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Abstract

Using special triangulations of a compact 2-dimensional topological manifold without boundary S, for

every closed subset F ⊆ S we construct a dense in the mapping space C(F, [0,1]) family of piecewise

linear mappings whose fibers consist of components homeomorphic to subcontinua of the figure eight.

The number of fibers with a figure-eight component is evaluated for each such map in the case F = S.

We then prove that every fiber of a generic map in C(F, [0,1]) consists only of components being

either a singleton or a figure-eight-like hereditarily indecomposable continuum. This extends a result

of Z. Buczolich and U.B. Darji.
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1. Introduction

Given any two metric spaces X and Y , by C(X,Y ) we denote the space of all continuous mappings

from X into Y with the supremum norm. By saying that a generic continuous function f ∈ C(X,Y )
has property P we mean the existence of a dense Gδ subset G ⊆ C(X,Y ) such that every f ∈ G has

the property P. For compact metric spaces and the unit interval I = [0,1] with the natural topology,

M. Levin proved the following theorem:

Theorem 1.1 ([1]). Let X be a compact metric space. Then every component of every fiber of a

generic f ∈ C(X,I) is a hereditarily indecomposable continuum.

A continuum is a connected compact metric space. We say that a continuum is indecomposable if

it cannot be represented as a union of its two proper subcontinua and it is hereditarily indecomposable

if its every subcontinuum is indecomposable.

Independently of Levin, J. Krasinkiewicz obtained a stronger result:

Theorem 1.2 ([2]). Let X be a compact metric space and M be a manifold of positive dimension. Then

every component of every fiber of a generic f ∈ C(X,M) is a hereditarily indecomposable continuum.

J. Song and E.D. Tymchatyn generalized the Krasinkiewicz theorem to polygons:

Theorem 1.3 ([3]). Let X be a compact metric space and P be a locally finite polygon. Then every

component of every fiber of a generic f ∈ C(X,P ) is a hereditarily indecomposable continuum.
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These three theorems characterize fibers of a generic map between two given spaces in a very general

way – they state only that components of these fibers are hereditarily indecomposable continua. A

major step toward a more precise description is the paper by Z. Buczolich and U.B. Darji ([4]), where

the characterization is given of components of fibers of a generic map from the 2-dimensional sphere

S2 into the unit interval I in terms of ε-mappings onto the figure eight � – a space homeomorphic to

the wedge of two circles S1 ∨ S1. A function f ∈ C(X,Y ) is an ε-mapping if the preimage of every

point has diameter less than ε. For a finite graph P a continuum X is P -like if for every ε > 0 there

exists an ε-mapping from X onto P .

Theorem 1.4 (Buczolich, Darji, [4]). Every component of every fiber of a generic f ∈ C (S2, I) is

either a singleton or an �-like hereditarily indecomposable continuum.

This paper generalizes the theorem of Buczolich and Darji to any closed subset of a compact

surface (Theorem 3.4). The idea of the proof is based on the technique of Buczolich and Darji, i.e.

by constructing appropriate triangulations of a surface we prove the existence of a dense family of

continuous mappings with components of fibers being points, circles or eights. The existence of this

family is crucial for the proof of the main theorem (Lemma 3.3). A very simple method of triangulating

S2 presented in [4] cannot be directly carried over an arbitrary compact surface, so in this paper we

propose a new way of constructing triangulations of compact surfaces. We call those triangulations

eight-like (cf. Definition 2.1). They have a series of features common with the triangulation presented

in [4], hence the proofs of Lemmas 2.3-2.8 and 2.15 are strongly based on the proofs of corresponding

lemmas from [4].

2. Triangulations of surfaces

By a surface we always mean a 2-dimensional topological manifold, i.e. a non-empty locally Eu-

clidean, second countable, Hausdorff space. By a triangulation T of a surface S we mean a pair (K, ϕ)
where K is an Euclidean simplicial complex and ϕ ∶ ∣K∣→ S is a homeomorphism from the polygon ∣K∣
induced by K onto S. For simplicity, we identify the complex K with its polygon ∣K∣. If v = ϕ(x) for

some 0-simplex x ∈ K (≈ ∣K∣), then v is a vertex of T . We define similarly edges and triangles of T as

images by ϕ of respectively 1- and 2-simplices from K. If vertices u and v of T are distinct end points

of an edge e of T , then we denote e simply by uv. The sets of vertices and edges of T are denoted

by V and E , respectively. The set of triangles of T is identified with T itself, i.e. t ∈ T means that t

is a triangle of T . Given a vertex v ∈ V, we denote by N(v) the set of all neighbours of v in T , i.e.

