Fibers of generic maps on surfaces

Damian Sobota¹

Wrocław University of Technology, Institute of Mathematics and Computer Science, ul. Janiszewskiego 14a, 50-372 Wrocław, Poland

Abstract

Using special triangulations of a compact 2-dimensional topological manifold without boundary S, for every closed subset $F \subseteq S$ we construct a dense in the mapping space C(F, [0, 1]) family of piecewise linear mappings whose fibers consist of components homeomorphic to subcontinua of the figure eight. The number of fibers with a figure-eight component is evaluated for each such map in the case F = S. We then prove that every fiber of a generic map in C(F, [0, 1]) consists only of components being either a singleton or a figure-eight-like hereditarily indecomposable continuum. This extends a result of Z. Buczolich and U.B. Darji.

Keywords: generic maps, triangulations of surfaces, hereditarily indecomposable continua 2000 MSC: primary: 54C05, 57N05; secondary: 54C35, 54F15, 57M20

1. Introduction

Given any two metric spaces X and Y, by C(X, Y) we denote the space of all continuous mappings from X into Y with the supremum norm. By saying that a generic continuous function $f \in C(X, Y)$ has property \mathcal{P} we mean the existence of a dense \mathbb{G}_{δ} subset $G \subseteq C(X, Y)$ such that every $f \in G$ has the property \mathcal{P} . For compact metric spaces and the unit interval I = [0, 1] with the natural topology, M. Levin proved the following theorem:

Theorem 1.1 ([1]). Let X be a compact metric space. Then every component of every fiber of a generic $f \in C(X, I)$ is a hereditarily indecomposable continuum.

A continuum is a connected compact metric space. We say that a continuum is *indecomposable* if it cannot be represented as a union of its two proper subcontinua and it is *hereditarily indecomposable* if its every subcontinuum is indecomposable.

Independently of Levin, J. Krasinkiewicz obtained a stronger result:

Theorem 1.2 ([2]). Let X be a compact metric space and M be a manifold of positive dimension. Then every component of every fiber of a generic $f \in C(X, M)$ is a hereditarily indecomposable continuum.

J. Song and E.D. Tymchatyn generalized the Krasinkiewicz theorem to polygons:

Theorem 1.3 ([3]). Let X be a compact metric space and P be a locally finite polygon. Then every component of every fiber of a generic $f \in C(X, P)$ is a hereditarily indecomposable continuum.

¹E-mail address: damian.sobota@pwr.wroc.pl

Webpage: www.im.pwr.wroc.pl/~sobota

These three theorems characterize fibers of a generic map between two given spaces in a very general way – they state only that components of these fibers are hereditarily indecomposable continua. A major step toward a more precise description is the paper by Z. Buczolich and U.B. Darji ([4]), where the characterization is given of components of fibers of a generic map from the 2-dimensional sphere S^2 into the unit interval I in terms of ε -mappings onto the figure eight \mathscr{P} – a space homeomorphic to the wedge of two circles $S^1 \vee S^1$. A function $f \in C(X,Y)$ is an ε -mapping if the preimage of every point has diameter less than ε . For a finite graph P a continuum X is P-like if for every $\varepsilon > 0$ there exists an ε -mapping from X onto P.

Theorem 1.4 (Buczolich, Darji, [4]). Every component of every fiber of a generic $f \in C(S^2, I)$ is either a singleton or an \mathcal{P} -like hereditarily indecomposable continuum.

This paper generalizes the theorem of Buczolich and Darji to any closed subset of a compact surface (Theorem 3.4). The idea of the proof is based on the technique of Buczolich and Darji, i.e. by constructing appropriate triangulations of a surface we prove the existence of a dense family of continuous mappings with components of fibers being points, circles or eights. The existence of this family is crucial for the proof of the main theorem (Lemma 3.3). A very simple method of triangulating S^2 presented in [4] cannot be directly carried over an arbitrary compact surface, so in this paper we propose a new way of constructing triangulations of compact surfaces. We call those triangulations eight-like (cf. Definition 2.1). They have a series of features common with the triangulation presented in [4], hence the proofs of Lemmas 2.3-2.8 and 2.15 are strongly based on the proofs of corresponding lemmas from [4].

2. Triangulations of surfaces

By a surface we always mean a 2-dimensional topological manifold, i.e. a non-empty locally Euclidean, second countable, Hausdorff space. By a triangulation \mathcal{T} of a surface S we mean a pair (\mathcal{K}, φ) where \mathcal{K} is an Euclidean simplicial complex and $\varphi : |\mathcal{K}| \to S$ is a homeomorphism from the polygon $|\mathcal{K}|$ induced by \mathcal{K} onto S. For simplicity, we identify the complex \mathcal{K} with its polygon $|\mathcal{K}|$. If $v = \varphi(x)$ for some 0-simplex $x \in \mathcal{K} \ (\approx |\mathcal{K}|)$, then v is a vertex of \mathcal{T} . We define similarly edges and triangles of \mathcal{T} as images by φ of respectively 1- and 2-simplices from \mathcal{K} . If vertices u and v of \mathcal{T} are distinct end points of an edge e of \mathcal{T} , then we denote e simply by uv. The sets of vertices and edges of \mathcal{T} are denoted by \mathcal{V} and \mathcal{E} , respectively. The set of triangles of \mathcal{T} is identified with \mathcal{T} itself, i.e. $t \in \mathcal{T}$ means that t is a triangle of \mathcal{T} . Given a vertex $v \in \mathcal{V}$, we denote by N(v) the set of all neighbours of v in \mathcal{T} , i.e. $N(v) = \{w \in \mathcal{V} : vw \in \mathcal{E}\}$. V(e) and V(t) denote, respectively, the 2-element set of end points of an edge $e \in \mathcal{E}$ and the 3-element set of vertices of a triangle $t \in \mathcal{T}$. Given a graph G, the degree of a vertex v of G, denoted by deg_G v, is the cardinality of N(v) in G.

