter by (1) and (2), not a Q-point by (3), a P-point by (4), and a
Rosenthal family by (5).

We start as follows. There exists A ∈ {C0, ω\C0} such that
{
|an∩A| : n ∈ ω

}
is

infinite. By Proposition 3.14, for M0 =
(〈
mk
n : n, k ∈ ω

〉
, ε
)

there exists B ∈ [A]
ω

such that
{
|an ∩B| : n ∈ ω

}
is infinite and for every k ∈ B we have:∑

n∈B
n 6=k

mk
n < ε.

Finally, use Lemma 3.15 with P = P0 to obtain a selector C ∈ [B]
ω

of P0 such that{
|an ∩ C| : n ∈ ω

}
is infinite. Put: B0 = C.

Let 0 < β < c and assume we have constructed a family B =
{
Bα : α < β

}
such

that for every finite H ⊆ B the set
{
|an∩

⋂
H| : n ∈ ω

}
is infinite. By Lemma 3.16,

there exists a pseudo-intersection P of B such that
{
|an ∩ P | : n ∈ ω

}
is infinite.
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We now act similarly as in the 0-th step. There is A ∈ {P ∩Cβ , P \Cβ} such that{
|an ∩ A| : n ∈ ω

}
is infinite. By Proposition 3.14, for Mβ =

(〈
mk
n : n, k ∈ ω

〉
, ε
)

there exists B ∈ [A]
ω

such that
{
|an ∩ B| : n ∈ ω

}
is infinite and for every k ∈ B

we have:∑
n∈B
n 6=k

mk
n < ε.

Finally, use Lemma 3.15 with P = Pβ to obtain a selector C ∈ [B]
ω

of Pβ such
that

{
|an ∩ C| : n ∈ ω

}
is infinite. Put: Bβ = C. �

Let us finish with the following important issue. We have just proved that the
class of selective ultrafilters is consistently a proper subclass of Rosenthal ultrafil-
ters. However, we have been so far unable to obtain an example of an ultrafilter
which is not Rosenthal. As this issue is fundamental for the theory of Rosenthal
ultrafilters (and Rosenthal families in general), we pose the following question.

Question 3.18. Is every ultrafilter Rosenthal?

Let M be a family of some Rosenthal matrices. We say that an ultrafilter F is
Rosenthal for M if for every

〈
mk
n : n, k ∈ ω

〉
∈ M and ε > 0 there is A ∈ F such

that: ∑
n∈A
n 6=k

mk
n < ε.

We have several remarks concerning the question.

Remark 3.19. If F is an ultrafilter which is Rosenthal for the family of all finitely
supported Rosenthal matrices

〈
mk
n : n, k ∈ ω

〉
, i.e. such that the set

{
n : mk

n 6=
0
}

is finite for every k ∈ ω, then F is Rosenthal. Indeed, let
〈
mk
n : n, k ∈ ω

〉
be a Rosenthal matrix and ε > 0. For every k ∈ ω there exists Nk such that∑
n>Nk

mk
n < ε/2. Define a new finitely supported Rosenthal matrix

〈
m̂k
n : n, k ∈

ω
〉

as follows:

m̂k
n =

{
mk
n if n ≤ Nk,

0 otherwise.

By the assumption, there is A ∈ F such that for every k ∈ A we have:∑
n∈A
n 6=k

m̂k
n < ε/2,

and hence:∑
n∈A
n 6=k

mk
n =

∑
n∈A
n 6=k

m̂k
n +

∑
n∈A
n>Nk

mk
n < ε/2 + ε/2 = ε.

Remark 3.20. Every ultrafilter is Rosenthal for the class of all uniformly finitely
supported Rosenthal matrices

〈
mk
n : n, k ∈ ω

〉
, i.e. such that there exists M ∈ ω

for which
∣∣{n : mk

n 6= 0
}∣∣ < M for all k ∈ ω. Indeed, let F be an ultrafilter,〈

mk
n : n, k ∈ ω

〉
uniformly finitely supported Rosenthal matrix with M ∈ ω wit-

nessing that and ε > 0. Define a function f : ω → [ω]M as follows:

f(k) =
{
n ∈ ω : mk

n 6= 0 and n 6= k
}
.

Then, by Hajnal’s Free Set Theorem (see e.g. Komjáth and Totik [17, Exercise
26.9]) there exist sets A1, . . . , AN ∈ ℘(ω) for some N ≤ 2M + 1 such that ω =
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i=1Ai and for every i ≤ N and k ∈ Ai we have f(k) ∩Ai = ∅, and thus:∑

n∈Ai
n6=k

mk
n = 0.

Since F is an ultrafilter, there is i ≤ N such that Ai ∈ F .

Remark 3.21. By the previous two remarks it follows that to answer Question 3.18
it is sufficent to check whether every ultrafilter is Rosenthal for the family of all
finitely supported Rosenthal matrices

〈
mk
n : n, k ∈ ω

〉
such that:

sup
k∈ω

∣∣{n : mk
n 6= 0

}∣∣ =∞.

Remark 3.22. Note that there are ZFC examples of non-P-points and non-Q-points.
E.g. let H be a so-called Fubini product of two ultrafilters, i.e. given two ultrafilters
F and G on ω define H on ω × ω as follows:

H =
{
X ∈ ℘(ω × ω) :

{
n ∈ ω : {m ∈ ω : (n,m) ∈ X} ∈ G

}
∈ F

}
.

Fix a bijection ω×ω → ω and identifyH with an ultrafilter on ω. It is a folklore fact
that H is neither a P-point nor a Q-point as well as that F and G are both below
H in the sense of Rudin-Keisler order (see Blass [5, page 146]). Is H a Rosenthal
ultrafilter?
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