N(v) = {w ∈ V ∶ vw ∈ E}. V (e) and V (t) denote, respectively, the 2-element set of end points of an

edge e ∈ E and the 3-element set of vertices of a triangle t ∈ T . Given a graph G, the degree of a vertex

v of G, denoted by degG v, is the cardinality of N(v) in G.

Definition 2.1. A triangulation T is eight-like if every v ∈ V has degree greater than 3 and there exists

a 3-colouring c ∶ V → {−,0,+} of vertices of T satisfying the following conditions:

1. for every v ∈ V:

� if deg
T
v ≠ 4,6, then c(v) ≠ 0;

� if deg
T
v = 4 and c(v) = 0, then there exist distinct x, y ∈ N(v) such that c(x), c(y) ∈ {−,+};

� if deg
T
v = 6 and c(v) = 0, then there exist distinct x, y, z ∈ N(v) such that c({x, y, z}) =

{−,+};
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2. every edge e ∈ E has at least one vertex coloured by 0, i.e. 0 ∈ c(V (e));

3. every triangle t ∈ T has a vertex coloured by either − or +, i.e. c(V (t)) ∩ {−,+} ≠ ∅ (note that

by the second condition: ∣c(V (t))∣ = 2).

We say that c is associated with T .

Let S be a closed surface (i.e. compact and without boundary). If T is a triangulation of S, then

every triangle t ∈ T is homeomorphic to the triangle T ⊂ R2 spanned on the vertices (0,0), (1,0) and

(0,1). Fix a homeomorphism ϕt ∶ T → t.

Definition 2.2. A mapping f ∈ C(S, I) is T -triangular for a triangulation T of S if f ∣V ∶ V → I is

one-to-one and for every t ∈ T the mapping f ○ ϕt ∶ T → I is linear.

A simple consequence of this definition is the following

Lemma 2.3. Let f ∈ C(S, I) be T -triangular for a triangulation T of S. Let y ∈ I and t ∈ T . Assume

f−1(y) ∩ t ≠ ∅. Then exactly one of the following holds:

� f−1(y) ∩ t = {v} for some vertex v ∈ V;

� f−1(y) ∩ t is an arc containing exactly one vertex v ∈ V and joining v with the side of t opposite

to v;

� f−1(y) ∩ t is an arc intersecting two sides of t and containing no vertex of T .

Since we consider only finite triangulations, from Lemma 2.3 we immediately get

Corollary 2.4. Let f ∈ C(S, I) be T -triangular for a triangulation T of S. For every y ∈ I, the fiber

f−1(y) has finitely many components, each of which is a graph.

We now introduce the notion of an extremal function, which is crucial for this paper:

Definition 2.5. Let T be a triangulation of S and c ∶ V → {−,0,+} a 3-colouring of its vertices. A

T -triangular function f ∶ S → I is c-extremal if for every v ∈ V the condition c(v) = + (resp. c(v) = −)

holds if and only if there is a local maximum (resp. minimum) of f at v.

Condition 1 from Definition 2.1 implies the following

Lemma 2.6. Let T be an eight-like triangulation of S and c ∶ V → {−,0,+} be a colouring associated

with T . Let a T -triangular function f ∶ S → I be c-extremal. Then, if f(v) = 0 for v ∈ V, then there

exist distinct v1, v2 ∈ N(v) and distinct t1, t2 ∈ T such that vi ∈ V(ti) and f has a local extremum at vi
(i = 1,2).

The proof of the following important lemma strictly follows the proof of Lemma 5.4 from [4].

Lemma 2.7. Let a triangulation T of S be eight-like and c ∶ V → {−,0,+} be a colouring associated

with it. Let f ∈ C(S, I) be a T -triangular c-extremal function. For every y ∈ f(S), every component M

of the fiber f−1(y) is homeomorphic to one of the following three spaces: a point, the circle S1 and the

figure eight �. Moreover, every fiber f−1(y) has at most one component which is non-homeomorphic

to S1.
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Proof. Let M be a component of f−1(y) for some y ∈ f(S). Let us consider the following cases:

1. If M ∩V = ∅, then by Lemma 2.3, for every t ∈ T , the intersection M ∩ t is empty or is an arc. Thus

every point x of the graph M has degree 2. Theorem 9.6 [5], stating that a continuum N is homeomor-

phic to the circle S1 if and only if every point of N has degree 2, implies that M is homeomorphic to S1.