Definition 2.1. A triangulation \mathcal{T} is eight-like if every $v \in \mathcal{V}$ has degree greater than 3 and there exists a 3-colouring $c: \mathcal{V} \to \{-, 0, +\}$ of vertices of \mathcal{T} satisfying the following conditions:

- 1. for every $v \in \mathcal{V}$:
 - if deg_{τ} $v \neq 4, 6$, then $c(v) \neq 0$;
 - if $\deg_{\mathcal{T}} v = 4$ and c(v) = 0, then there exist distinct $x, y \in N(v)$ such that $c(x), c(y) \in \{-, +\}$;
 - if deg_{\mathcal{T}} v = 6 and c(v) = 0, then there exist distinct $x, y, z \in N(v)$ such that $c(\{x, y, z\}) = \{-, +\};$

- 2. every edge $e \in \mathcal{E}$ has at least one vertex coloured by 0, i.e. $0 \in c(V(e))$;
- 3. every triangle $t \in \mathcal{T}$ has a vertex coloured by either or +, i.e. $c(V(t)) \cap \{-,+\} \neq \emptyset$ (note that by the second condition: |c(V(t))| = 2).

We say that c is associated with \mathcal{T} .

Let S be a closed surface (i.e. compact and without boundary). If \mathcal{T} is a triangulation of S, then every triangle $t \in \mathcal{T}$ is homeomorphic to the triangle $T \subset \mathbb{R}^2$ spanned on the vertices (0,0), (1,0) and (0,1). Fix a homeomorphism $\varphi_t : T \to t$.

Definition 2.2. A mapping $f \in C(S, I)$ is \mathcal{T} -triangular for a triangulation \mathcal{T} of S if $f|_{\mathcal{V}} : \mathcal{V} \to I$ is one-to-one and for every $t \in \mathcal{T}$ the mapping $f \circ \varphi_t : T \to I$ is linear.

A simple consequence of this definition is the following

Lemma 2.3. Let $f \in C(S, I)$ be \mathcal{T} -triangular for a triangulation \mathcal{T} of S. Let $y \in I$ and $t \in \mathcal{T}$. Assume $f^{-1}(y) \cap t \neq \emptyset$. Then exactly one of the following holds:

- $f^{-1}(y) \cap t = \{v\}$ for some vertex $v \in \mathcal{V}$;
- $f^{-1}(y) \cap t$ is an arc containing exactly one vertex $v \in \mathcal{V}$ and joining v with the side of t opposite to v;
- $f^{-1}(y) \cap t$ is an arc intersecting two sides of t and containing no vertex of \mathcal{T} .

Since we consider only finite triangulations, from Lemma 2.3 we immediately get

Corollary 2.4. Let $f \in C(S, I)$ be \mathcal{T} -triangular for a triangulation \mathcal{T} of S. For every $y \in I$, the fiber $f^{-1}(y)$ has finitely many components, each of which is a graph.

We now introduce the notion of an extremal function, which is crucial for this paper:

Definition 2.5. Let \mathcal{T} be a triangulation of S and $c: \mathcal{V} \to \{-, 0, +\}$ a 3-colouring of its vertices. A \mathcal{T} -triangular function $f: S \to I$ is c-extremal if for every $v \in \mathcal{V}$ the condition c(v) = + (resp. c(v) = -) holds if and only if there is a local maximum (resp. minimum) of f at v.

Condition 1 from Definition 2.1 implies the following

Lemma 2.6. Let \mathcal{T} be an eight-like triangulation of S and $c: \mathcal{V} \to \{-, 0, +\}$ be a colouring associated with \mathcal{T} . Let a \mathcal{T} -triangular function $f: S \to I$ be c-extremal. Then, if f(v) = 0 for $v \in \mathcal{V}$, then there exist distinct $v_1, v_2 \in N(v)$ and distinct $t_1, t_2 \in \mathcal{T}$ such that $v_i \in \mathcal{V}(t_i)$ and f has a local extremum at v_i (i = 1, 2).

The proof of the following important lemma strictly follows the proof of Lemma 5.4 from [4].

Lemma 2.7. Let a triangulation \mathcal{T} of S be eight-like and $c: \mathcal{V} \to \{-, 0, +\}$ be a colouring associated with it. Let $f \in C(S, I)$ be a \mathcal{T} -triangular c-extremal function. For every $y \in f(S)$, every component Mof the fiber $f^{-1}(y)$ is homeomorphic to one of the following three spaces: a point, the circle S^1 and the figure eight \mathcal{P} . Moreover, every fiber $f^{-1}(y)$ has at most one component which is non-homeomorphic to S^1 . *Proof.* Let M be a component of $f^{-1}(y)$ for some $y \in f(S)$. Let us consider the following cases:

1. If $M \cap \mathcal{V} = \emptyset$, then by Lemma 2.3, for every $t \in \mathcal{T}$, the intersection $M \cap t$ is empty or is an arc. Thus every point x of the graph M has degree 2. Theorem 9.6 [5], stating that a continuum N is homeomorphic to the circle S^1 if and only if every point of N has degree 2, implies that M is homeomorphic to S^1 .

2. If $M \cap \mathcal{V} = \{v\}$ and $c(v) \neq 0$, then f has a local extremum at v. Hence $M = \{v\}$.

3. Let $M \cap \mathcal{V} = \{v\}$ and c(v) = 0. By the injectivity of $f|_{\mathcal{V}}$ and Lemma 2.3, it follows that every point $x \in M \setminus \{v\}$ has degree 2 in M. Let us compute $\deg_M v$ with respect to $\deg_{\mathcal{T}} v$:

a) Let $\deg_{\mathcal{T}} v = 4$. By Lemma 2.6, there exist distinct $v_1, v_3 \in N(v)$ such that $c(v_1), c(v_3) \in \{-, +\}$. The second condition of Definition 2.1 guarantees that v_1 and v_3 are not neighbours. Let v_2 and v_4 be distinct from v_1 and v_3 neighbours of v (Figure 1a).

