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Abstract. We present a general method of constructing Boolean algebras
with the Nikodym property and of some given cardinalities. The construction

is dependent on the values of some classical cardinal characteristics of the

continuum. As a result we obtain a consistent example of an infinite Boolean
algebra with the Nikodym property and of cardinality strictly less than the

continuum c. It follows that the existence of such an algebra is undecidable

by the usual axioms of set theory. Besides, our results shed some new light on
the Efimov problem and cofinalities of Boolean algebras.

1. Introduction

Let A be a Boolean algebra. A sequence of measures
〈
µn : n ∈ ω

〉
on A is

elementwise bounded if supn∈ω
∣∣µn(a)

∣∣ < ∞ for every a ∈ A and it is uniformly

bounded if supn∈ω
∥∥µn∥∥ < ∞. The Nikodym Boundedness Theorem states that

if A is σ-complete, then every elementwise bounded sequence of measures on A
is uniformly bounded. This principle, due to its numerous applications, is one
of the most important results in the theory of vector measures, see Diestel and
Uhl [13, Section I.3]. Since σ-completeness is rather a strong property of Boolean
algebras, Schachermayer [40] made a detailed study of the theorem and introduced
the Nikodym property for general Boolean algebras.

Definition 1.1. A Boolean algebra A has the Nikodym property if every element-
wise bounded sequence of measures on A is uniformly bounded.

Several classes of Boolean algebras have been shown to have the Nikodym prop-
erty, e.g. algebras with the following properties: Interpolation Property (Seever
[42]), property (E) (Schachermayer [40]), Subsequential Completeness Property (Hay-
don [26]), property (f) (Moltó [35]), Subsequential Interpolation Property (Freniche
[22]), Weak Subsequential Completeness Property (Aizpuru [1]). Schachermayer [40]
also proved that the algebra J of Jordan-measurable subsets of the unit interval
[0, 1] has the Nikodym property — the result was later generalized by Valdivia [45]
to higher finite dimensions.

It is an easy exercise to show that an infinite σ-complete Boolean algebra has
cardinality at least continuum c — in fact, Comfort and Hager [10] showed that if A
is an infinite σ-complete Boolean algebra, then |A| = |A|ω. Koszmider and Shelah
[32] showed that if an infinite Boolean algebra A has the Weak Subsequential Sepa-
ration Property (the WSSP), then A contains an independent family of cardinality
c and hence |A| ≥ c. Since the WSSP is more general than all the mentioned above
completeness or interpolation properties of Boolean algebras, it follows that infinite
Boolean algebras with those properties must be of cardinality at least c, too. It is
also clear that the Jordan algebra J has size 2c. Thus all known so far examples
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2 D. SOBOTA

of infinite Boolean algebras with the Nikodym property are of cardinality at least
c — a natural question hence arises.

Question 1.2. Does every infinite Boolean algebra with the Nikodym property have
cardinality at least continuum c?

In this paper we show that it is not always the case.

Theorem 7.3. Assume that cof(N ) ≤ κ for a cardinal number κ such that cof
(

[κ]
ω )

=
κ. Then, there exists a Boolean algebra B with the Nikodym property and of cardi-
nality κ. �

Corollary 7.4. Assuming cof(N ) = ω1 < c, there exists a Boolean algebra with
the Nikodym property and of cardinality ω1 < c. �

The construction in Theorem 7.3 utilizes the idea presented in an unpublished
correct version of the paper [9] by Ciesielski and Pawlikowski (the published version
contains a gap in the proof of Lemma 3). The prime motivation for studying infinite
Boolean algebras with the Nikodym property and cardinality less than c was the
result of Brech [6] who consistently proved the existence of an infinite compact
space K of weight strictly less than c and such that the Banach space C(K) has
the Grothendieck property. A Banach space X has the Grothendieck property if
every weak∗ convergent sequence

〈
x∗n ∈ X∗ : n ∈ ω

〉
of bounded functionals on X

is weakly convergent in X∗. The Nikodym property of Boolean algebras and the
Grothendieck property of Banach spaces are closely related; see Schachermayer [40]
for a detailed discussion.

The assumption about the cofinality of the Lebesgue null ideal in Theorem 7.3
is quite natural, e.g. if κ is an uncountable regular cardinal in a certain model of
ZFC, then there exists a ZFC extension of this model in which cof(N ) = κ < c is
true; see e.g. Mej́ıa [34]. Also, note that cof(N ) = ω1 < c holds e.g. in the Sacks
model (see Blass [4, Section 11.5]). For a discussion on those cardinal numbers for
which the equality cof

(
[κ]

ω )
= κ is satisfied, see e.g. Bartoszyński and Judah [3,

Section 1.3.B]. In particular, note that in ZFC it is true that cof
(

[ωn]
ω )

= ωn for
every n < ω ([3, Lemma 1.3.10]). Note also that in view of the result of Comfort
and Hager (stating that a σ-complete algebra A satisfies the equality |A| = |A|ω),
Theorem 7.3 significantly enlarges the class of possible cardinalities of Boolean
algebras with the Nikodym property.

Since no countable Boolean algebra has the Nikodym property (see Section 3),
Theorem 7.3 implies that the minimal size of an infinite Boolean algebra with
the Nikodym property is a cardinal characteristics (a cardinal invariant) of the
continuum. We thus define the following number.

Definition 1.3. The Nikodym number n is the least possible cardinality of an
infinite Boolean algebra with the Nikodym property, i.e.

n = min
{
|A| : A is infinite and has the Nikodym property

}
.

We will study properties of n throughout the paper. In particular, we are interested
in establishing connections of n with selected classical characteristics of the contin-
num (such as the bounding number b or the splitting number s). This reveals —
at least to some extent — the combinatorial nature of the Nikodym property.

Proposition 3.4 states that under Martin’s axiom all infinite Boolean algebras
with the Nikodym property are of cardinality at least c, i.e. under Martin’s axiom
n = c. This — together with Theorem 7.3 — implies the following corollary.

Corollary 7.5. The existence of an infinite Boolean algebra with the Nikodym
property and of cardinality strictly less than c is independent of ZFC + ¬CH. �
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Our result has several consequences. First of all, it gives an example of a Boolean
algebra A with uncountable cofinality cof(A) and homomorphism type h(A) and
thus generalizes the result of Ciesielski and Pawlikowski [9], see Section 8.1.

Corollary 8.3. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ. Then, there exists a Boolean algebra A such that |A| = κ, h(A) ≥ n
and cof(A) = ω1. �

The second consequence concerns the Efimov problem — a long-standing open
problem asking whether every infinite compact space contains either a non-trivial
convergent sequence or a copy of βω, the Čech-Stone compactification of the set ω
of natural numbers. One can find a detailed discussion on the problem in Hart [25].
So far, there have been known several consistent counterexamples to the problem
— called Efimov spaces, see e.g. Fedorchuk [19, 20, 21], Dow [15] or Dow and
Shelah [17]; however no ZFC counterexample is known. We provide another new
consistent example of a Efimov space.

Corollary 8.5. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ < c. Then, there exists a Efimov space K such that the weight
w(K) = κ and for every infinite closed subset L of K we have w(L) ≥ n. �

The Nikodym property of Boolean algebras can be generalized to C*-algebras
in the following way. Let A be a C*-algebra. Recall that an element p ∈ A is
called a projection if p∗ = p = p2, where ∗ is the involution on A , and by Proj(A )
denote the set of all projections in A . We say that a sequence

〈
x∗n ∈ A ∗ : n ∈ ω

〉
of continuous functionals on A is projectionally bounded if supn∈ω

∣∣x∗n(p)
∣∣ <∞ for

every p ∈ Proj(A ) and it is uniformly bounded if supn∈ω
∥∥x∗n∥∥ <∞.

Definition 1.4. A C*-algebra A has the Nikodym property if every projectionally
bounded sequence

〈
x∗n ∈ A ∗ : n ∈ ω

〉
of continuous functionals on A is uniformly

bounded.

This kind of generalization of the Nikodym property has been studied by several
authors, e.g. it was proved that all von Neumann algebras (Darst [11]) and all
monotone σ-complete C*-algebras (Brooks and Maitland Wright [8]), which are
analogons of σ-complete Boolean algebras, have the Nikodym property. Note that
all infinite-dimensional commutative von Neumann algebras have the density at
least c (see Sakai [38, Remark in Section 1.18]). Taking the space C

(
KB
)

where B
is the Boolean algebra from Theorem 7.3, we obtain an example of a commutative
C*-algebra with the Nikodym property and (almost) arbitrary density.

Corollary 8.12. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ. Then, there exists a commutative C*-algebra A with the Nikodym
property and such that dens(A ) = κ, h(A ) ≥ n and cof(A ) = ω1. �

The numbers cof(A ) and h(A ), called respectively the cofinality and the homo-
morphism type of A , are defined in Section 8.3.

The plan of the paper is as follows. We start with Section 2, where we recall some
standard notation and terminology. In Section 3 we provide several lower bounds
for cardinalities of infinite Boolean algebras with the Nikodym property (i.e. for the
number n) in terms of standard cardinal invariants of the continuum. In Section 4
we prove some facts concerning sequences of measures on a Boolean algebra which
are elementwise bounded but not uniformly bounded (we call them anti-Nikodym
sequences). In Sections 5–7 we present a consistent construction of an infinite
Boolean algebra with the Nikodym property and of cardinality strictly less than c as
well as we analyze the combinatorics of tools used during the construction in terms
of standard cardinal invariants of the continuum. Section 8 provides consequences
of the result.
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2. Notation and terminology

2.1. Sets and spaces. The notation we use is standard, see e.g. Bartoszyński and
Judah [3] or Jech [27].

Let X be a set. χX denotes the characteristic function of X. The power set of X
is denoted by ℘(X). |X| denotes the cardinality of X. [X]

<ω
and [X]κ for a given

cardinal number κ denote respectively the set of all finite subsets of X and the set
of all subsets of X of cardinality κ; both [X]

ω
and [X]

<ω
are always considered

as being ordered by inclusion. Countable always means infinite countable, i.e. of
cardinality ω. If X ⊆ Y we say that X is cofinite (cocountable) in Y if |Y \X| < ω
(|Y \X| = ω).

A sequence
〈
xn : n ∈ ω

〉
is non-trivial if

∣∣{xn : n ∈ ω}
∣∣ = ω. By an increasing

sequence f ∈ ωω we always mean a sequence which is strictly increasing, i.e. f(n) <
f(n+ 1) for every n ∈ ω. If σ is a finite zero-one sequence, i.e. σ ∈ {0, 1}n for some
n ∈ ω, then [σ] denotes the clopen subset

{
t ∈ 2ω : σ ⊆ t

}
of the Cantor set 2ω.