2. If M ∩ V = {v} and c(v) ≠ 0, then f has a local extremum at v. Hence M = {v}.

3. Let M ∩ V = {v} and c(v) = 0. By the injectivity of f ∣V and Lemma 2.3, it follows that every point

x ∈M ∖ {v} has degree 2 in M . Let us compute degM v with respect to deg
T
v:

a) Let deg
T
v = 4. By Lemma 2.6, there exist distinct v1, v3 ∈ N(v) such that c(v1), c(v3) ∈ {−,+}.

The second condition of Definition 2.1 guarantees that v1 and v3 are not neighbours. Let v2 and v4 be

distinct from v1 and v3 neighbours of v (Figure 1a).

Let us first assume that c(v1) = c(v3) = +. If f(v) > f(v2), then f−1(y) intersects the edges v1v2 and

v2v3. If f(v) < f(v2), then f−1(y) intersects neither v1v2 nor v2v3. Similarly, if f(v) > f(v4), then

f−1(y) intersects the edges v1v4 and v3v4, but intersects none of them if f(v) < f(v4). Inequalities

f(v) < f(v2) and f(v) < f(v4) cannot hold simultaneously, since c(v) = 0 and f is c-extremal. Thus

degM v ∈ {2,4}.

We prove analogously that degM v ∈ {2,4} when c(v1) = c(v3) = − and that degM v = 2 when

c(v1) ≠ c(v3).

b) Let deg
T
v = 6. By Condition 1 of Definition 2.1 there exist distinct vertices v1, v3, v5 ∈ N(v) such

that c(v1) = c(v3) ≠ c(v5) ∈ {−,+}. Without loss of generality we assume that c(v5) = − (other cases

are symmetric). Denote the remaining neighbours of v by v2, v4, v6 (Figure 1b).

If f(v) > f(v2), then f−1(y) intersects the edges v1v2 and v2v3. If f(v) < f(v2), then f−1(y) intersects

none of them. If f(v) > f(v4), then f−1(y) intersects the edge v3v4 but not the edge v4v5. Similarly,

if f(v) < f(v4), then f−1(y) intersects the edge v4v5 but not the edge v3v4. Analogously, we analyse

the value f(v6). Thus degM v ∈ {2,4}.

If degM v = 2, then M is homeomorphic to the circle S1. If degM v = 4, then M is homeomorphic to

the figure eight � (cf. [4, p. 240]).

v

v2

v1

v4

v3 v1

v6 v5

v4v

v2 v3
a) b)

Figure 1: a) degT v = 4, b) degT v = 6
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From the finiteness of considered triangulations and the proof of the above lemma we immediately

get the following

Corollary 2.8. Let f ∈ C(S, I) be a T -triangular c-extremal function for some eight-like triangulation

T and for colouring c ∶ V → {−,0,+} associated with T . Then the set of all those points y ∈ f(S) that

f−1(y) has a component homeomorphic to a point or to the figure eight � is finite.

2.1. Construction of eight-like triangulations

In the following section we prove that every closed surface S admits an arbitrary small eight-like

triangulation, i.e. for every ε > 0 there is an eight-like triangulation T such that every t ∈ T has

diameter less than ε.

Let us recall the following well-known classification of closed surfaces:

Theorem 2.9. Every connected closed surface is homeomorphic to exactly one of the following (m ≥ 1):

1. the sphere S2;

2. the connected sum of m tori T2;

3. the connected sum of m real projective planes RP 2.

An elegant proof of Theorem 2.9 can be found e.g. in [6, Chapter 6]. A very important step in

the proof is an observation that every closed surface S can be obtained by appropriate ”gluing” edges

of an even-sided regular polygon P ⊂ R2 called a fundamental polygon of S (cf. [6, Chapter 6]). This

observation allows us to restrict our attention only to triangulations of planar regular polygons.

Let then S be a closed surface and P its fundamental n-gon where n ≥ 4 is divisible by 4. Assume

P is contained in R2 ≈ C and its vertices are

vl = exp(iπ 2l + 1

n
) for l = 0,1, . . . , n − 1,

i.e. vl’s are all the n-th complex roots of −1.

Let us fix ε > 0. The polygon P is compact, hence the quotient map gluing edges is uniformly

continuous, so it is sufficient to construct an eight-like ε-triangulation of P . We proceed with the

construction in several steps.

Step 1. Let N ∈ N be divisible by 4 and such that 1/N < ε/16. For every k = 1,2, . . . ,N let Pk
denote the boundary of the regular n-gon spanned by the vertices

vkl =
k

N
exp(iπ 2l + 1

n
) for l = 0,1, . . . , n − 1.

Notice that

PN = bdR2(P ) and vNl = vl for l = 0,1, . . . , n − 1.