Let us first assume that $c(v_1) = c(v_3) = +$. If $f(v) > f(v_2)$, then $f^{-1}(y)$ intersects the edges v_1v_2 and v_2v_3 . If $f(v) < f(v_2)$, then $f^{-1}(y)$ intersects neither v_1v_2 nor v_2v_3 . Similarly, if $f(v) > f(v_4)$, then $f^{-1}(y)$ intersects the edges v_1v_4 and v_3v_4 , but intersects none of them if $f(v) < f(v_4)$. Inequalities $f(v) < f(v_2)$ and $f(v) < f(v_4)$ cannot hold simultaneously, since c(v) = 0 and f is c-extremal. Thus $\deg_M v \in \{2, 4\}$.

We prove analogously that $\deg_M v \in \{2,4\}$ when $c(v_1) = c(v_3) = -$ and that $\deg_M v = 2$ when $c(v_1) \neq c(v_3)$.

b) Let $\deg_{\mathcal{T}} v = 6$. By Condition 1 of Definition 2.1 there exist distinct vertices $v_1, v_3, v_5 \in N(v)$ such that $c(v_1) = c(v_3) \neq c(v_5) \in \{-, +\}$. Without loss of generality we assume that $c(v_5) = -$ (other cases are symmetric). Denote the remaining neighbours of v by v_2, v_4, v_6 (Figure 1b).

If $f(v) > f(v_2)$, then $f^{-1}(y)$ intersects the edges v_1v_2 and v_2v_3 . If $f(v) < f(v_2)$, then $f^{-1}(y)$ intersects none of them. If $f(v) > f(v_4)$, then $f^{-1}(y)$ intersects the edge v_3v_4 but not the edge v_4v_5 . Similarly, if $f(v) < f(v_4)$, then $f^{-1}(y)$ intersects the edge v_4v_5 but not the edge v_3v_4 . Analogously, we analyse the value $f(v_6)$. Thus deg_M $v \in \{2, 4\}$.

If $\deg_M v = 2$, then M is homeomorphic to the circle S^1 . If $\deg_M v = 4$, then M is homeomorphic to the figure eight \mathscr{O} (cf. [4, p. 240]).

Figure 1: a) $\deg_{\mathcal{T}} v = 4$, b) $\deg_{\mathcal{T}} v = 6$

From the finiteness of considered triangulations and the proof of the above lemma we immediately get the following

Corollary 2.8. Let $f \in C(S, I)$ be a \mathcal{T} -triangular c-extremal function for some eight-like triangulation \mathcal{T} and for colouring $c: \mathcal{V} \to \{-, 0, +\}$ associated with \mathcal{T} . Then the set of all those points $y \in f(S)$ that $f^{-1}(y)$ has a component homeomorphic to a point or to the figure eight \mathcal{P} is finite.

2.1. Construction of eight-like triangulations

In the following section we prove that every closed surface S admits an arbitrary small eight-like triangulation, i.e. for every $\varepsilon > 0$ there is an eight-like triangulation \mathcal{T} such that every $t \in \mathcal{T}$ has diameter less than ε .

Let us recall the following well-known classification of closed surfaces:

Theorem 2.9. Every connected closed surface is homeomorphic to exactly one of the following $(m \ge 1)$:

- 1. the sphere S^2 ;
- 2. the connected sum of m tori \mathbb{T}^2 ;
- 3. the connected sum of m real projective planes $\mathbb{R}P^2$.

An elegant proof of Theorem 2.9 can be found e.g. in [6, Chapter 6]. A very important step in the proof is an observation that every closed surface S can be obtained by appropriate "gluing" edges of an even-sided regular polygon $P \subset \mathbb{R}^2$ called a *fundamental polygon of* S (cf. [6, Chapter 6]). This observation allows us to restrict our attention only to triangulations of planar regular polygons.

Let then S be a closed surface and P its fundamental n-gon where $n \ge 4$ is divisible by 4. Assume P is contained in $\mathbb{R}^2 \approx \mathbb{C}$ and its vertices are

$$v_l = \exp\left(i\pi \frac{2l+1}{n}\right)$$
 for $l = 0, 1, \dots, n-1$,

i.e. v_l 's are all the *n*-th complex roots of -1.

Let us fix $\varepsilon > 0$. The polygon P is compact, hence the quotient map gluing edges is uniformly continuous, so it is sufficient to construct an eight-like ε -triangulation of P. We proceed with the construction in several steps.

Step 1. Let $N \in \mathbb{N}$ be divisible by 4 and such that $1/N < \varepsilon/16$. For every k = 1, 2, ..., N let P_k denote the boundary of the regular *n*-gon spanned by the vertices

$$v_l^k = \frac{k}{N} \exp\left(i\pi \frac{2l+1}{n}\right)$$
 for $l = 0, 1, ..., n-1$.

Notice that

 $P_N = \mathrm{bd}_{\mathbb{R}^2}(P)$ and $v_l^N = v_l$ for l = 0, 1, ..., n - 1.

The polygonal curves P_k divide P into N-1 *n*-gonal annuli and one *n*-gon containing the point (0,0) (Figure 2). The length of a side of each P_k is $\frac{2k}{N} \sin \frac{\pi}{n}$.