If t ∈ 2ω and n ∈ ω, then t � n denotes the finite sequence 〈t(0), . . . , t(n − 1)〉 of
length n. If n,m ∈ ω and t ∈ ωn, then tam is a sequence 〈t(0), . . . , t(n− 1),m〉.

A natural number n ∈ ω is usually identified with the set of its predecessors, i.e.
n = {0, 1, . . . , n− 1}, so an expression of the form X \ n, where X is a set, simply
means X \ {0, . . . , n− 1}.

R+ (R−) denotes the set of all positive (negative) real numbers and sgn is the
signum function on R. If z is a complex number, then Re(z) and Im(z) denote the
real and imaginary parts of z, respectively. We will use frequently the following
immediate variant of the triangle inequality for the absolute value: |a+b| ≥ |a|−|b|
(for every a, b ∈ R).

We will appeal to the following observation repeatedly implied by the Pigeon
Hole Principle.

Lemma 2.1. For given positive integer N , set A of cardinality 2N , two non-empty
disjoint sets B and C , and function f : A → B ∪ C , there is a subset A ′ of A of
cardinality N and a set D ∈ {B,C } such that f(a) ∈ D for every a ∈ A ′.

Generally, for given positive n,N ∈ ω, set A of cardinality 2n ·N , two non-empty
disjoint sets B and C and functions f1, . . . , fn : A → B ∪ C , there exist a subset
A ′ of A of cardinality N and sets D1, . . . ,Dn ∈ {B,C } such that fi(a) ∈ Di for
every a ∈ A ′ and i ≤ n. �

If X is a topological space, then dens(X) denotes its density and w(X) its weight.
If A is a subset of a topological space (X, T ), then we write A for the closure of A
in (X, T ).

A compact space is always assumed to be Hausdorff. If K is a compact space,
then C(K) denotes the Banach space of all continuous complex-valued functions
on K endowed with the supremum norm. Recall that C(K) with a complex conju-
gation as the involution forms a C*-algebra.

A topological space X is scattered if every non-empty closed subset of X has an
isolated point. A subset of a topological space is perfect if it is closed and has no
isolated points. A point x in a compact space X is a Gδ-point if x is of countable
character in X.

2.1.1. Martin’s axiom. Concerning Martin’s axioms, we will always use the notation
and terminology presented in Bartoszyński and Judah [3, Section 1.4.B].
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2.2. Boolean algebras and measures. Let A be a Boolean algebra. By ∧, ∨
and \ we denote the operations of conjuction, disjunction and difference in A,
respectively. The zero and unit element in A are denoted by 0 and 1, respectively.
The Stone space of A is always denoted by KA. Recall that

|A| = w
(
KA
)

= dens
(
C
(
KA
))
,

if A is infinite. For an element a of A its corresponding clopen subset of KA is
denoted by [a]. For a set I of indices, a family

{
ai ∈ A : i ∈ I

}
is an antichain in

A if ai ∧ aj = 0 for every i 6= j ∈ I. In particular, if A is a subalgebra of ℘(X) for
some set X, then an antichain is just a sequence of mutually disjoint subsets of X.
FC denotes the algebra consisting of all finite and cofinite subsets of ω. The

countable free Boolean algebra is denoted by Fr(ω) and its completion by Fr(ω).
Let K ∈ {R,C}. A function µ : A → K is called a measure on A if it is a finitely

additive function of finite variation, i.e.∥∥µ∥∥ = sup
{∣∣µ(a1)∣∣+. . .+∣∣µ(an)∣∣ : a1, . . . , an ∈ A& ∀i 6= j : ai∧aj = 0

}
<∞.

The space of all measures on A is denoted as ba(A). Note that ba(A) with the
variation as a norm constitutes a Banach space. If µ is a measure on A, then its
unique Borel extension on KA is denoted also by µ (see Semadeni [43, Chapter
17 and Section 18.7]). Recall the Riesz representation theorem stating that for a
compact space K the dual space C(K)∗ is isometrically isomorphic to the space
M(K) of all complex Radon (σ-additive) measures on K with finite variation (see
Rudin [36, Chapters 2 and 6]). On the other hand, for an algebra A, M

(
KA
)

is
isometrically isomorphic to ba(A).

We call a measure µ ∈ ba(A) positive if µ(A) ≥ 0 for all A ∈ A.
If x is a point in the Stone space KA, then by δx we denote the Dirac delta

concentrated at x, i.e. δx(A) = χA(x).
We also use the following notations frequently. Given a sequence

〈
µn : n ∈ ω

〉
of

measures, we usually denote it for abbreviation by µ. Similarly, given k sequences〈
µ1
n : n ∈ ω

〉
, . . . ,

〈
µkn : n ∈ ω

〉
of measures, we will denote them by µ1, . . . , µk,

respectively. If µ is a measure on A and a ∈ A, then µ � a is the measure on A
defined by the formula (µ � a)(b) = µ(a ∧ b) for every b ∈ A. µ � a denotes the
sequence

〈
µn � a : n ∈ ω

〉
. Similarly, if A′ is a subalgebra of A, then µ � A′ denotes

the sequence
〈
µn � A′ : n ∈ ω

〉
of measures restricted to the algebra A′.

2.3. Cardinal invariants of the continuum. In this section we recall some clas-
sical cardinal invariants (cardinal characteristics) of the continuum. All the nec-
essary and detailed information concerning them can be found in the monograph
of Bartoszyński and Judah [3] and the handbook articles of van Douwen [14] and
Blass [4].

2.3.1. Bounded and dominating families. Let f, g ∈ ωω. We say that g dominates
f if there is N ∈ ω such that f(n) < g(n) for every n > N . A family F ⊆ ωω is
unbounded if for every g ∈ ωω there is f ∈ F not dominated by g. A family F ⊆ ωω
is dominating if for every g ∈ ωω there is f ∈ F dominating g.

Definition 2.2. The bounding number b is defined as the minimal size of an un-
bounded family:

b = min
{
|F| : F ⊆ ωω is unbounded

}
.

Definition 2.3. The dominating number d is defined as the minimal size of a
dominating family:

d = min
{
|F| : F ⊆ ωω is dominating

}
.
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We will need the following simple lemma asserting existence of dominating fam-
ilies of a special kind.

Lemma 2.4. There exists a dominating family D of cardinality d consisting of
increasing functions such that for every increasing sequence f =

〈
f(n) ∈ ω : n ∈ ω

〉
there exists g =

〈
g(n) ∈ ω : n ∈ ω

〉
∈ D dominating f with the following additional

property:

if g(n) ≥ f(m) for some n,m ∈ ω, then g(n+ 1) > f(m+ 1).

Proof. Let D0 be any dominating family of cardinality d consisting of increasing
functions f ∈ ωω such that f(0) > 0. Without loss of generality, we may assume
that for every f ∈ ωω there is h ∈ D0 such that f(n) < h(n) and f(n + 1) < h(n)
for every n ∈ ω. For every h ∈ D0 define gh ∈ ωω as follows:

gh(n) = h ◦ . . . ◦ h︸ ︷︷ ︸
n+1 times

(0),

i.e. gh(n) is the n+ 1 iteration of h at 0. Put:

D =
{
gh : h ∈ D0

}
.

Trivially, D is dominating and consists of increasing functions. Let f ∈ ωω be
increasing. Take h ∈ D0 such that f(n) < h(n) and f(n + 1) < h(n) for every
n ∈ ω. The function gh dominates f and if gh(n) ≥ f(m) for some n,m ∈ ω, then

gh(n+ 1) = h(gh(n)) ≥ h(f(m)) ≥ h(m) > f(m+ 1).

�

Corollary 2.5. There exists a dominating family D of cardinality d consisting of
increasing functions such that for every increasing sequence f =

〈
f(n) ∈ ω : n ∈ ω

〉
there exist g =

〈
g(n) ∈ ω : n ∈ ω

〉
∈ D dominating f and an increasing sequence〈

nk ∈ ω : k ∈ ω
〉

such that:[
f
(
n2k
)
, f
(
n2k+1

)]
⊆
(
g(2k), g(2k + 2)

)
for every k ∈ ω.

Proof. Let D be the family from Lemma 2.4. Let f ∈ ωω be increasing and g ∈ D
dominating f such that:

if g(n) ≥ f(m) for some n,m ∈ ω, then g(n+ 1) > f(m+ 1).

For every k ∈ ω let mk ∈ ω be the smallest number such that f
(
mk

)
> g(2k).

Then, g(2k+1) > f
(
mk

)
and g(2k+2) > f

(
mk+1

)
. Define the sequence

〈
nk : k ∈

ω
〉

as follows: n2k = mk and n2k+1 = mk + 1. �

2.3.2. Almost disjoint families. We say that two sets A,B ∈ [ω]
ω

are almost disjoint
if |A ∩B| < ω. A family F ⊆ [ω]

ω
is almost disjoint if every two distinct elements

of F are almost disjoint.
As the following standard lemma shows, uncountable almost disjoint families can

be useful to ensure partial σ-additivity of measures on a Boolean algebra.

Lemma 2.6. Let G =
{
Aξ : ξ < ω1

}
be a family of infinite almost disjoint subsets

of ω and let
〈
an : n ∈ ω

〉
be an antichain in some Boolean algebra A. Assume that

for every ξ < ω1 the supremum
∨
n∈Aξ an belongs to A. Then, for every sequence

µ =
〈
µn : n ∈ ω

〉
of measures on A there exists ξ ∈ ω1 such that for every k ∈ ω

and B ⊆ Aξ for which the supremum
∨
n∈B an belongs to A the following equality

holds: ∣∣µk∣∣( ∨
n∈B

an

)
=
∑
n∈B

∣∣µk∣∣(an).
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Proof. For every ξ < ω1 let Cξ be a closed subset of KA given by the formula

Cξ =

 ∨
n∈Aξ

an

 \ ⋃
n∈Aξ

[an] ,

i.e. Cξ is a boundary of
⋃
n∈Aξ [an] in KA. It is easy to see that Cξ ∩ Cη = ∅

whenever ξ 6= η. Hence, for every k ∈ ω by the finiteness of the measure
∣∣µk∣∣ there

exists a cocountable set Fk ⊆ ω1 such that and
∣∣µk∣∣(Cξ) = 0 for every ξ ∈ Fk. Let

ξ ∈ Fk and B ⊆ Aξ be a subset for which
∨
n∈B an ∈ A. The boundary CB of[∨

n∈B an
]

in KA is a subset of Cξ, hence
∣∣µk∣∣(CB) = 0 (recall that we identify

µk ∈ ba(A) with the corresponding measure µk ∈M
(
KA
)
). Thus we have:

∣∣µk∣∣( ∨
n∈B

an

)
=
∣∣µk∣∣( [ ∨

n∈B
an

])
=
∣∣µk∣∣(CB ∪ ⋃

n∈B
[an]

)
=

∣∣µk∣∣(CB)+
∣∣µk∣∣( ⋃

n∈B
[an]

)
=
∑
n∈B

∣∣µk∣∣( [an]
)

=
∑
n∈B

∣∣µk∣∣(an).
The set F =

⋂
k∈ω Fk is non-empty (in fact it is also cocountable in ω1). Take any

ξ ∈ F . �

2.3.3. Splitting families. Given two sets A,B ∈ [ω]
ω

we say that B splits A if
|A ∩B| = |A \B| = ω. A family F ⊆ [ω]

ω
is splitting if for every A ∈ [ω]

ω
there is

B ∈ F splitting A.