The polygonal curves Pk divide P into N − 1 n-gonal annuli and one n-gon containing the point (0,0)
(Figure 2). The length of a side of each Pk is 2k

N
sin π

n
.

Step 2. On every Pk we mark counterclockwisely, equidistantly, (k+2)n points ukm, m = 0,1, . . . , (k+
2)n − 1, in such a way that vk0 = uk0 (Figure 3). Notice that every side of every Pk is divided into k + 2
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P

v0
4

v1
4v2

4

v3
4

v4
4

v5
4 v6

4

v7
4

P
4

Figure 2: The n-gons Pk

P

u0
4

u0

u6
4

u5
4 u4

4

u3
4 u2

4

u1
4

v1
4 =

v0
4=

Figure 3: Vertices of the triangulation T

equal segments and that vkl = ukl(k+2) for l = 0,1, . . . , n − 1. We denote

uk
(k+2)n ∶= uk0 , uk

−1 ∶= uk(k+2)n−1 and u0 ∶= (0,0).

The distance beetwen two adjacent points ukm and ukm+1 is 2k
(k+2)N

sin π
n

, which is less than ε/2.

We declare the points ukm and u0 to be the vertices of the eight-like triangulation we are construct-

ing, i.e. put

V ∶= {ukm ∶ k = 1,2, . . . ,N ; m = 0,1, . . . , (k + 2)n − 1} ∪ {u0}.

An initial set of edges is defined as follows:

Ẽ ∶= {ukmukm+1 ∶ k = 1,2, . . . ,N ; m = 0,1, . . . , (k + 2)n − 1},

where ab denotes the shortest segment contained in P joining points a and b. Notice that every ukmu
k
m+1

is contained in Pk. The set Ẽ will be extended in the next steps.

The graph (V, Ẽ) is a disconnected graph consisting of N disjoint cyclic graphs Qk, k = 1,2, . . . ,N

(inducing in fact triangulations of the polygonal curves Pk) and a one-vertex graph Q0 corresponding

to the point u0.

Step 3. In this step we add to Ẽ edges joining vertices of the graphs Qk−1 and Qk for k = 1,2, . . . ,N .

We obtain a connected graph (V,E) inducing an eight-like ε-triangulation T .

First we add to Ẽ edges joining vertices u1m ∈ V (Q1), for m = 0,1, . . . ,3n− 1, and the vertex u0, i.e.
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P

Q1

Figure 4: Edges of E0 joining vertices of Q1 and the vertex

u0

P

Q5

u0

u0
5

4

Figure 5: Edges of E1 joining vertices of Q5 with vertices of

Q4

the segments u1mu
0 (Figure 4). Denote the obtained set of edges by E0. Since the method of adding

edges joining vertices of Qk and Qk−1, for k = 2,3, . . . ,N , depends on the remainder of division of k by

4, we proceed with the construction in the following four substeps (notice that the index l represents

the number of a side of the polygon bounded by Pk and the index j enumerates the vertex lying on

this side):

k ≡ 1 mod 4 (Figure 5):

E1 ∶= {uk
(k+2)l+j

uk−1
(k+1)l+j

∶ l = 0,1, . . . , n − 1; j = 0,1,2, . . . , k + 1}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j−1

∶ l = 0,1, . . . , n − 1; j = 1,3,5, . . . , k}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j+1

∶ l = 0,1, . . . , n − 1; j = 1,3,5, . . . , k}
∪ E0

k ≡ 2 mod 4 (Figure 6):

E2 ∶= {uk
(k+2)l+j

uk−1
(k+1)l+j−1

∶ l = 0,1, . . . , n − 1; j = 0,1,2, . . . , k + 1}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j−2

∶ l = 0,1, . . . , n − 1; j = 2,4,6, . . . , k}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j

∶ l = 0,1, . . . , n − 1; j = 0,2,4, . . . , k}
∪ E1

k ≡ 3 mod 4 (Figure 7):
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E3 ∶= {uk
(k+2)l+j

uk−1
(k+1)l+j−1

∶ l = 0,1, . . . , n − 1; j = 1,2,3, . . . , k + 1}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j−2

∶ l = 0,1, . . . , n − 1; j = 2,4,6, . . . , k + 1}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j

∶ l = 0,1, . . . , n − 1; j = 0,2,4,6, . . . , k + 1}
∪ E2

k ≡ 0 mod 4 (Figure 8):

E4 ∶= {uk
(k+2)l+j

uk−1
(k+1)l+j−1

∶ l = 0,1, . . . , n − 1; j = 2,4,6, . . . , k}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j

∶ l = 0,1, . . . , n − 1; j = 0,1,2, . . . , k + 1}

∪ {uk
(k+2)l+j

uk−1
(k+1)l+j+1

∶ l = 0,1, . . . , n − 1; j = 0,2,4,6, . . . , k}
∪ E3

Put E ∶= E4.