Step 2. On every P_k we mark counterclockwisely, equidistantly, (k+2)n points u_m^k , m = 0, 1, ..., (k+2)n-1, in such a way that $v_0^k = u_0^k$ (Figure 3). Notice that every side of every P_k is divided into k+2

Figure 2: The *n*-gons P_k

Figure 3: Vertices of the triangulation \mathcal{T}

equal segments and that $v_l^k = u_{l(k+2)}^k$ for l = 0, 1, ..., n-1. We denote

 $u_{(k+2)n}^k \coloneqq u_0^k, \quad u_{-1}^k \coloneqq u_{(k+2)n-1}^k \quad \text{and} \quad u^0 \coloneqq (0,0).$

The distance between two adjacent points u_m^k and u_{m+1}^k is $\frac{2k}{(k+2)N} \sin \frac{\pi}{n}$, which is less than $\varepsilon/2$.

We declare the points u_m^k and u^0 to be the vertices of the eight-like triangulation we are constructing, i.e. put

$$\mathcal{V} := \{ u_m^k : k = 1, 2, \dots, N; m = 0, 1, \dots, (k+2)n - 1 \} \cup \{ u^0 \}.$$

An initial set of edges is defined as follows:

$$\tilde{\mathcal{E}} := \{ \overline{u_m^k u_{m+1}^k} : k = 1, 2, \dots, N; m = 0, 1, \dots, (k+2)n - 1 \},\$$

where \overline{ab} denotes the shortest segment contained in P joining points a and b. Notice that every $\overline{u_m^k u_{m+1}^k}$ is contained in P_k . The set $\tilde{\mathcal{E}}$ will be extended in the next steps.

The graph $(\mathcal{V}, \tilde{\mathcal{E}})$ is a disconnected graph consisting of N disjoint cyclic graphs Q_k , k = 1, 2, ..., N(inducing in fact triangulations of the polygonal curves P_k) and a one-vertex graph Q_0 corresponding to the point u^0 .

Step 3. In this step we add to $\tilde{\mathcal{E}}$ edges joining vertices of the graphs Q_{k-1} and Q_k for k = 1, 2, ..., N. We obtain a connected graph $(\mathcal{V}, \mathcal{E})$ inducing an eight-like ε -triangulation \mathcal{T} .

First we add to $\tilde{\mathcal{E}}$ edges joining vertices $u_m^1 \in V(Q_1)$, for $m = 0, 1, \ldots, 3n - 1$, and the vertex u^0 , i.e.

Figure 4: Edges of \mathcal{E}_0 joining vertices of Q_1 and the vertex u^0

Figure 5: Edges of \mathcal{E}_1 joining vertices of Q_5 with vertices of Q_4

the segments $\overline{u_m^1 u^0}$ (Figure 4). Denote the obtained set of edges by \mathcal{E}_0 . Since the method of adding edges joining vertices of Q_k and Q_{k-1} , for k = 2, 3, ..., N, depends on the remainder of division of k by 4, we proceed with the construction in the following four substeps (notice that the index l represents the number of a side of the polygon bounded by P_k and the index j enumerates the vertex lying on this side):

 $k \equiv 1 \mod 4$ (Figure 5):

$$\begin{aligned} \mathcal{E}_1 &:= & \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 0, 1, 2, \dots, k+1\} \\ & \cup & \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j-1}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 1, 3, 5, \dots, k\} \\ & \cup & \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j+1}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 1, 3, 5, \dots, k\} \\ & \cup & \mathcal{E}_0 \end{aligned}$$

 $k \equiv 2 \mod 4$ (Figure 6):

$$\begin{split} \mathcal{E}_2 &\coloneqq \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j-1}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 0, 1, 2, \dots, k+1 \} \\ &\cup \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j-2}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 2, 4, 6, \dots, k \} \\ &\cup \{\overline{u_{(k+2)l+j}^k u_{(k+1)l+j}^{k-1}} : l = 0, 1, \dots, n-1; \ j = 0, 2, 4, \dots, k \} \\ &\cup \mathcal{E}_1 \end{split}$$

 $k \equiv 3 \mod 4$ (Figure 7):

$$\begin{aligned} \mathcal{E}_3 &\coloneqq \{ \overline{u_{(k+2)l+j}^k u_{(k+1)l+j-1}^{k-1}} : l = 0, 1, \dots, n-1; j = 1, 2, 3, \dots, k+1 \} \\ &\cup \{ \overline{u_{(k+2)l+j}^k u_{(k+1)l+j-2}^{k-1}} : l = 0, 1, \dots, n-1; j = 2, 4, 6, \dots, k+1 \} \\ &\cup \{ \overline{u_{(k+2)l+j}^k u_{(k+1)l+j}^{k-1}} : l = 0, 1, \dots, n-1; j = 0, 2, 4, 6, \dots, k+1 \} \\ &\cup \mathcal{E}_2 \end{aligned}$$

 $k \equiv 0 \mod 4$ (Figure 8):

$$\begin{aligned} \mathcal{E}_4 &:= & \{u^k_{(k+2)l+j}u^{k-1}_{(k+1)l+j-1}: \ l=0,1,\ldots,n-1; \ j=2,4,6,\ldots,k\} \\ &\cup & \{\overline{u^k_{(k+2)l+j}u^{k-1}_{(k+1)l+j}}: \ l=0,1,\ldots,n-1; \ j=0,1,2,\ldots,k+1\} \\ &\cup & \{\overline{u^k_{(k+2)l+j}u^{k-1}_{(k+1)l+j+1}}: \ l=0,1,\ldots,n-1; \ j=0,2,4,6,\ldots,k\} \\ &\cup & \mathcal{E}_3 \end{aligned}$$

Put $\mathcal{E} \coloneqq \mathcal{E}_4$.