Definition 2.7. The splitting number s is defined as the minimal size of a splitting
family:

s = min
{
|F| : F ⊆ [ω]

ω
is splitting

}
.

2.3.4. Cichoń’s diagram. All the necessary information concerning Cichoń’s dia-
gram can be found in the monograph of Bartoszyński and Judah [3, Chapter 2]. In
this section we only recall two of its elements.

Definition 2.8. Let M and N denote the σ-ideals of all meager and all zero
Lebesgue measure subsets of the real line R, respectively.

• The cofinality of measure cof(N ) is the minimal size of a base of N :

cof(N ) = min
{
|F| : F ⊆ N & ∀A ∈ N ∃B ∈ F : A ⊆ B

}
.

• The covering of category cov(M) is the minimal size of a covering of R by
meager subsets:

cov(M) = min
{
|F| : F ⊆M & ∪F = R

}
.

We will need the following characterization of cov(M) due to Keremedis (cf. also
Bartoszyński and Judah [3, Theorem 2.4.5]). Recall that MAκ(countable) denotes
Martin’s axiom restricted to countable posets and at most κ many dense subsets.

Proposition 2.9 (Keremedis [30, Theorem 1]). Let κ be a cardinal number. Then,
cov(M) > κ if and only if MAκ(countable) holds. �

Finally, let us invoke the following characterization of cof(N ) due to Bartoszyński
and Judah which appears crucial in the proofs of Lemma 5.1.

Proposition 2.10 (Bartoszyński–Judah [3, Section 2.3.A]). Let C denote the family
of all subsets of ωω of the form

∏
n∈ω Tn such that Tn ∈ [ω]n+1 for all n ∈ ω. Then

cof(N ) = min
{
|F| : F ⊆ C & ∪F = ωω

}
.
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Note that the definition of the family C in Bartoszyński and Judah [3, Definition
2.3.2] is a bit different — it considers sets of the form T =

∏
n∈ω Tn satisfying

the condition:
∑
n∈ω

|Tn|
n2 < ∞. However, it is a folklore fact that we can use sets

T =
∏
n∈ω Tn where Tn ∈ [ω]n+1, cf. Ciesielski and Pawlikowski [9], Gruenhage

and Levy [24, Theorem 2.10] or Sobota [44, Proposition 2.2.26].

3. The Nikodym property and cardinal invariants

Since, by the Nikodym theorem, the algebra ℘(ω) has the Nikodym property,
we immediately have the following upper bound: n ≤ c. To see that n > ω,
i.e. no countable Boolean algebra has the Nikodym property, recall the following
well-known facts: 1) if the Stone space KA of a Boolean algebra A has a non-
trivial convergent sequence, than A cannot have the Nikodym property (indeed, if〈
xn : n ∈ ω

〉
is a non-trivial sequence in KA converging to x, then the sequence

of measures
〈
n
(
δxn − δx

)
: n ∈ ω

〉
is elementwise bounded but not uniformly

bounded), 2) the Stone space of a countable Boolean algebra is homeomorphic
to an infinite closed subset of the Cantor set 2ω, hence it contains a non-trivial
convergent sequence.

We generalize the above fact as follows (see also Sobota [44, Section 2.3]).

Proposition 3.1. n ≥ max(s, cov(M)). �

Proof. Let KA be the Stone space of an infinite Boolean algebra A with the
Nikodym property. Then, KA does not contain any non-trivial convergent se-
quences and hence is not scattered.

Booth [5] proved that the splitting number s is equal to the minimal weight of
an infinite compact space which is not sequentially compact. Since every infinite
sequentially compact space contains a non-trivial convergent sequence, it follows
that KA is not sequentially compact and hence w

(
KA
)
≥ s.

Geschke [23, Theorem 2.1] showed that if K is an infinite non-scattered compact
space such that w(K) < cov(M), then K contains a perfect set with a Gδ-point
(in the relative topology) and hence K contains a non-trivial convergent sequence.
This implies that w

(
KA
)
≥ cov(M). �

Proposition 3.2. n ≥ b.

Proof. Recall that a locally convex space X is barrelled if every convex, balanced,
absorbing and closed subset (a barrel) of X is a neighborhood of zero in X (see
Kelley and Namioka [29, pp. 104–105]). Saxon and Sánchez Ruiz [39] proved that
every barrelled metrizable space has dimension at least b. On the other hand,
it follows from Schaefer [41, Section IV.1 and Theorem IV.5.2] that a Boolean
algebra A has the Nikodym property if and only if the normed space Bs(A) (with
the supremum norm) of all simple functions on KA is barrelled. The (algebraic)
dimension of Bs(A) is equal to |A|. �

(Remark: In Section 8.3 we present Proposition 8.8 which is a version of Proposition
3.2 for C*-algebras.)

Corollary 3.3. n ≥ max
(
s, b, cov(M)

)
. �

Note that values of the cardinal invariants s, b and cov(M) are independent of
each other (see e.g. Mej́ıa [34, Section 4] and Brendle and Fischer [7, Section 4]).

Proposition 2.9 implies the following corollary.

Corollary 3.4. Under MAκ(countable), every infinite Boolean algebra with the
Nikodym property is of cardinality at least c. �
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A natural candidate for bounding n from below is the dominating number d, for
which we also have d ≥ max

(
s, b, cov(M)

)
.

Question 3.5. Is the equality n = d true?

Note that the inequality d > max
(
s, b, cov(M)

)
is relatively consistent, see Blass

[4, Section 11.9] or Mej́ıa [33, Theorem 13].
Let us conclude the section with the following remarks.

Remark 3.6. Proposition 8.2 asserts that the cofinality of n is uncountable. How-
ever, note that adding one Cohen real over a model which contains a given algebra,
adds a convergent sequence to its Stone space (see Dow and Fremlin [16, Introduc-
tion]), so as every algebra of size smaller than c has a Cohen real over it in the
Cohen model, we conclude that n = c in this model. On the other hand, note that
in this model the cofinality cf(c) = cf(n) may be an arbitrary uncountable cardinal
number κ.

Corollary 3.7. The regularity of n is undecidable in ZFC. �

Remark 3.8. It follows that for every infinite Boolean algebra A with the Nikodym
property there exists a homomorphism ϕ : A → Fr(ω) such that Fr(ω) ⊆ ϕ[A] ⊆
Fr(ω). Indeed, since KA is not scattered, A is not superatomic and hence Fr(ω) is
a subalgebra of A. The existence of the homomorphism ϕ follows from the Sikorski
Extension Theorem.

Schachermayer proved that the class of Boolean algebras with the Nikodym
property is closed under homomorphic images ([40, Proposition 2.11]), hence ϕ[A]
has also the Nikodym property. This implies that to seek an algebra with the
Nikodym property and of cardinality n, it is enough to study subalgebras of Fr(ω)
containing Fr(ω). This also suggests that Boolean algebras with the Nikodym
property are in a sense “complete” (cf. Theorem 6.9).

4. Anti-Nikodym sequences of measures

Let A be a Boolean algebra.

Definition 4.1. Let µ =
〈
µn : n ∈ ω

〉
be a sequence of measures on A and let

a ∈ A. We say that a is big for µ if for every ρ > 0 there exist b ≤ a and n ∈ ω
such that

∣∣µn(b)
∣∣ > ρ.

The following proposition follows immediately from the definition of big elements.

Proposition 4.2. For a given sequence µ =
〈
µn : n ∈ ω

〉
of measures on A and

an element a ∈ A, the following are equivalent:

(1) a is big for µ;
(2) supn∈ω supb≤a

∣∣µn(b)
∣∣ =∞;

(3) µ � a is not uniformly bounded, i.e. supn∈ω
∥∥µn � a

∥∥ =∞;
(4) every b ∈ A such that b ≥ a is big for µ. �

Definition 4.3. A sequence µ of measures on A is called anti-Nikodym on a ∈ A,
if µ � a is elementwise bounded and a is big for µ. We say simply that µ is anti-
Nikodym if it is anti-Nikodym on 1.

Lemma 4.4. If a sequence µ =
〈
µn : n ∈ ω

〉
of measures on A is anti-Nikodym on

some element a ∈ A, then there exists a point t ∈ [a] such that µ is anti-Nikodym
on every neighborhood of t in KA.

The point t will be called a Nikodym concentration point of the sequence µ.
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Proof. Assume that for every point t ∈ [a] there exists a neighborhood [at] ⊆ KA
of t such that µ � at is uniformly bounded. Then, by compactness of [a] there exist
t1, . . . , tn ∈ [a] such that a ≤ at1 ∨ . . . ∨ atm . This in turn implies that

sup
n∈ω

∥∥µn � a
∥∥ = sup

n∈ω

∣∣µn∣∣(a) ≤ sup
n∈ω

∣∣µn∣∣(at1)+ . . .+ sup
n∈ω

∣∣µn∣∣(atm) =

sup
n∈ω

∥∥µn � at1
∥∥+ . . .+ sup

n∈ω

∥∥µn � atm
∥∥ <∞,

which is a contradiction with Proposition 4.2 (3), since a is big for µ. �

(Note that in the above proof we did not used the elementwise boundedness of µ.)
Let µ be an anti-Nikodym sequence of measures on A and t ∈ KA be its Nikodym

concentration point. It is immediate that t cannot be isolated in KA. Aizpuru [2,
page 4] observed even more — if KA does not contain any non-trivial convergent
sequences, then t cannot be a P-point in KA. Recall that a point x in a topolog-
ical space X is a P-point if its filter of neighborhoods is closed under countable
intersection, i.e. if

〈
Un : n ∈ ω

〉
is a sequence of open neighborhoods of x, then⋂

n∈ω Un has the non-empty interior. Recall also that the support supp(µ) of a mea-

sure µ ∈ C
(
KA
)∗

is the smallest closed subset of K such that |µ|(U) = 0 for every
open set U disjoint with supp(µ). The next proposition shows that the assumption
about the non-existence of non-trivial convergent sequences in KA is redundant in
Aizpuru’s result.