P

Q6

u0

u0
6

4

Q2

u0
2

Figure 6: Edges of E2 joining Q2 with Q1 and Q6 with Q5

P

Q7

u0
7

Q3

u0
3

Figure 7: Edges of E3 joining Q3 with Q2 and Q7 with Q6

Lemma 2.10. The graph G ∶= (V,E) induces a triangulation T of S.

Proof. Let us make the following three observations:

� the boundary of P is triangulated by QN , which is a subgraph of T ;

� vertices of P belong to V;

� vertices of QN are in equal distance from each other and on each side of P there is the same

number of vertices of QN .
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P

Q8

u0
8

u0
4

Figure 8: Edges of E4 joining Q4 with Q3 and Q8 with Q7

Since the quotient map P → S glues edges linearly, this means that if T is a triangulation of P , then

it is a triangulation of S.

We need several more simple facts concerning the construction:

� the vertex u0 of Q0 is joined only with vertices of Q1;

� vertices of Qk are joined only with vertices of Qk−1, Qk and Qk+1 (k = 1,2, . . . ,N − 1);

� vertices of QN are joined only with vertices of QN and QN−1;

� every vertex of Qk is joined with a vertex of Qk−1 (k = 1,2, . . . ,N);

� every vertex of Qk is joined with a vertex of Qk+1 (k = 0,2, . . . ,N − 1).

It follows from the above facts that in order to show that P is triangulated by T , it is sufficient

to observe that G induces triangulations of polygonal annuli bounded by Pk and Pk−1, triangulated

themselves by Qk and Qk−1 (k = 1,2, . . . ,N). The case of k = 1 is obvious. The case of k > 1 follows

from the definition of Ei where k ≡ i mod 4. Let k > 1 and let uk−1p be joined with a vertex ukq . Then

the vertex uk−1p+1 is joined with ukq or ukq+1. Indeed, if it is not joined with ukq , then uk−1p and uk−1p+1 are

both joined with ukq+1. Hence, since every vertex of Qk−1 is joined with a vertex of Qk, for every two

consecutive vertices uk−1p and uk−1p+1, there exists a triangle in G contained in the annulus bounded by

Pk−1 and Pk and containing those two vertices. Moreover, since the conjuction ”uk−1p is joined with

ukq and uk−1p+1 is joined with ukq−1” never holds, the intersection of any two distinct edges e, e′ ∈ E is

contained in V. This altogether implies that T triangulates the annulus bounded by Pk and Pk−1.

Lemma 2.11. T is an ε-triangulation.

Proof. As we noticed in the second step of the construction of T , the distance between two adjacent

vertices in every Qk is less than ε/2. Hence, by the triangle inequality, it is enough to show that every

edge joining Qk and Qk−1 has length less than ε/2.
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The cases of edges joining vertices of Q1 and u0 and of edges uk
(k+2)l

uk−1
(k+2)l−1

, for k > 0 such that

k ≡ 2 mod 4, are easy. For simplicity of the proof, we present only the case of edges joining vertices

contained in the l-th sides of Qk and Qk−1 for l such that n = 4l. These are sides parallel to the x-axis,

contained in the upper half-plane and vertices of T laying on them have coordinates:

( k
N

cos(π 2l + 1

n
) + 2kj

(k + 2)N sin
π

n
,
k

N
sin(π 2l + 1

n
)) for Qk,

(k − 1

N
cos(π 2l + 1

n
) + 2(k − 1)j

(k + 1)N sin
π

n
,
k − 1

N
sin(π 2l + 1

n
)) for Qk−1.

Let 1 < k ≤ N and 2 ≤ j ≤ k + 1. Accordingly to the construction of T it is enough to estimate

the distance from the vertex uk
(k+2)l+j to the vertices uk−1

(k+1)l+j−2, uk−1
(k+1)l+j−1, uk−1

(k+1)l+j and uk−1
(k+1)l+j+1.

Estimating the square of the distance between uk
(k+2)l+j and uk−1

(k+1)l+j−2 we get:

∣uk
(k+2)l+j − uk−1(k+1)l+j−2∣ ≤

1

N
+

√
16

N
+

√
8

N
< 1

N
+ 4

N
+ 3

N
= 8

N
< ε

2
.