Figure 6: Edges of \mathcal{E}_2 joining Q_2 with Q_1 and Q_6 with Q_5

Figure 7: Edges of \mathcal{E}_3 joining Q_3 with Q_2 and Q_7 with Q_6

Lemma 2.10. The graph $\mathcal{G} \coloneqq (\mathcal{V}, \mathcal{E})$ induces a triangulation \mathcal{T} of S.

Proof. Let us make the following three observations:

- the boundary of P is triangulated by Q_N , which is a subgraph of \mathcal{T} ;
- vertices of P belong to \mathcal{V} ;
- vertices of Q_N are in equal distance from each other and on each side of P there is the same number of vertices of Q_N .

Figure 8: Edges of \mathcal{E}_4 joining Q_4 with Q_3 and Q_8 with Q_7

Since the quotient map $P \to S$ glues edges linearly, this means that if \mathcal{T} is a triangulation of P, then it is a triangulation of S.

We need several more simple facts concerning the construction:

- the vertex u^0 of Q_0 is joined only with vertices of Q_1 ;
- vertices of Q_k are joined only with vertices of Q_{k-1} , Q_k and Q_{k+1} (k = 1, 2, ..., N-1);
- vertices of Q_N are joined only with vertices of Q_N and Q_{N-1} ;
- every vertex of Q_k is joined with a vertex of Q_{k-1} (k = 1, 2, ..., N);
- every vertex of Q_k is joined with a vertex of Q_{k+1} (k = 0, 2, ..., N 1).

It follows from the above facts that in order to show that P is triangulated by \mathcal{T} , it is sufficient to observe that \mathcal{G} induces triangulations of polygonal annuli bounded by P_k and P_{k-1} , triangulated themselves by Q_k and Q_{k-1} (k = 1, 2, ..., N). The case of k = 1 is obvious. The case of k > 1 follows from the definition of \mathcal{E}_i where $k \equiv i \mod 4$. Let k > 1 and let u_p^{k-1} be joined with a vertex u_q^k . Then the vertex u_{p+1}^{k-1} is joined with u_q^k or u_{q+1}^k . Indeed, if it is not joined with u_q^k , then u_p^{k-1} and u_{p+1}^{k-1} are both joined with u_{q+1}^k . Hence, since every vertex of Q_{k-1} is joined with a vertex of Q_k , for every two consecutive vertices u_p^{k-1} and u_{p+1}^{k-1} , there exists a triangle in \mathcal{G} contained in the annulus bounded by P_{k-1} and P_k and containing those two vertices. Moreover, since the conjuction " u_p^{k-1} is joined with u_q^k and u_{p+1}^{k-1} is joined with u_{q-1}^k " never holds, the intersection of any two distinct edges $e, e' \in \mathcal{E}$ is contained in \mathcal{V} . This altogether implies that \mathcal{T} triangulates the annulus bounded by P_k and P_{k-1} . \Box

Lemma 2.11. \mathcal{T} is an ε -triangulation.

Proof. As we noticed in the second step of the construction of \mathcal{T} , the distance between two adjacent vertices in every Q_k is less than $\varepsilon/2$. Hence, by the triangle inequality, it is enough to show that every edge joining Q_k and Q_{k-1} has length less than $\varepsilon/2$.

The cases of edges joining vertices of Q_1 and u^0 and of edges $\overline{u_{(k+2)l}^k u_{(k+2)l-1}^{k-1}}$, for k > 0 such that $k \equiv 2 \mod 4$, are easy. For simplicity of the proof, we present only the case of edges joining vertices contained in the *l*-th sides of Q_k and Q_{k-1} for *l* such that n = 4l. These are sides parallel to the *x*-axis, contained in the upper half-plane and vertices of \mathcal{T} laying on them have coordinates:

$$\left(\frac{k}{N}\cos\left(\pi\frac{2l+1}{n}\right) + \frac{2kj}{(k+2)N}\sin\frac{\pi}{n}, \ \frac{k}{N}\sin\left(\pi\frac{2l+1}{n}\right)\right) \quad \text{for} \quad Q_k,$$
$$\left(\frac{k-1}{N}\cos\left(\pi\frac{2l+1}{n}\right) + \frac{2(k-1)j}{(k+1)N}\sin\frac{\pi}{n}, \ \frac{k-1}{N}\sin\left(\pi\frac{2l+1}{n}\right)\right) \quad \text{for} \quad Q_{k-1}.$$

Let $1 < k \le N$ and $2 \le j \le k+1$. Accordingly to the construction of \mathcal{T} it is enough to estimate the distance from the vertex $u_{(k+2)l+j}^k$ to the vertices $u_{(k+1)l+j-2}^{k-1}$, $u_{(k+1)l+j-1}^{k-1}$, $u_{(k+1)l+j}^{k-1}$ and $u_{(k+1)l+j+1}^{k-1}$. Estimating the square of the distance between $u_{(k+2)l+j}^k$ and $u_{(k+1)l+j-2}^{k-1}$ we get:

$$\left|u_{(k+2)l+j}^{k} - u_{(k+1)l+j-2}^{k-1}\right| \le \frac{1}{N} + \frac{\sqrt{16}}{N} + \frac{\sqrt{8}}{N} < \frac{1}{N} + \frac{4}{N} + \frac{3}{N} = \frac{8}{N} < \frac{\varepsilon}{2}$$

Analogously, the distances from $u_{(k+2)l+j}^k$ to $u_{(k+1)l+j-1}^{k-1}$, $u_{(k+1)l+j}^{k-1}$ and $u_{(k+1)l+j+1}^{k-1}$, for $1 \le j \le k+1$, can be estimated. The case of j = 0 may be considered separately.