Proposition 4.5. Let µ =
〈
µn : n ∈ ω

〉
be an anti-Nikodym sequence of measures

on A and t ∈ KA be its Nikodym concentration point. Then, t is not a P-point in
KA.

Proof. First note that if x ∈ KA is a P-point and Y ⊆ KA \ {x} satisfies the
countable chain condition, then x /∈ Y . Indeed, let U be any maximal family of
pairwise disjoint open sets in KA such that x /∈ U and U ∩ Y 6= ∅ for every U ∈ U .
Then, |U| ≤ ω and hence there exists an open neighborhood V of x in KA such
that V ∩ U = ∅ for every U ∈ U . By maximality of U it follows that V ∩ Y = ∅,
and so x /∈ Y .

Recall that for every measure µ ∈ C
(
KA
)∗

its support supp(µ) satisfies the
countable chain condition. Hence, it is easy to see that the set

Y =
⋃
n∈ω

supp(µn) \ {t}

also satisfies this condition.
Assume that t is a P-point in KA. Then, there exists an open neighborhood V

of t in KA such that V ∩ Y = ∅. It follows that for every n ∈ ω we have that

µn � V = µn � {t} = αnδt

for some αn ∈ C. Since µ is anti-Nikodym, the set
{
αn : n ∈ ω

}
is bounded,

and hence supn∈ω
∥∥µn � V

∥∥ < ∞, which contradicts the fact that t is a Nikodym
concentration point of µ. �

Let T (µ) be the set of all Nikodym concentration points of an anti-Nikodym
sequence µ. It is immediate that T (µ) is closed in KA. The next proposition shows
that in the case of the free countable Boolean algebra Fr(ω), T (µ) can be in fact
any closed subset of its Stone space 2ω.

Proposition 4.6. Let F ⊆ 2ω be a closed set. Then, there exists an anti-Nikodym
sequence µ of measures on Fr(ω) for which T (µ) = F .
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Proof. We first consider the case when F is perfect. We shall define an anti-
Nikodym sequence

〈
µn : n ∈ ω

〉
of measures such that supp(µn) ⊆ F for every

n ∈ ω. Thus, since F is homeomorphic to 2ω, without any loss of generality we
may assume that F = 2ω. Denote A = Fr(ω).

Define an anti-Nikodym sequence µ =
〈
µn : n ∈ ω

〉
of measures on A as follows.

Fix n ∈ ω. For σ ∈ 2n let x(σ) and y(σ) be two arbitrary distinct points from the
clopen [σ]. Put:

µn =
∑
σ∈2n

(
δx(σ) − δy(σ)

)
.

Then
∥∥µn∥∥ = 2n+1. On the other hand, if a ∈ A, then by compactness of [a] there

is N ∈ ω such that x(σ) ∈ [a] if and only if y(σ) ∈ [a], for every n > N and σ ∈ 2n;
so µn(a) = 0. Hence, µ is anti-Nikodym.

Let t ∈ 2ω and assume that t ∈ [σ] for some σ ∈ 2<ω. For every τ ∈ 2<ω we
have x(σaτ), y(σaτ) ∈ [σ], hence:

sup
n∈ω

∣∣µn∣∣( [σ]
)
≥ 2|τ |+1.

Thus, supn∈ω
∥∥µn � [σ]

∥∥ =∞, and hence t is a Nikodym concentration point of µ.

Let now F = P ∪ D, where P is perfect, D is scattered and P ∩ D = ∅. Let
α = |D|; then α ≤ ω. Let

〈
Nξ ∈ [ω]

ω
: ξ ≤ α

〉
be a partition of ω. For every

ξ ≤ α, enumerate Nξ =
〈
n(ξ, k) : k ∈ ω

〉
. Write also D =

〈
xξ : ξ < α

〉
. For every

ξ < α, let
〈
xξn ∈ 2ω : n ∈ ω

〉
be a non-trivial sequence converging to xξ such that

the diameter diam
{
xξn : n ∈ ω

}
< 1/2ξ+1; then limk→∞ xξn(ξ,k) = xξ, too. For

every k ∈ ω and ξ < α put:

µn(ξ,k) = n(ξ, k) ·
(
δxξ
n(ξ,k)

− δxξ
)
.

Then, xξ is a Nikodym concentration point of the anti-Nikodym sequence
〈
µn(ξ,k) : k ∈

ω
〉
.

Let ν =
〈
νn : n ∈ ω

〉
be an anti-Nikodym sequence such that T (ν) = P and

supp(νn) ⊆ P for every n ∈ ω, e.g. the one described above. For every k ∈ ω put:

µn(α,k) = νn(α,k).

Then, T
(〈
µn(α,k) : k ∈ ω

〉)
= P .

Finally, since the diameters of the sequences
〈
xξn : n ∈ ω

〉
converge to 0 and the

Hausdorff distance between two disjoint non-empty clopen subsets of 2ω is always
positive, µ =

〈
µn : n ∈ ω

〉
is elementwise bounded and hence anti-Nikodym.

Obviously, T (µ) = P ∪D = F . �

Lemma 4.7. Let µ =
〈
µn : n ∈ ω

〉
be an anti-Nikodym sequence on some a ∈ A

and let t ∈ [a] be a Nikodym concentration point of µ. Then, for every positive real
number ρ there exists an element b ∈ A with the following properties:

• b ≤ a and t ∈ [a \ b],
• there exists n ∈ ω such that

∣∣µn(b)
∣∣ > ρ.

Proof. Since µ is anti-Nikodym on a, there exist c ≤ a and n ∈ ω such that∣∣µn(c)
∣∣ > sup

m∈ω

∣∣µm(a)
∣∣+ ρ

and hence∣∣µn(a \ c)
∣∣ =

∣∣µn(c)− µn(a)
∣∣ ≥ ∣∣µn(c)

∣∣− ∣∣µn(a)
∣∣ > ρ.

If t ∈ [c], then put b = a \ c, otherwise put b = c. �

The last lemma of this section is a simple application of the triangle inequality.
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Lemma 4.8. Let µ be a measure on A and let a ∈ A be such an element that∣∣µ(a)
∣∣ > ρ for some positive number ρ. If a1, . . . , an are such mutually disjoint

elements of A that a = a1∨. . .∨an, then there is 1 ≤ j ≤ n for which
∣∣µ(aj)∣∣ > ρ/n.

�

5. cof(N ) and antichains

The main motivation for this section is following. A crucial step in Darst’s
reductio ad absurdum proof of the Nikodym Boundedness Theorem (see Diestel
and Uhl [13, Theorem I.3.1 and page 33]) is for a given anti-Nikodym sequence〈
µn : n ∈ ω

〉
of measures on a σ-complete Boolean algebra A to construct an

antichain
〈
an ∈ A : n ∈ ω

〉
and an increasing sequence

〈
n(k) : k ∈ ω

〉
of natural

numbers such that for every k ∈ ω the following inequality holds:∣∣µn(k)(ak)∣∣ > k−1∑
i=0

∣∣µn(k)(ai)∣∣+ k + 1.

The existence of such an antichain allows us to obtain an element a ∈ A for which
supn∈ω

∣∣µn(a)
∣∣ =∞, contradicting the fact that µ is elementwise bounded.

If µ is anti-Nikodym on a Boolean algebra A, then to construct an antichain
described in the previous paragraph it is enough to use Lemma 4.7 — no special
properties of A are required. The main result of this section — Lemma 5.1 — states
that in the case of the free countable Boolean algebra Fr(ω), the antichain can be
chosen from a certain fixed family of cof(N ) many antichains. This observation
will appear crucial for the proof of the main theorems of this paper — Theorems
7.2 and 7.3.

Lemma 5.1. If cof(N ) = κ for some cardinal number κ, then there exists a fam-
ily
{〈
aγn ∈ Fr(ω) : n ∈ ω

〉
: γ < κ

}
of κ many antichains in the free countable

Boolean algebra Fr(ω) with the following property:

for every anti-Nikodym sequence of real-valued measures
〈
µn : n ∈

ω
〉

on Fr(ω) there exist γ < κ and an increasing sequence
〈
n(k) : k ∈

ω
〉

of natural numbers such that for every k ∈ ω the following in-
equality is satisfied:∣∣µn(k)(aγk)∣∣ > k−1∑

i=0

∣∣µn(k)(aγi )∣∣+ k + 1.

Before we provide the proof of Lemma 5.1, we will prove several auxiliary tech-
nical results. To the end of the section we shall need the following four sequences
K,L,M,N ∈ ωω:

• K(n) = (2n · 3)n,

• L(n) = K(n)K(n)·2·3n+1

,
• N(n) = L(0) + L(1) + . . .+ L(n) + n+ 1,

• M(n) =
(
23
n)n+1 · 2n+1.

Note that in the definition of N(n) the last summand is just n+ 1, not L(n+ 1).

Lemma 5.2. Let A be a Boolean algebra. Fix an integer k ≥ 3 . Let d1, . . . , dk, e ∈
A be mutually disjoint and let µ be a real-valued measure on A. Assume that
ρ is such positive real number that

∣∣µ(e)
∣∣ > 2ρ and

∣∣µ (e ∨ dj)
∣∣ ≤ ρ for every

j = 1, . . . , k. Then:∣∣µ(e ∨ k∨
j=1

dj

)∣∣ > ρ.
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Proof. Since for every j = 1, . . . , k we have that
∣∣µ (e ∨ dj)

∣∣ ≤ ρ, it follows that:∣∣µ(dj)
∣∣ =

∣∣µ(e)− µ(e ∨ dj)
∣∣ ≥ ∣∣µ(e)

∣∣− ∣∣µ(e ∨ dj)
∣∣ > 2ρ− ρ = ρ

and ∣∣∣∣∣µ(dk)
∣∣− ∣∣µ(e)

∣∣∣∣∣ ≤ ∣∣µ(dk) + µ(e)
∣∣ =

∣∣µ(e ∨ dk)
∣∣ ≤ ρ,

so ∣∣µ(dk)
∣∣− ∣∣µ(e)

∣∣ ≥ −ρ.
Moreover, since

∣∣µ(e)
∣∣ > 2ρ and

∣∣µ (e ∨ dj)
∣∣ ≤ ρ, the sign of every µ(dj) must be

opposite to the sign of µ(e), i.e. there exists s ∈ {−1,+1} such that

sgnµ(dj) = s = − sgnµ(e)

for every j = 1, . . . , k. Having in mind that k ≥ 3, we immediately obtain the
following:∣∣µ(e ∨ k∨

j=1

dj

)∣∣ =
∣∣µ(e) +

k∑
j=1

µ(dj)
∣∣ ≥ ∣∣ k∑

j=1

µ(dj)
∣∣− ∣∣µ(e)

∣∣ =

k−1∑
j=1

∣∣µ(dj)
∣∣+
(∣∣µ(dk)

∣∣− ∣∣µ(e)
∣∣) > (k − 1)ρ− ρ = (k − 2)ρ ≥ ρ,

where the middle equality follows from the fact that all µ(dj)’s have the same sign
s. �

Lemma 5.3. Let A be a Boolean algebra. Fix k ∈ ω. Let d1, . . . , dK(k), e ∈ A
be mutually disjoint and let µ1, . . . , µk be real-valued measures on A. Assume that
ρ1, . . . , ρk are such positive real numbers that

∣∣µi(e)∣∣ > 2ρi for every i ≤ k. Then,

there exists a non-empty set E ⊆
{

1, . . . ,K(k)
}

satisfying for every i ≤ k the
following inequality:∣∣µi(e ∨ ∨

j∈E
dj

)∣∣ > ρi.