Analogously, the distances from uk
(k+2)l+j to uk−1

(k+1)l+j−1, uk−1
(k+1)l+j and uk−1

(k+1)l+j+1, for 1 ≤ j ≤ k + 1, can

be estimated. The case of j = 0 may be considered separately.

Let us now define a 3-colouring c ∶ V → {−,0,+} satisfying conditions of Definition 2.1. Let

k ∈ {1,2, . . . ,N} and m ∈ {0,1, . . . , (k + 2)n − 1}. Put:

c (u0) ∶= +,

c (ukm) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , k odd,

+ , k ≡ 0 mod 4, m even,

− , k ≡ 2 mod 4, m even,

0 , k even, m odd.

Checking that c defined as above satisfies conditions of Definition 2.1 is easy (Figure 9). Thus we

get

Lemma 2.12. The triangulation T is eight-like.

Repeating the method from the proof of Lemma 2.7 and using the preceding constructions of the

triangulation T and the 3-colouring c, we can easily compute the number of fibers of a c-extremal

T -triangular function having a component homeomorphic to the figure �. Recall that v0, v1, . . . , vn−1
denote all the vertices of the polygonal P . Let π ∶ P → S be the quotient map.

Lemma 2.13. Every c-extremal T -triangular function f ∈ C(S, I) has exactly n(N2 +4N −4)/8 fibers

with a component homeomorphic to the figure �. Besides, f has exactly nN(N + 4)/16 minima and

exactly n(N2 + 4N − 16)/16 + 1 + ρ maxima, where ρ ∶= ∣π({v0, v1, . . . , vn−1})∣.

Proof. If c(v) = − for v ∈ V, then v = ukm for some k ≤ N such that k ≡ 2 mod 4, and m even. Thus

the number of minima is equal to

1

2

N/4

∑
k=1

n((4k − 2) + 2) = nN(N + 4)/16.
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P

Figure 9: Vertices coloured by + are marked with ⊕ and by − with ⊖

Computing the number of maxima is a bit more complicated. If c(v) = + for v ∈ V, then either

v = u0, or v = ukm for some k ≤ N such that k ≡ 0 mod 4, and m even. The number of maxima with

k < N is equal to

1

2

N/4−1

∑
k=1

n(4k + 2) = n(N2 − 16)/16.

The quotient map π glues each edge of P with exactly one other edge, hence every uNm /∈ {v0, v1, . . . , vn−1}
is glued with exactly one other uNm′ /∈ {v0, v1, . . . , vn−1} – this contributes additional nN/4 vertices to

the number of maxima. On the other hand, every vertex vi of P may be glued with more than one

other vertex of P , so there are only ρ vertices of P mapped to points of S at which f has maxima.

Thus the entire number of maxima of f is equal to

n(N2 − 16)/16 + 1

4
nN + 1 + ρ = n(N2 + 4N − 16)/16 + 1 + ρ.

Let us now compute the number of fibers with a component homeomorphic to �. Let M be

a component of the fiber f−1(y) for some y ∈ f(S). M may be homeomorphic to � only if M

contains a vertex v ∈ V coloured by 0. Let v be such a vertex. If v ∈ V (Q1) and deg
T
v = 4, then

degM v = 2, hence M is homeomorphic to the circle S1. If v /∈ V (Q1) or deg
T
v ≠ 4, then there exists a

unique path of distinct vertices u0, u1, u2, u3, u4 in T such that v ∈ {u1, u2, u3}, c({u1, u2, u3}) = {0},

11



c(u0) = c(u4) ∈ {−,+} and either

� there is k ≤ N − 4 such that ui ∈ V (Qk+i) for every 0 ≤ i ≤ 4, or

� u0 ∈ V (QN−2), u1 ∈ V (QN−1), u2 ∈ V (QN), u3 ∈ V (QN−1), u4 ∈ V (QN−2).

The vertex u2 is of degree 4 in T and has two neighbours coloured by the same nonzero colour. On

the other hand, for every two vertices ukm and ukm+2, where k and m are even (hence both vertices are

coloured by the same nonzero colour), there is a unique path such as described above and containing

ukm+1. Using the method presented in the proof of Lemma 2.7, one can easily show that there is exactly

one vertex in {u1, u2, u3} such that a component of a fiber of f containing this vertex is homeomorphic

to �. Hence, the number of all fibers having a component homeomorphic to the figure � equals to the

number of all vertices of T coloured by 0 and laying between two vertices of the same nonzero colour.

This number is equal to

nN(N + 4)/16 + n(N2 − 16)/16 + n(N + 2)/4 = n(N2 + 4N − 4)/8.