Let us now define a 3-colouring $c : \mathcal{V} \to \{-, 0, +\}$ satisfying conditions of Definition 2.1. Let $k \in \{1, 2, ..., N\}$ and $m \in \{0, 1, ..., (k+2)n-1\}$. Put:

$$c(u^{0}) := +,$$

$$c(u^{k}_{m}) := \begin{cases} 0, & k \text{ odd,} \\ +, & k \equiv 0 \mod 4, \ m \text{ even,} \\ -, & k \equiv 2 \mod 4, \ m \text{ even,} \\ 0, & k \text{ even,} \ m \text{ odd.} \end{cases}$$

Checking that c defined as above satisfies conditions of Definition 2.1 is easy (Figure 9). Thus we get

Lemma 2.12. The triangulation \mathcal{T} is eight-like.

Repeating the method from the proof of Lemma 2.7 and using the preceding constructions of the triangulation \mathcal{T} and the 3-colouring c, we can easily compute the number of fibers of a c-extremal \mathcal{T} -triangular function having a component homeomorphic to the figure \mathscr{P} . Recall that $v_0, v_1, \ldots, v_{n-1}$ denote all the vertices of the polygonal P. Let $\pi: P \to S$ be the quotient map.

Lemma 2.13. Every c-extremal \mathcal{T} -triangular function $f \in C(S, I)$ has exactly $n(N^2 + 4N - 4)/8$ fibers with a component homeomorphic to the figure \mathcal{P} . Besides, f has exactly nN(N + 4)/16 minima and exactly $n(N^2 + 4N - 16)/16 + 1 + \rho$ maxima, where $\rho \coloneqq |\pi(\{v_0, v_1, \ldots, v_{n-1}\})|$.

Proof. If c(v) = - for $v \in \mathcal{V}$, then $v = u_m^k$ for some $k \leq N$ such that $k \equiv 2 \mod 4$, and m even. Thus the number of minima is equal to

$$\frac{1}{2}\sum_{k=1}^{N/4}n((4k-2)+2) = nN(N+4)/16.$$

Figure 9: Vertices coloured by + are marked with \oplus and by – with \ominus

Computing the number of maxima is a bit more complicated. If c(v) = + for $v \in \mathcal{V}$, then either $v = u^0$, or $v = u^k_m$ for some $k \leq N$ such that $k \equiv 0 \mod 4$, and m even. The number of maxima with k < N is equal to

$$\frac{1}{2}\sum_{k=1}^{N/4-1}n(4k+2) = n(N^2 - 16)/16.$$

The quotient map π glues each edge of P with exactly one other edge, hence every $u_m^N \notin \{v_0, v_1, \ldots, v_{n-1}\}$ is glued with exactly one other $u_{m'}^N \notin \{v_0, v_1, \ldots, v_{n-1}\}$ – this contributes additional nN/4 vertices to the number of maxima. On the other hand, every vertex v_i of P may be glued with more than one other vertex of P, so there are only ρ vertices of P mapped to points of S at which f has maxima. Thus the entire number of maxima of f is equal to

$$n(N^2 - 16)/16 + \frac{1}{4}nN + 1 + \rho = n(N^2 + 4N - 16)/16 + 1 + \rho.$$

Let us now compute the number of fibers with a component homeomorphic to \mathcal{P} . Let M be a component of the fiber $f^{-1}(y)$ for some $y \in f(S)$. M may be homeomorphic to \mathcal{P} only if Mcontains a vertex $v \in \mathcal{V}$ coloured by 0. Let v be such a vertex. If $v \in V(Q_1)$ and $\deg_{\mathcal{T}} v = 4$, then $\deg_M v = 2$, hence M is homeomorphic to the circle S^1 . If $v \notin V(Q_1)$ or $\deg_{\mathcal{T}} v \neq 4$, then there exists a unique path of distinct vertices u_0, u_1, u_2, u_3, u_4 in \mathcal{T} such that $v \in \{u_1, u_2, u_3\}$, $c(\{u_1, u_2, u_3\}) = \{0\}$, $c(u_0) = c(u_4) \in \{-, +\}$ and either

- there is $k \leq N 4$ such that $u_i \in V(Q_{k+i})$ for every $0 \leq i \leq 4$, or
- $u_0 \in V(Q_{N-2}), u_1 \in V(Q_{N-1}), u_2 \in V(Q_N), u_3 \in V(Q_{N-1}), u_4 \in V(Q_{N-2}).$

The vertex u_2 is of degree 4 in \mathcal{T} and has two neighbours coloured by the same nonzero colour. On the other hand, for every two vertices u_m^k and u_{m+2}^k , where k and m are even (hence both vertices are coloured by the same nonzero colour), there is a unique path such as described above and containing u_{m+1}^k . Using the method presented in the proof of Lemma 2.7, one can easily show that there is exactly one vertex in $\{u_1, u_2, u_3\}$ such that a component of a fiber of f containing this vertex is homeomorphic to \mathcal{P} . Hence, the number of all fibers having a component homeomorphic to the figure \mathcal{P} equals to the number of all vertices of \mathcal{T} coloured by 0 and laying between two vertices of the same nonzero colour. This number is equal to

$$nN(N+4)/16 + n(N^2 - 16)/16 + n(N+2)/4 = n(N^2 + 4N - 4)/8.$$

Lemmas 2.10, 2.11 and 2.12 imply the following important theorem:

Theorem 2.14. Let S be a closed surface and $\varepsilon > 0$. Then there exists an eight-like ε -triangulation of S.

Let d be a metric on S. The existence of an arbitrarily small eight-like triangulation allows us to prove the following crucial lemma (cf. [4, Lemma 5.6]):

Lemma 2.15. Let S be a closed surface. The set of all extremal functions is dense in C(S, I). More precisely, given any $g \in C(S, I)$ and $\varepsilon, \gamma > 0$, there exists an extremal function $f \in C(S, I)$ such that $||g - f|| < \varepsilon$ and for every $x \in S$ there is $x' \in S$ such that $d(x, x') < \gamma$ and $f^{-1}(f(x'))$ has a component M homeomorphic to the figure \mathcal{P} , containing x' and for which $\deg_M x' = 4$.