The cardinality of the set E is a power of 3, i.e. |E| = 3k
′

for some 0 ≤ k′ ≤ k.

Proof. Let A =
{
µ1, . . . , µk

}
and J =

{
1, . . . ,K(k)

}
.

Let us say that a measure µi ∈ A is good for a set E ⊆ J if:∣∣µi(e ∨ ∨
j∈E

dj

)∣∣ > ρi,

and bad otherwise, i.e.∣∣µi(e ∨ ∨
j∈E

dj

)∣∣ ≤ ρi.
Then, our aim is to find a non-empty set E ⊆ J such that every measure µi ∈ A is
good for E.

We will do it in at most k + 1 steps. More precisely, we will construct the
following two sequences of length m for some 1 ≤ m ≤ k + 1:

(i) a sequence J1, . . . , Jm ⊆ ℘(J) of families of candidates for the set E such
that:
(i.1) |Jl| = (2k)k−l · 3k−l+1 for every 1 ≤ l < m,
(i.2) sets from Jl+1 will be unions of three distinct sets from Jl for every

1 ≤ l < m;
(ii) a sequence B1, . . . , Bm ⊆ A of disjoint sets of measures satisfying the fol-

lowing properties:
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(ii.1) if 1 ≤ l < m, then each µi ∈ Bl will be bad for every E ∈ Jl,
(ii.2) if 1 ≤ l ≤ m, then each µi ∈ A\

⋃l
r=1Br will be good for every E ∈ Jl,

(ii.3) the set Bm will be the only empty set in the sequence B1, . . . , Bm, i.e.
there will be no bad measures for any E ∈ Jm.

Let l < m. Notice that it may happen that a measure µi ∈ A is good for every
E ∈ Jl and simultaneously bad for every E ∈ Jl+1. However, due to Lemma 5.2
if µi is bad for every E ∈ Jl, then it is good for every E ∈ Jl′ where l < l′ ≤ m.
Thus, as the set E we can (and we will!) take any element of Jm.

We start as follows. Let J ′ =
{
{j} : j ∈ J

}
. By Lemma 2.1 (with n = k, A = J ′,

B = {0}, C = {1} and fi defined as follows: fi
(
{j}
)

= 0 if µi is good for {j},
fi
(
{j}
)

= 1 otherwise), there exists J1 ⊆ J ′ of cardinality K(k)/2k = (2k)k−1 · 3k
such that the following sets

X =
{
µi ∈ A : µi is good for every {j} ∈ J1

}
and

Y =
{
µi ∈ A : µi is bad for every {j} ∈ J1

}
constitute a partition of A (i.e. are disjoint and their union is A). Put B1 = Y .

Let us now assume that for some 1 ≤ l ≤ k we have found the sets J1, . . . , Jl with
the properties (i.1)-(i.2) and the sets B1, . . . , Bl with the properties (ii.1)-(ii.3).

If Bl = ∅, then m = l and we are done.

If Bl 6= ∅ and A =
⋃l
r=1Br, then m = l + 1 — hence put Bm = ∅ and Jm ={

E1 ∪ E2 ∪ E3

}
for some distinct E1, E2, E3 ∈ Jl.

If neither of the above two cases holds, then note that l < k (since |A| = k,

B1, . . . , Bl 6= ∅ and A 6=
⋃l
r=1Br) and let J ′ be any partition of Jl into 3-element

sets and let J ′′ be a set of unions of elements of J ′, i.e.

J ′′ =
{
E1 ∪ E2 ∪ E3 : {E1, E2, E3} ∈ J ′

}
.

The cardinality of J ′′ is (2k)k−l · 3k−l (recall that |Jl| = (2k)k−l · 3k−l+1), hence by
Lemma 2.1 (cf. the first step), there exists Jl+1 ⊆ J ′′ of cardinality (2k)k−l−1 ·3k−l
such that the following sets

X =
{
µi ∈ A \

l⋃
r=1

Br : µi is good for every E ∈ Jl+1

}
and

Y =
{
µi ∈ A \

l⋃
r=1

Br : µi is bad for every E ∈ Jl+1

}
constitute a partition of A \

⋃l
r=1Br. Put Bl+1 = Y , and proceed to the next step

(i.e. the (l + 1)-th step where l + 1 ≤ k).
Note that elements of J1 are singletons and that for every 1 < l ≤ m elements

of Jl are unions of three distinct elements of Jl−1. Hence, for every 1 ≤ l ≤ m
and E ∈ Jl the cardinality |E| is a power of 3, precisely |E| = 3l−1, so finally
k′ = m− 1. �

Lemma 5.4. Let A be a Boolean algebra. Fix 1 ≤ k ∈ ω and let 2 ≤ l ≤ k+ 1. Let
d1, . . . , dL(l−1), e ∈ A be mutually disjoint and let µ1, . . . , µl−1 and ν1, . . . , νL(l−1)
be real-valued measures on A. Assume that ρ1, . . . , ρl are such positive real numbers
that:

(i)
∣∣νj(dj)∣∣ > (23

k
)k+1

· 2k+1 · ρl for every j = 1, . . . , L(l − 1),

(ii)
∣∣µi(e)∣∣ > (23

k
)k+2−l

· 2k+2−l · ρi for every i = 1, . . . , l − 1.
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Then, there exist a (possibly empty) set F ⊆
{

1, . . . , L(l − 1)
}

and an index j0 ∈{
1, . . . , L(l−1)

}
such that for every pair (µ, ρ) ∈

{(
µ1, ρ1

)
, . . . ,

(
µl−1, ρl−1

)
,
(
νj0 , ρl

)}
it holds:∣∣µ(e ∨ ∨

j∈F
dj

)∣∣ > (23
k
)k+1−l

· 2k+1−l · ρ.

Proof. We start with a trivial case when there simply exists j0 ∈
{

1, . . . , L(l − 1)
}

such that∣∣νj0(e)
∣∣ > (23

k
)k+1−l

· 2k+1−l · ρl.

We put then F = ∅ and finish the proof.
Let us thus assume that for every j ∈

{
1, . . . , L(l − 1)

}
we have

(∗)
∣∣νj(e)∣∣ ≤ (23

k
)k+1−l

· 2k+1−l · ρl.

In this case we will find the non-empty set F as follows. By Lemma 5.3, we know
that there exists a set E ⊆

{
1, . . . , L(l−1)

}
of cardinality 3m for some 0 ≤ m ≤ l−1

such that the following inequality holds for every i < l (we divided by 2 the middle
factor from the inequality (ii)):∣∣µi(e ∨ ∨

j∈E
dj

)∣∣ > (23
k
)k+2−l

· 2k+1−l · ρi.

Let E be a collection of all such sets E ⊆
{

1, . . . , L(l − 1)
}

.
We start again with a trivial case when there is E ∈ E and an element j0 ∈ E

for which∣∣νj0(e ∨ ∨
j∈E

dj

)∣∣ > (23
k
)k+1−l

· 2k+1−l · ρl;

we then put F = E and finish the proof. If it is not the case, i.e. for every E ∈ E
and each element j0 ∈ E it holds that

(∗∗)
∣∣νj0(e ∨ ∨

j∈E
dj

)∣∣ ≤ (23
k
)k+1−l

· 2k+1−l · ρl,

then we need to construct a set F and find j0 in another way.

Let us first make the following observations concerning elements of E .

(1) No E ∈ E can be a singleton, since otherwise by (i) and (∗) for E = {j0}
we would have:∣∣νj0(e ∨ ∨

j∈E
dj

)∣∣ =
∣∣νj0(e) + νj0

(
dj0
)∣∣ ≥ ∣∣νj0(dj0)∣∣− ∣∣νj0(e)

∣∣ >
(

23
k
)k+1−l

· 2k+1 · ρl −
(

23
k
)k+1−l

· 2k+1−l · ρl >
(

23
k
)k+1−l

· 2k+1−l · ρl,

contradicting (∗∗) (recall that l ≥ 2).
(2) For every E ∈ E and j0 ∈ E we have:∣∣νj0( ∨

j∈E\{j0}

dj

)∣∣ > (23
k
)k+1−l

· 2k+2−l · ρl,

since by (∗∗), (i) and (∗):(
23
k
)k+1−l

·2k+1−l·ρl ≥
∣∣νj0(e∨∨

j∈E
dj

)∣∣ =
∣∣νj0(e)+νj0

(
dj0
)
+νj0

( ∨
j∈E\{j0}

dj

)∣∣ ≥



16 D. SOBOTA∣∣νj0(dj0)∣∣− ∣∣νj0(e)
∣∣− ∣∣νj0( ∨

j∈E\{j0}

dj

)∣∣ >
(

23
k
)k+1−l

· 2k+1 · ρl −
(

23
k
)k+1−l

· 2k+1−l · ρl −
∣∣νj0( ∨

j∈E\{j0}

dj

)∣∣,
and after swapping the upper left and bottom right elements recall again
that l ≥ 2.

(3) Since 1 < |E| ≤ 3l−1 for every E ∈ E , by the observation (2) and Lemma
4.8, for every E ∈ E and j0 ∈ E there is j ∈ E \ {j0} such that∣∣νj0(dj)∣∣ > (23

k
)k+1−l

· 2k+2−l · ρl/3l−1.