Lemmas 2.10, 2.11 and 2.12 imply the following important theorem:

Theorem 2.14. Let S be a closed surface and ε > 0. Then there exists an eight-like ε-triangulation

of S.

Let d be a metric on S. The existence of an arbitrarily small eight-like triangulation allows us to

prove the following crucial lemma (cf. [4, Lemma 5.6]):

Lemma 2.15. Let S be a closed surface. The set of all extremal functions is dense in C(S, I). More

precisely, given any g ∈ C(S, I) and ε, γ > 0, there exists an extremal function f ∈ C(S, I) such that

∥g − f∥ < ε and for every x ∈ S there is x′ ∈ S such that d(x,x′) < γ and f−1(f(x′)) has a component

M homeomorphic to the figure �, containing x′ and for which degM x′ = 4.

Proof. Let g ∈ C(S, I) and 1 > ε, γ > 0. Since S is compact, g is uniformly continuous. Hence there

exists δ > 0 such that if d(p, q) < δ, then ∣g(p) − g(q)∣ < ε/8. Set up η ∶= min(γ, δ)/3. Let T be an

eight-like η-triangulation of S and c ∶ V → {−,0,+} be the 3-colouring associated with T . We construct

a T -triangular c-extremal function f ∈ C(S, I) such that ∥f − g∥ < ε. Notice that without loss of

generality we can assume that g(S) ⊆ [ε/2,1 − ε/2]. To finish the proof it is sufficient to define f as a

one-to-one function on V. Let v ∈ V.

If c(v) = +, then we choose f(v) so that:

g(v) + ε
4
< f(v) < g(v) + ε

2
.

If c(v) = −, then choose f(v) so that:

g(v) − ε
2
< f(v) < g(v) − ε

4
.

If c(v) = 0, then let f(v) be chosen in such a way that:

g(v) − ε
8
< f(v) < g(v) + ε

8
.
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Now extend f linearly on every triangle of T so that f ∶ S → I is T -triangular. We have to show that

f is c-extremal and that ∥f − g∥ < ε. Let t ∈ T be a triangle with vertices v1, v2, v3 such that c(v1) = +
and c(v2) = c(v3) = 0. We have for i = 2,3:

f(vi) < g(vi) +
ε

8
< g(v1) +

ε

8
+ ε

8
= g(v1) +

ε

4
< f(v1),

so f has a maximum at v1. Moreover, for every x ∈ t we have

f(x) ∈ (g(v1) −
ε

4
, g(v1) +

ε

2
),

hence

∣f(x) − g(x)∣ ≤ ∣f(x) − g(v1)∣ + ∣g(v1) − g(x)∣ <
ε

2
+ ε

8
< ε.

The case of c(v1) = − is similar.

The second part of the lemma follows from the observation made in the proof of Lemma 2.13: every

point x ∈ S belongs to some triangle of T and every triangle t ∈ T has a vertex u contained in a path

u1, u2, u3 of vertices coloured by 0 and such that there exists a unique index i ∈ {1,2,3} for which

f−1(f(ui)) has a component M such that ui ∈M , degM ui = 4 and M is homeomorphic to �.

Lemmas 2.15 and 2.13 immediately imply the following

Corollary 2.16. The set of all functions having a fiber with a component homeomorphic to � is dense

in C(S, I).

2.2. Closed subsets of surfaces

In the following section we generalize Lemma 2.15 to all closed subsets of closed surfaces. First, let

us notice that the set S of all non-homeomorphic subcontinua of � is finite: it consists of the point ⋅,
the arc ∣, the circle ◯, the triod *, the cross ×, the circle with one hair ⟜, the circle with two hairs ∝
and the figure eight �. Thus, by Corollary 2.4, Lemma 2.15 may be expressed in a bit more general

form:

Lemma 2.17. Let S be a closed surface. The family of all functions with all fibers consisting of

components homeomorphic to a subcontinuum of � and such that the number of components is finite

is dense in C(S, I).

This lemma can be easily generalized to all closed subsets of a closed surface:

Lemma 2.18. Let F be a closed subset of a closed surface S. The family of all functions with all

fibers consisting of components homeomorphic to a subcontinuum of � is dense in C(F, I).

Proof. Let g ∈ C(F, I) and ε > 0. By the Tietze theorem there exists a continuous extension of g

over the surface S, i.e. there exists G ∈ C(S, I) such that G∣F = g. By Lemma 2.17 there exists a

function f ∈ C(S, I) which has all fibers consisting of subcontinua of the figure � and is ε-close to G.