Proof. Let $g \in C(S, I)$ and $1 > \varepsilon, \gamma > 0$. Since S is compact, g is uniformly continuous. Hence there exists $\delta > 0$ such that if $d(p,q) < \delta$, then $|g(p) - g(q)| < \varepsilon/8$. Set up $\eta := \min(\gamma, \delta)/3$. Let \mathcal{T} be an eight-like η -triangulation of S and $c : \mathcal{V} \to \{-, 0, +\}$ be the 3-colouring associated with \mathcal{T} . We construct a \mathcal{T} -triangular c-extremal function $f \in C(S, I)$ such that $||f - g|| < \varepsilon$. Notice that without loss of generality we can assume that $g(S) \subseteq [\varepsilon/2, 1 - \varepsilon/2]$. To finish the proof it is sufficient to define f as a one-to-one function on \mathcal{V} . Let $v \in \mathcal{V}$.

If c(v) = +, then we choose f(v) so that:

$$g(v) + \frac{\varepsilon}{4} < f(v) < g(v) + \frac{\varepsilon}{2}$$

If c(v) = -, then choose f(v) so that:

$$g(v) - \frac{\varepsilon}{2} < f(v) < g(v) - \frac{\varepsilon}{4}.$$

If c(v) = 0, then let f(v) be chosen in such a way that:

$$g(v) - \frac{\varepsilon}{8} < f(v) < g(v) + \frac{\varepsilon}{8}$$

Now extend f linearly on every triangle of \mathcal{T} so that $f: S \to I$ is \mathcal{T} -triangular. We have to show that f is c-extremal and that $||f - g|| < \varepsilon$. Let $t \in \mathcal{T}$ be a triangle with vertices v_1, v_2, v_3 such that $c(v_1) = +$ and $c(v_2) = c(v_3) = 0$. We have for i = 2, 3:

$$f(v_i) < g(v_i) + \frac{\varepsilon}{8} < g(v_1) + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} = g(v_1) + \frac{\varepsilon}{4} < f(v_1),$$

so f has a maximum at v_1 . Moreover, for every $x \in t$ we have

$$f(x) \in \left(g(v_1) - \frac{\varepsilon}{4}, g(v_1) + \frac{\varepsilon}{2}\right),$$

hence

$$|f(x)-g(x)| \le |f(x)-g(v_1)|+|g(v_1)-g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{8} < \varepsilon.$$

The case of $c(v_1) = -$ is similar.

The second part of the lemma follows from the observation made in the proof of Lemma 2.13: every point $x \in S$ belongs to some triangle of \mathcal{T} and every triangle $t \in \mathcal{T}$ has a vertex u contained in a path u_1, u_2, u_3 of vertices coloured by 0 and such that there exists a unique index $i \in \{1, 2, 3\}$ for which $f^{-1}(f(u_i))$ has a component M such that $u_i \in M$, $\deg_M u_i = 4$ and M is homeomorphic to \mathcal{P} .

Lemmas 2.15 and 2.13 immediately imply the following

Corollary 2.16. The set of all functions having a fiber with a component homeomorphic to \mathcal{P} is dense in C(S, I).

2.2. Closed subsets of surfaces

In the following section we generalize Lemma 2.15 to all closed subsets of closed surfaces. First, let us notice that the set S of all non-homeomorphic subcontinua of \mathcal{P} is finite: it consists of the point \cdot , the arc |, the circle \circ , the triod \prec , the cross \times , the circle with one hair \sim , the circle with two hairs \propto and the figure eight \mathcal{P} . Thus, by Corollary 2.4, Lemma 2.15 may be expressed in a bit more general form:

Lemma 2.17. Let S be a closed surface. The family of all functions with all fibers consisting of components homeomorphic to a subcontinuum of \mathcal{P} and such that the number of components is finite is dense in C(S, I).

This lemma can be easily generalized to all closed subsets of a closed surface:

Lemma 2.18. Let F be a closed subset of a closed surface S. The family of all functions with all fibers consisting of components homeomorphic to a subcontinuum of \mathcal{P} is dense in C(F, I).

Proof. Let $g \in C(F, I)$ and $\varepsilon > 0$. By the Tietze theorem there exists a continuous extension of g over the surface S, i.e. there exists $G \in C(S, I)$ such that $G|_F = g$. By Lemma 2.17 there exists a function $f \in C(S, I)$ which has all fibers consisting of subcontinua of the figure \mathscr{P} and is ε -close to G. The restriction of f to F satisfies $||f|_F - g|| < \varepsilon$ and has the property demanded in the thesis of the lemma.

Since the Euclidean plane \mathbb{R}^2 embeds into S^2 , Lemma 2.18 works also for every compact subset of \mathbb{R}^2 . Moreover, as every compact surface with boundary is homeomorphic to a closed surface with a finite number of open discs removed (cf. [6, Exercise 6.5]), we immediately obtain

Corollary 2.19. Let S be a compact surface with boundary. The family of all functions with all fibers consisting of components homeomorphic to a subcontinuum of \mathcal{P} is dense in C(S, I).

3. Fibers of a generic map $f \in C(F, I)$

Let F be a closed subset of a closed surface. In the following section we prove that a generic $f \in C(F, I)$ has the property that every component of every fiber is either a singleton or it is an \mathscr{P} -like hereditarily indecomposable continuum.