We construct the set F and choose an index j0 in several steps. The idea of
the procedure is following. In the first step we find many disjoint sets E ∈ E and
then we pick one arbitrary index j1E from each set E. Then, in the second step we
construct new sets E ∈ E containing only indices j1E from the previous step and
from each of those new sets E’s we pick one new arbitrary index j2E . We repeat this
pyramid-like procedure until we are able to obtain only one set E ∈ E and hence
pick only one index jmE — this index is the sought final index j0! In each step, this
index has belonged to some unique E — by the observations (2) and (3) we can
choose from each such E another index jE such that

∣∣νj0(djE)∣∣ is big. The set F
will be the union of certain sets E ∈ E consisting only of those ultimately picked
jE ’s.

Let us start the construction of F . Since L(l − 1) = K(l − 1)K(l−1)·2·3l−1

, by

Lemma 5.3, there are K(l − 1)K(l−1)·2·3l−1−1 pairwise disjoint subsets

E1
1 , . . . , E

1
K(l−1)K(l−1)·2·3l−1−1 ∈ E .

From each E1
r choose arbitrarily one j1r . By Lemma 5.3, there areK(l−1)K(l−1)·2·3l−1−2

pairwise disjoint subsets

E2
1 , . . . , E

2
K(l−1)K(l−1)·2·3l−1−2 ∈ E

made of j1r ’s. From each E2
r pick one j2r . Again, by Lemma 5.3, there are K(l −

1)K(l−1)·2·3l−1−3 pairwise disjoint subsets

E3
1 , . . . , E

3
K(l−1)K(l−1)·2·3l−1−3 ∈ E

made of j2r ’s. Continue in this manner until the K(l−1) ·2 ·3l−1-th step, when you
obtain only one subset

E
K(l−1)·2·3l−1

1 ∈ E .

Take any j0 ∈ EK(l−1)·2·3l−1

1 — this is the sought index.
For every 1 ≤ r ≤ K(l − 1) · 2 · 3l−1, there is unique s for which j0 ∈ Ers .

Appealing to the observation (3), from each such Ers take jr 6= j0 for which

(∗ ∗ ∗)
∣∣νj0(djr)∣∣ > (23

k
)k+1−l

· 2k+2−l · ρl/3l−1.

Let D =
{
j1, . . . , jK(l−1)·2·3l−1

}
. Since |D| = K(l − 1) · 2 · 3l−1, by Lemma 2.1,

there is a subset D′ of D of cardinality K(l− 1) · 3l−1 and a number ς ∈ {−1,+1}
such that the equality

sgn
(
νj0
(
djr
))

= ς
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is satisfied for every jr ∈ D′. Now use Lemma 5.3 inductively to obtain (one after
another) 3l−1 pairwise disjoint subsets E1, . . . , E3l−1 of D′ such that∣∣µi(e∨ s∨

r=1

∨
j∈Er

dj

)∣∣ > 23
l−1−s·

(
23
k
)k+1−l

·2k+1−l·ρi ≥
(

23
k
)k+1−l

·2k+1−l·ρi

for every s = 1, . . . , 3l−1 and every i = 1, . . . , l − 1. Besides, by (∗) and (∗ ∗ ∗) we
have: ∣∣νj0(e ∨ 3l−1∨

r=1

∨
j∈Er

dj

)∣∣ =
∣∣νj0(e) + νj0

( 3l−1∨
r=1

∨
j∈Er

dj

)∣∣ ≥
∣∣νj0( 3l−1∨

r=1

∨
j∈Er

dj

)∣∣− ∣∣νj0(e)
∣∣ =

3l−1∑
r=1

∑
j∈Er

∣∣νj0(dj)∣∣− ∣∣νj0(e)
∣∣ >

3l−1·
((

23
k
)k+1−l

· 2k+2−l · ρl/3l−1
)
−
(

23
k
)k+1−l

·2k+1−l·ρl ≥
(

23
k
)k+1−l

·2k+1−l·ρl,

where the second equality follows from the fact that all νj0(dj)’s have the same sign
ς. Put

F =

3l−1∨
r=1

∨
j∈Er

dj .

�

An important remark. Note that in the proofs of Lemmas 5.2–5.4 we did not
use the full information about measures µ, µi or νj — what we in fact only used
were the logic values of inequalites of type |µ(d)| > ρ, where µ was a measure
on a Boolean algebra A, d an element of A and ρ a positive real number. This
observation will be of important meaning in the next proof where we will appeal
to Lemma 5.4 using only those logic values — the information about them will be
carried by the functions Znj,m.

Proof of Lemma 5.1. The idea of the proof is as follows. In the first step, for
every anti-Nikodym sequence of real-valued measures

〈
µn : n ∈ ω

〉
on Fr(ω) we

construct an infinite antichain
〈
bk ∈ Fr(ω) : k ∈ ω

〉
and an increasing sequence〈

n(k) ∈ ω : k ∈ ω
〉

such that the value
∣∣µn(k)(bk)

∣∣ is “large” for every k ∈ ω. We

divide the antichain
〈
bk : k ∈ ω

〉
into infinitely many finite consecutive sequences

such that for every n ∈ ω the n-th collection is of the form
〈
bn1 , . . . , b

n
N(n)

〉
(so〈

b0
〉

=
〈
b01
〉
,
〈
b1, . . . , bN(0)+N(1)

〉
=
〈
b11, . . . , b

1
N(1)

〉
etc.). For every n ∈ ω, let〈

µn1 , . . . , µ
n
N(n)

〉
be the collection of the measures from the sequence

〈
µn(k) : k ∈ ω

〉
corresponding to the sequence

〈
bn1 , . . . , b

n
N(n)

〉
, i.e. the value

∣∣µni (bni )∣∣ is “large” for

every i = 1, . . . , N(n). The Stone space KFr(ω) may be identified with the Cantor
set 2ω, while Fr(ω) itself can be seen as the algebra of clopen subsets of KFr(ω)

— this allows us to think about clopen sets of KFr(ω) as being described with
finite zero-one sequences. Thus, by an appropriate “translating” procedure we can
describe a pair consisting of the sequence of collections

〈〈
bn1 , . . . , b

n
N(n)

〉
: n ∈ ω

〉
and the sequences of values

〈∣∣µn(k)(bl)∣∣ : k, l ∈ ω
〉

as an element of 2ω or more
generally ωω.

In the second step, using the Bartoszyński-Judah theorem (Proposition 2.10),
we cover ωω with cof(N ) many products of the form T =

∏
n∈ω Tn where each

Tn ∈ [ω]n+1. Take one such product T . Let us say for a moment that T covers
an anti-Nikodym sequence

〈
µn : n ∈ ω

〉
if it covers the result of the “translating”



18 D. SOBOTA

procedure described in the previous paragraph applied to
〈
µn : n ∈ ω

〉
. The

procedure is conducted in such a way that if a sequence
〈
µn : n ∈ ω

〉
is covered by T ,

then for every n ∈ ω the set Tn contains an element of ω corresponding to the pair ϕn
consisting of the n-th collection

〈
bn1 , . . . , b

n
N(n)

〉
and “the information”

〈
zni,j : i, j =

1, . . . , N(n)
〉

stating for every i, j whether
∣∣µni (bnj )∣∣ is “large”. Since

∣∣Tn∣∣ = n+ 1,

every sequence
〈
µn : n ∈ ω

〉
covered by T must have its n-th pair ϕn being exactly

one of at most n+ 1 many different n-th pairs whose corresponding elements of ω
are contained in Tn — in other words, there are only n + 1 possible values of the
n-th pair for all sequences of measures covered by T. Based on those at most n+ 1
different n-th pairs, using only their collections

〈
bn1 , . . . , b

n
N(n)

〉
of elements of the

algebra Fr(ω) and the information written in corresponding collections
〈
zni,j : i, j =

1, . . . , N(n)
〉
, with an aid of Lemma 5.4 we construct the n-th element an of an

antichain
〈
an : n ∈ ω

〉
— this antichain is the sought antichain for all anti-Nikodym

sequences of measures covered by T .
(Note that the above description is only an intuitive image of the “translating”

procedure and the construction. Similarly, the notation used above is a simplified
version of the one used in the proof.)

Let us conduct the proof. Let D ⊆ ωω be a dominating family of cardinality
d described in Corollary 2.5. As mentioned above, we see the Stone space KFr(ω)

of Fr(ω) as the Cantor space 2ω and Fr(ω) as the algebra of clopen subsets of 2ω

(which are described with finite zero-one sequences).

1. Step. Let µ =
〈
µn : n ∈ ω

〉
be an anti-Nikodym sequence of real-valued

measures on Fr(ω). By Lemma 4.4, there exists a Nikodym concentration point
t ∈ 2ω of µ.

By Lemma 4.7, there exists b01 ∈ Fr(ω) and a number m(0, 1) ∈ ω such that∣∣µm(0,1)

(
b01
)∣∣ > 1 and t /∈

[
b01
]
. Find g(0) ∈ ω such that g(0) > 0 and [t � g(0)] ∩[

b01
]

= ∅.
Now, inductively use Lemma 4.7 to obtain the following:

• an increasing sequence of natural numbers g =
〈
g(n) : n ∈ ω

〉
and sets Gn

of all zero-one sequences of length g(n), i.e. Gn = {0, 1}g(n),
• for each n > 0 a sequence of length N(n) of natural numbers

m(n, 1) < . . . < m(n,N(n)) ∈ ω

such that m(n− 1, N(n− 1)) < m(n, 1),
• for each n > 0 a sequence of length N(n) of pairwise disjoint elements
bn1 , . . . , b

n
N(n) ∈ Fr(ω) such that

(∗) [bn1 ] , . . . ,
[
bnN(n)

]
⊆ [t � g(n− 1)] and [t � g(n)]∩

[
bn1 ∨ . . . ∨ bnN(n)

]
= ∅

and for every j = 1, . . . , N(n) the following two conditions hold:
– for every σ ∈ Gn either [σ] ⊆

[
bnj
]

or [σ] ∩
[
bnj
]

= ∅,
– the following inequality is satisfied:

(∗∗)
∣∣µm(n,j)

(
bnj
)∣∣ > (N(n) + 1

)n ·M(n) · ρn,

where

ρn =
∑

F⊆Gn−1

sup
m

∣∣∣∣∣µm
(∨
σ∈F

[σ]

)∣∣∣∣∣+ n+ 1.

(The suprema are finite by the elementwise boundedness of µ.)
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Due to the properties of the family D stated in Corollary 2.5, we may assume
that g is an element of D.