The restriction of f to F satisfies ∥f ∣F − g∥ < ε and has the property demanded in the thesis of the

lemma.
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Since the Euclidean plane R2 embeds into S2, Lemma 2.18 works also for every compact subset of

R2. Moreover, as every compact surface with boundary is homeomorphic to a closed surface with a

finite number of open discs removed (cf. [6, Exercise 6.5]), we immediately obtain

Corollary 2.19. Let S be a compact surface with boundary. The family of all functions with all fibers

consisting of components homeomorphic to a subcontinuum of � is dense in C(S, I).

3. Fibers of a generic map f ∈ C(F,I)

Let F be a closed subset of a closed surface. In the following section we prove that a generic

f ∈ C(F, I) has the property that every component of every fiber is either a singleton or it is an �-like

hereditarily indecomposable continuum.

Recall that the Hausdorff distance between two closed subsets K and L of a compact metric space

(X,d) is defined by the formula dH(K,L) = max (supx∈K infy∈L d(x, y), supy∈L infx∈K d(x, y)). We will

need the following two technical lemmas:

Lemma 3.1 ([4, Lemma 4.5]). Let P be a graph and M be a continuum contained in a compact metric

space (X,d). Let ε > 0. Suppose f ∶M → P is a continuous ε-surjection. Then, there exists η > 0 such

that if N is a continuum in X with dH(M,N) < η, then there exists a (2ε)-mapping from N onto P .

Lemma 3.2 ([4, Lemma 4.11]). Let P be a non-degenerate subcontinuum of �. If M is a hereditarily

indecomposable P -like continuum, then M is �-like.

Let S denote the set of all non-homeomorphic subcontinua of �. The following lemma was proved

as Lemma 5.16 in [4], however, the proof is a main place where we use Lemma 2.18, thus for the

self-containment of the paper we include it here.

Lemma 3.3. A generic map f ∈ C(F, I) has the following property: if M is a non-degenerate compo-

nent of a fiber of f , then there exists P ∈ S such that M is a P -like continuum.

Proof. Let Fε be a family of all functions f ∈ C(F, I) such that there exists a fiber f−1(y) with a

component M for which there is no ε-mapping onto any element of S. We will show that the closure

Fε is nowhere dense in C(F, I).
Let {fn} be a sequence in Fε convergent to some f ∈ C(F, I) in the supremum norm. Let sequences

{yn} and {Mn} be such that Mn is a component of f−1n (yn) for which there is no ε-mapping onto any

element of S. Since F is compact, without loss of generality, we can assume that yn → y and Mn →M

in the Hausdorff metric. Thus, f(M) = {y}. Let N be a component of f−1(y) containing M .

There is no (ε/2)-mapping from N onto any element of S. Indeed, assume that there exists such

a mapping. Since M is a subcontinuum of N , there exists an (ε/2)-mapping from M onto an element

of S. By Lemma 3.1 for sufficiently large n < ω there exists an ε-mapping from Mn onto an element

of S, which contradicts a choice of Mn.

Thus we have shown that for every f ∈ Fε there exists y ∈ f(F ) such that there is a component M

of f−1(y) for which there is no (ε/2)-mapping onto any element of S. According to Lemma 2.18, Fε
is nowhere dense.

Put M ∶= C(F, I) ∖ ⋃n<ω F1/n. M is a dense Gδ-subset of C(F, I) consisting of all continuous

functions having the property that every component of every fiber is a P -like continuum for some

P ∈ S.
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Theorem 3.4. Every component of every fiber of a generic f ∈ C(F, I) is either a singleton or is an

�-like hereditarily indecomposable continuum.

Proof. The theorem immediately follows from Levin’s theorem and Lemmas 3.3 and 3.2.

Remark. It follows from the Dimension-Lowering Mapping Theorem ([7, Theorem 4.3.6]) that if the set

F has dimension 2, then a generic f ∈ C(F, I) in Theorem 3.4 must have a fiber with a non-degenerate

component M . The component M is a 1-junctioned curve, so there is a point p ∈ M such that each

subcontinuum C ⊆M ∖ {p} is a pseudoarc (cf. [8, Theorem 7]). Moreover, one can easily deduce that

the family of all pseudoarcs in M is a dense Gδ subset of the hyperspace of all subcontinua of M .

4. Open problems

In the last section of this paper we state several problems concerning generalizations of Theorem 3.4.

Problem 4.1. Generalize Theorem 3.4 to other 2-dimensional topological spaces, e.g. pseudo-manifolds,

simplicial complexes or CW-complexes.

Problem 4.2. Characterize fibers of a generic map from a compact surface into a finite graph.

Problem 4.3. Characterize fibers of a generic map from the n-dimensional sphere Sn into the unit

interval I for n > 2.
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