Recall that the Hausdorff distance between two closed subsets K and L of a compact metric space (X, d) is defined by the formula $d_H(K, L) = \max\left(\sup_{x \in K} \inf_{y \in L} d(x, y), \sup_{y \in L} \inf_{x \in K} d(x, y)\right)$. We will need the following two technical lemmas:

Lemma 3.1 ([4, Lemma 4.5]). Let P be a graph and M be a continuum contained in a compact metric space (X, d). Let $\varepsilon > 0$. Suppose $f : M \to P$ is a continuous ε -surjection. Then, there exists $\eta > 0$ such that if N is a continuum in X with $d_H(M, N) < \eta$, then there exists a (2ε) -mapping from N onto P.

Lemma 3.2 ([4, Lemma 4.11]). Let P be a non-degenerate subcontinuum of \mathcal{P} . If M is a hereditarily indecomposable P-like continuum, then M is \mathcal{P} -like.

Let S denote the set of all non-homeomorphic subcontinua of \mathcal{P} . The following lemma was proved as Lemma 5.16 in [4], however, the proof is a main place where we use Lemma 2.18, thus for the self-containment of the paper we include it here.

Lemma 3.3. A generic map $f \in C(F, I)$ has the following property: if M is a non-degenerate component of a fiber of f, then there exists $P \in S$ such that M is a P-like continuum.

Proof. Let $\mathcal{F}_{\varepsilon}$ be a family of all functions $f \in C(F, I)$ such that there exists a fiber $f^{-1}(y)$ with a component M for which there is no ε -mapping onto any element of \mathcal{S} . We will show that the closure $\overline{\mathcal{F}_{\varepsilon}}$ is nowhere dense in C(F, I).

Let $\{f_n\}$ be a sequence in $\mathcal{F}_{\varepsilon}$ convergent to some $f \in C(F, I)$ in the supremum norm. Let sequences $\{y_n\}$ and $\{M_n\}$ be such that M_n is a component of $f_n^{-1}(y_n)$ for which there is no ε -mapping onto any element of \mathcal{S} . Since F is compact, without loss of generality, we can assume that $y_n \to y$ and $M_n \to M$ in the Hausdorff metric. Thus, $f(M) = \{y\}$. Let N be a component of $f^{-1}(y)$ containing M.

There is no $(\varepsilon/2)$ -mapping from N onto any element of S. Indeed, assume that there exists such a mapping. Since M is a subcontinuum of N, there exists an $(\varepsilon/2)$ -mapping from M onto an element of S. By Lemma 3.1 for sufficiently large $n < \omega$ there exists an ε -mapping from M_n onto an element of S, which contradicts a choice of M_n .

Thus we have shown that for every $f \in \overline{\mathcal{F}_{\varepsilon}}$ there exists $y \in f(F)$ such that there is a component M of $f^{-1}(y)$ for which there is no $(\varepsilon/2)$ -mapping onto any element of S. According to Lemma 2.18, $\overline{\mathcal{F}_{\varepsilon}}$ is nowhere dense.

Put $\mathcal{M} \coloneqq C(F, I) \setminus \bigcup_{n < \omega} \overline{\mathcal{F}_{1/n}}$. \mathcal{M} is a dense \mathbb{G}_{δ} -subset of C(F, I) consisting of all continuous functions having the property that every component of every fiber is a *P*-like continuum for some $P \in \mathcal{S}$.

Theorem 3.4. Every component of every fiber of a generic $f \in C(F, I)$ is either a singleton or is an \mathcal{P} -like hereditarily indecomposable continuum.

Proof. The theorem immediately follows from Levin's theorem and Lemmas 3.3 and 3.2. \Box

Remark. It follows from the Dimension-Lowering Mapping Theorem ([7, Theorem 4.3.6]) that if the set F has dimension 2, then a generic $f \in C(F, I)$ in Theorem 3.4 must have a fiber with a non-degenerate component M. The component M is a 1-junctioned curve, so there is a point $p \in M$ such that each subcontinuum $C \subseteq M \setminus \{p\}$ is a pseudoarc (cf. [8, Theorem 7]). Moreover, one can easily deduce that the family of all pseudoarcs in M is a dense \mathbb{G}_{δ} subset of the hyperspace of all subcontinua of M.

4. Open problems

In the last section of this paper we state several problems concerning generalizations of Theorem 3.4.

Problem 4.1. Generalize Theorem 3.4 to other 2-dimensional topological spaces, e.g. pseudo-manifolds, simplicial complexes or CW-complexes.

Problem 4.2. Characterize fibers of a generic map from a compact surface into a finite graph.

Problem 4.3. Characterize fibers of a generic map from the n-dimensional sphere S^n into the unit interval I for n > 2.

Acknowledgements. The author would like to thank Paweł Krupski and Krzysztof Omiljanowski for their inspiring questions and helpful comments which led him to the final result.

5. References

- [1] M. Levin, Bing maps and finite dimensional maps, Fund. Math. 151 (1) (1996) 47–52.
- [2] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (2) (1996) 147–156.
- [3] J. Song, E. Tymchatyn, Free spaces, Fund. Math. 163 (2000) 229–239.
- [4] Z. Buczolich, U. Darji, Pseudoarcs, pseudocircles, Lakes of Wada and generic maps of S², Topology Appl. 150 (2005) 223–254.
- [5] S. J. Nadler, Continuum Theory. An Introduction, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1992.
- [6] J. Lee, Introduction to topological manifolds, 2nd Edition, Vol. 202 of Graduate Texts in Mathematics, Springer-Verlag, New York, Dordrecht, Heidelberg, London, 2010.
- [7] R. Engelking, Dimension theory, North-Holland Publishing Company, PWN Polish Scientific Publishers, Amsterdam, Oxford, New York, Warsaw, 1978.
- [8] E. Duda, P. Krupski, J. Rogers Jr, On locally chainable homogeneous continua, Topology Appl. 42 (1991) 95–99.