Note that for every element bnj there is a subset Fnj ⊆ Gn such that bnj =
∨σ∈Fnj [σ]. Also, for every m = 1, . . . ,M(n) and every j = 1, . . . , N(n) define a

sequence Znj,m ∈ {0, 1}℘(Gn) in the following way:

Znj,m(F ) =

{
1 if

∣∣µm(n,j)

(∨
σ∈F [σ]

) ∣∣ > m · ρn,
0 if

∣∣µm(n,j)

(∨
σ∈F [σ]

) ∣∣ ≤ m · ρn
for every F ⊆ Gn. The information carried by functions Znj,m’s is all the necessary
data we need to construct the antichain in the next step (e.g. this data will be suffi-
cient for invoking Lemma 5.4) — we will not need the full information about exact
values of measures µm(n,j)’s on elements

∨
σ∈F [σ] for F ⊆ Gn, cf. the important

remark just before the proof.
Now, for each n ∈ ω put

ϕn(µ) =

〈〈〈
m(n, j); Fnj ;

〈
Znj,1, . . . , Z

n
j,M(n)

〉〉
: j = 1, . . . , N(n)

〉
; t � g(n)

〉
,

so the first coordinate of ϕn(µ) contains the sequence of length N(n) whose elements
comprise the following information:

• an index m(n, j) of a measure µm(n,j) from the sequence µ which is “large”
on the element bnj = ∨σ∈Fnj [σ] of Fr(ω),

• “estimations” of values of µm(n,j) on clopens given by sequences from Gn.

Then, the sequence ϕ(µ) =
〈
ϕn(µ) : n ∈ ω

〉
is an element of the following product:

Pg =
∏
n∈ω

((
ω × ℘(Gn)×

(
{0, 1}℘(Gn)

)M(n)
)N(n)

× Gn

)
.

This way, for every anti-Nikodym sequence µ on Fr(ω) we can find a correspond-
ing element of Pg for some g ∈ D. Note that since the choice of the element b and
the natural number n in Lemma 4.7 is in general not unique, for any µ we may
find many corresponding elements in different Pg’s as well as many anti-Nikodym
sequences may have the same corresponding element of one Pg.

2. Step. Fix g ∈ D. Due to the Bartoszyński–Judah characterization of cof(N )
(Proposition 2.10) there exists a covering of Pg with κ many sets T of the form∏
n∈ω Tn, where for each n ∈ ω

Tn ⊆
(
ω × ℘(Gn)×

(
{0, 1}℘(Gn)

)M(n)
)N(n)

× Gn

and
∣∣Tn∣∣ = n+ 1.

Let T be as above and denote by T ∗ the set of all anti-Nikodym sequences
µ of real-valued measures on Fr(ω) for which ϕ(µ) ∈ T . Since d ≤ cof(N ), it
is enough to construct an antichain

〈
an ∈ Fr(ω) : n ∈ ω

〉
such that for every

µ =
〈
µn : n ∈ ω

〉
∈ T ∗ there exists an increasing sequence

〈
n(k) : k ∈ ω

〉
of

natural numbers for which the following inequality holds:

∣∣µn(k)(ak)∣∣ > k−1∑
i=0

∣∣µn(k)(ai)∣∣+ k + 1;

this will finish the proof the lemma.
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Fix thus k ∈ ω and take any such anti-Nikodym sequences µ1, . . . , µk+1 ∈ T ∗ that
if for an anti-Nikodym sequence µ ∈ T ∗ we have ϕk(µ) ∈ Tk, then there is i ≤ k+1
such that ϕk(µ) = ϕk

(
µi
)
. Let t1, . . . , tk+1 ∈ 2ω be Nikodym concentration points

of respective µ1 =
〈
µ1
n : n ∈ ω

〉
, . . . , µk+1 =

〈
µk+1
n : n ∈ ω

〉
such that

ϕk
(
µi
)

=

〈〈〈
mi(k, j); F

i,k
j ;

〈
Zi,kj,1 , . . . , Z

i,k
j,M(k)

〉〉
: j = 1, . . . , N(k)

〉
; ti � g(k)

〉
∈ Tk

for each i = 1, . . . , k + 1. Put

bi,kj =
∨

σ∈F i,kj

[σ]

for every i = 1, . . . , k + 1 and j = 1, . . . , N(k).

Before we proceed with the construction of the k-th element of the antichain, we
need to do some preparation to obtain “basic bricks” from which we will construct
the k-th element of the antichain. Those “bricks” will be obtained from elements
bi,kj (as their mutual intersections). First, put

qk =

k+1∨
i=1

N(k)∨
j=0

bi,kj .

Next, for every i = 1, . . . , k + 1 put

Qik =
{
bi,kj : 1 ≤ j ≤ N(k)

}
if qk \

N(k)∨
j=1

bi,kj = 0,

or

Qik =
{
bi,kj : 1 ≤ j ≤ N(k)

}
∪

qk \
N(k)∨
j=1

bi,kj

 ,

otherwise. The collections Qik are partitions of qk, i.e. their elements are pairwise
disjoint and qk =

∨
Qik for every i = 1, . . . , k + 1. Let then Rk be the coarsest

partition of qk finer than every Qik, i.e.

Rk =

{
k+1∧
i=1

bi : b1 ∈ Q1
k, . . . , bk+1 ∈ Qk+1

k

}
\ {0}.

Note that for every i = 1, . . . , k+1 and j = 1, . . . , N(k) there are at most
(
N(k)+1

)k
elements below bi,kj inRk. Hence, by Lemma 4.8, for every bi,kj there exists ci,kj ∈ Rk
such that ci,kj ≤ b

i,k
j and (we divided (∗∗) by N(k)k)∣∣µimi(k,j) (ci,kj ) ∣∣ > M(k) · ρi,k,

where:

ρi,k =
∑

F⊆Gk−1

sup
m

∣∣µim
(∨
σ∈F

[σ]

)∣∣+ k + 1.

For every i = 1, . . . , k + 1 put then

Rik =

{
ci,kj : 1 ≤ j ≤ N(k) &

(
[tm � g(k)] ∩

[
ci,kj

]
= ∅ for every 1 ≤ m ≤ k + 1

)}
;

note that
∣∣Rik∣∣ ≥ L(0) + L(1) + . . . + L(k) (this is why we have needed the sum-

mand k + 1 in the definition of N(k)!). Finally, let S1k , . . . ,S
k+1
k be such mutually
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disjoint families that Sik ⊆ Rik and
∣∣Sik∣∣ = L(i− 1) for every i = 1, . . . , k+ 1. Write

Sik =
{
di,k1 , . . . , di,kL(i−1)

}
. The elements di,kj are “basic bricks” which we will use to

construct the k-th element of the antichain.

We shall proceed by induction on l = 1, . . . , k + 1 to construct an increas-
ing sequence ek1 ≤ ek2 ≤ . . . ≤ ekk+1 in Fr(ω) and to find indices j1, . . . , jk+1 ∈{

1, . . . , N(k)
}

such that for every l = 2, . . . , k + 1:

• there is a (possibly empty) set Fl ⊆
{

1, . . . , L(l − 1)
}

such that

ekl \ ekl−1 =
∨
j∈Fl

dl,kj ≤
∨
Skl ,

•
∣∣µimi(k,ji)(ekl )∣∣ > (23

k
)k+1−l

· 2k+1−l · ρi,k for every i = 1, . . . , l.

(Hint: ekk+1 will be the element ak of the sought antichain.)

Let j1 be such index that c1,kj1 = d1,k1 and put ek1 = d1,k1 . Fix l ∈ {2, . . . , k+1} and

assume that we have found required element ekl−1 and indices ji ∈
{

1, . . . , N(k)
}

for i = 1, . . . , l − 1. Now, appeal to Lemma 5.4 with:

• e = ekl−1,

• µi = µimi(k,ji) and ρi = ρi,k for i = 1, . . . , l − 1,

• νj = µlml(k,j) and dj = dl,kj for j = 1, . . . , L(l − 1),

to obtain a set Fl ⊆
{

1, . . . , L(l − 1)
}

and an index j0 ∈
{

1, . . . , L(l − 1)
}

. Define

jl as an index for which cl,kjl = dl,kj0 and put:

ekl = ekl−1 ∨
∨
j∈Fl

dl,kj .

Note again that in the proofs of Lemmas 5.2–5.4 when considering values of mea-

sures µi = µimi(k,ji) we only appeal to information carried by the functions Zi,kj,m’s.

Correctness of the construction. Assume now that for every k ∈ ω the
element ekk+1 has been constructed as described above and put ak = ekk+1. We first

show that
〈
ak : k ∈ ω

〉
is an antichain. Let thus k < l ∈ ω. Let µ1, . . . , µk+1 ∈ T ∗

and ν1, . . . , νl+1 ∈ T ∗ be such that for every µ ∈ T ∗ there are i ≤ k+1 and j ≤ l+1
such that ϕk(µ) = ϕk(µi) and ϕl(µ) = ϕl(ν

j). Let t1, . . . , tl+1 ∈ 2ω be Nikodym
concentration points of ν1, . . . , νl+1, respectively, such that tj � g(l) is the second
coordinate of the pair ϕl(ν

j) for every j ≤ l + 1. Note that since k < l, for every
i ≤ k + 1 there is j ≤ l + 1 such that tj � g(k) is the second coordinate of the pair

ϕk(µi). Now notice that ak is a sum of elements from the families R1
k, . . . ,R

k+1
k —

by their definitions those elements are disjoint with
⋃l+1
j=1 [tj � g(k)]. On the other

hand, the element al is built up from elements from the families R1
l , . . . ,R

l+1
l l —

by (∗) in the definition of the procedure ϕ from Step 1 those elements are in turn

subsets of
⋃l+1
j=1 [tj � g(k)]. This implies that ak ∧ al = 0.

Let
〈
µn : n ∈ ω

〉
∈ T ∗ and fix k ∈ ω. According to the construction of ekk+1 = ak

there is a number i0 ≤ N(n) such that

∣∣µm(k,i0)

(
ak
)∣∣ > k−1∑

i=0

∣∣µm(k,i0)

(
ai
)∣∣+ k + 1.

Put n(k) = m(k, i0). Since m(n−1, N(n−1)) < m(n, 1) for every n ∈ ω,
〈
n(k) : k ∈

ω
〉

is increasing. This finishes the proof of the lemma. �
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6. Two other Nikodym cardinal invariants

6.1. The anti-Nikodym numbers. Lemma 5.1 states that there are cof(N )
many antichains

〈
aγn ∈ Fr(ω) : n ∈ ω

〉
such that for a given anti-Nikodym se-

quence
〈
µn : n ∈ ω

〉
on Fr(ω) there exist γ < cof(N ) and an increasing sequence〈

n(k) : k ∈ ω
〉

such that for every k ∈ ω the following inequality is satisfied:

∣∣µn(k)(aγk)∣∣ > k−1∑
i=0

∣∣µn(k)(aγi )∣∣+ k + 1.

We now shortly argue that the number cof(N ) actually works for any countable
Boolean algebra — let us thus introduce the following definitions.

Definition 6.1. Let κ be a cardinal number. We say that a Boolean algebra A has
the κ-anti-Nikodym property if there exists a family

{〈
aγn ∈ A : n ∈ ω

〉
: γ < κ

}
of κ many antichains in A with the following property:

for every anti-Nikodym sequence of real-valued measures
〈
µn : n ∈

ω
〉

on A there exist γ < κ and an increasing sequence
〈
nk : k ∈

ω
〉

of natural numbers such that for every k ∈ ω the following
inequality is satisfied:∣∣µnk (aγk)

∣∣ > k−1∑
i=0

∣∣µnk (aγi )
∣∣+ k + 1.

Definition 6.2. The anti-Nikodym number na(A) for an algebra A is defined as
follows:

na(A) = min
{
κ : A has the κ-anti-Nikodym property

}
.

Thus, by Lemma 5.1, we immediately have that na(Fr(ω)) ≤ cof(N ). The next
proposition shows that if an algebra B is a quotient of an algebra A, then the
anti-Nikodym number of B is not greater than that of A.

Proposition 6.3. Let A,B be Boolean algebras and h : A → B an epimorphism.
Then, na(A) ≥ na(B).

Proof. First, note that if
〈
µn : n ∈ ω

〉
is an anti-Nikodym sequence of measures on

B, then
〈
µn ◦ h : n ∈ ω

〉
is anti-Nikodym on A (since

〈
µn ◦ h : n ∈ ω

〉
is trivially

elementwise bounded and ‖µ ◦ h‖ ≥ ‖µ‖ for any measure µ on B by surjectivity of
h).

Now, if A =
{〈
aγn ∈ A : n ∈ ω

〉
: γ < na(A)

}
is a family witnessing that A has

the na(A)-anti-Nikodym property, then B =
{〈
h
(
aγn
)
∈ B : n ∈ ω

〉
: γ < na(A)

}
is a family witnessing that B has the na(A)-anti-Nikodym property. �

Since the algebra FC is a quotient of every countable Boolean algebra A (since
the Stone space KA contains a non-trivial convergent sequence), it follows that
na(FC) ≤ na(A) for every countable A. Similarly, every countable Boolean algebra
A is a quotient of the free countable algebra Fr(ω), hence na(Fr(ω)) ≥ na(A).

Corollary 6.4. For every countable Boolean algebra A, the following inequalities
hold:

na(FC) ≤ na(A) ≤ na(Fr(ω)).

�

Since every countable Boolean algebra is a subalgebra of Fr(ω) and hence of
℘(ω), we immediately obtain the following result.
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Corollary 6.5.

na(FC) = min
{
na(A) : A ⊆ ℘(ω) is countable

}
.

na(Fr(ω)) = sup
{
na(A) : A ⊆ ℘(ω) is countable

}
.

�

For abbreviation, let us denote na for na(Fr(ω)). The number na is called the
anti-Nikodym number.

The next proposition gives a lower bound for na(FC) and thus for na.

Proposition 6.6. b ≤ na(FC).

Proof. We see the Stone space of the algebra FC as the space ω ∪ {∞} (i.e. the
one-point compactification of ω with ∞ being the only non-isolated point). Let{〈
aγn ∈ FC : n ∈ ω

〉
: γ < κ

}
be a family of antichains for some κ < b. Since〈

aγn ∈ FC : n ∈ ω
〉

is an infinite antichain for every γ < κ, there is no n ∈ ω such
that ∞ ∈ [aγn] and hence for every n ∈ ω the set [aγn] is finite. For every γ < κ and
n ∈ ω put

Mγ
n = max

{
m : m ∈ [aγn]

}
.

Since κ < b, there is an increasing sequence
〈
Mn ∈ ω : n ∈ ω

〉
dominating

strictly every
〈
Mγ
n : n ∈ ω

〉
. For every n ∈ ω define the measure µn as follows:

µn = n (δMn
− δ∞) .

The sequence
〈
µn : n ∈ ω

〉
is anti-Nikodym. Fix an increasing sequence

〈
nk ∈

ω : k ∈ ω
〉

and let γ < κ. There is N ∈ ω such that for every k > N we have

Mγ
k < Mk and since

〈
nk : k ∈ ω

〉
is increasing we have:

µnk
(
aγk
)

= 0

for every k > N . �

Corollary 6.7.

(1) b ≤ na ≤ cof(N ).
(2) Under Martin’s axiom, na = c. �

6.2. The Nikodym extracting number. In this section we introduce a new
notion of completeness of Boolean algebras, namely the Nikodym completeness,
which fully characterizes the Nikodym property. Based on this, we present and
estimate a new cardinal invariant called the Nikodym extracting number, which
will be related in the next section to the Nikodym number n.

Definition 6.8. A Boolean algebra A is Nikodym complete if for every elementwise
bounded sequence

〈
µn : n ∈ ω

〉
of measures on A and every antichain

〈
an : n ∈ ω

〉
in A, there are a ∈ A, an increasing sequence

〈
nk ∈ ω : k ∈ ω

〉
and ρ > 0 such

that ank ≤ a and

∣∣µnk ∣∣(a \ k∨
i=0

ai

)
< ρ

for every k ∈ ω.

Theorem 6.9. A Boolean algebra A has the Nikodym property if and only if A is
Nikodym complete.
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Proof. Assume A is Nikodym complete but does not have the Nikodym property.
There exists a elementwise bounded sequence

〈
µn : n ∈ ω

〉
of measures on A which

is not uniformly bounded. By Lemma 4.7 there exist an antichain
〈
ak : k ∈ ω

〉
in A and an increasing sequence

〈
nk ∈ ω : k ∈ ω

〉
satisfying for every k ∈ ω the

following inequality:

∣∣µnk(ak)∣∣ > k−1∑
i=0

∣∣µnk(ai)∣∣+ k.

By the Nikodym completeness of A, there are a ∈ A, an increasing sequence〈
nkl : l ∈ ω

〉
∈ ω and ρ > 0 such that akl ≤ a and

∣∣µnkl ∣∣(a \ l∨
i=0

aki

)
< ρ

for every l ∈ ω. We now have:

∣∣µnkl (a)
∣∣ =

∣∣∑
i<l

µnkl
(
aki
)

+ µnkl
(
akl
)

+ µnkl

(
a \

l∨
i=0

aki

)∣∣ ≥
∣∣µnkl (akl)∣∣−∑

i<l

∣∣µnkl (aki)∣∣− ∣∣µnkl ∣∣(a \ l∨
i=0

aki

)∣∣ > kl − ρ,

hence

sup
n∈ω

∣∣µn(a)
∣∣ ≥ sup

l∈ω

∣∣µnkl (a)
∣∣ ≥ sup

l∈ω

(
kl − ρ

)
=∞,

contradicting the elementwise boundedness of
〈
µn : n ∈ ω

〉
. Thus, A has the

Nikodym property.

Assume now that A has the Nikodym property but is not Nikodym complete.
There exist a pointwise bounded sequence

〈
µn : n ∈ ω

〉
of measures on A (hence

uniformly bounded!) and an antichain
〈
an : n ∈ ω

〉
in A such that for every a ∈ A,

increasing
〈
nk ∈ ω : k ∈ ω

〉
and ρ > 0 there is k ∈ ω for which either ank 6≤ a, or∣∣µnk ∣∣(a \∨ki=0 ani

)
≥ ρ (or both). Put a = 1 and nk = k for every k ∈ ω. Then,

for every ρN = N ∈ ω there exists kN ∈ ω such that:

ρN ≤
∣∣µnkN ∣∣(a \ kN∨

i=0

ani

)
≤
∥∥µnkN ∥∥,

so supn∈ω
∥∥µn∥∥ = ∞, a contradiction with the Nikodym property. Thus, A must

be Nikodym complete. �

We now introduce a property of subfamilies of [ω]
ω

strongly related to the
Nikodym completeness.

Definition 6.10. Given F ⊆ [ω]
ω

, we say that an antichain
〈
an : n ∈ ω

〉
in a

Boolean algebra A is F-complete in A if
∨
n∈A an ∈ A for every A ∈ F .

Note that A is σ-complete if and only if every antichain in A is [ω]
ω

-complete.

Definition 6.11. A family F ⊆ [ω]
ω

is Nikodym extracting if for every algebra A
the following condition holds:
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for every sequence
〈
µn : n ∈ ω

〉
of positive measures on A and

every F-complete antichain
〈
an ∈ A : n ∈ ω

〉
in A, there is A ∈ F

such that the following inequality is satisfied:

µn

( ∨
k∈A
k>n

ak

)
< 1

for every n ∈ A.

The following proposition is a part of Darst’s proof that σ-complete Boolean
algebras have the Nikodym property.

Proposition 6.12 (Darst [11, page 474]). [ω]
ω

is Nikodym extracting.

Proof. Let
〈
µn : n ∈ ω

〉
be a sequence of positive measures on a Boolean algebra

A and
〈
an : n ∈ ω

〉
an [ω]

ω
-complete antichain in A.

Let ω =
⋃
k∈ω N

1
k be a partition of ω into infinite sets. Put n1 = 1. By

boundedness of µn1
we have:∑

k∈ω

µn1

( ∨
n∈N1

k

an

)
≤ µn1

( ∨
n∈ω

an

)
≤ µn1(1) <∞,

so there is l1 ∈ ω such that n1 < minN1
l1

and

µn1

( ∨
n∈N1

l1

an

)
< 1.

Now, let N1
l1

=
⋃
k∈ω N

2
k be a partition of N1

l1
into infinite sets. Put n2 = minN1

l1

and repeat the same procedure as for n1 to obtain l2 ∈ ω such that n2 < minN2
l2

and

µn2

( ∨
n∈N2

l2

an

)
< 1.

Repeat the above procedure to obtain infinite sequences ω = N0
l0
⊃ N1

l1
⊃ N2

l2
⊃ . . .

and 1 = n1 < n2 < n3 < . . ., where nk ∈ Nk−1
lk−1
\Nk

lk
, such that:

µnk

( ∨
n∈Nklk

an

)
< 1

for every k ∈ ω. Put A =
{
nk : k ∈ ω

}
. We have:

µnk

( ∨
m∈ω
m>k

anm

)
≤ µnk

( ∨
n∈Nklk

an

)
< 1,

for every k ∈ ω. �

Definition 6.13. The Nikodym extracting number ne is defined as follows:

ne = min
{
|F| : F ⊆ [ω]

ω
is Nikodym extracting

}
.

Proposition 6.12 yields that ne ≤ c. However, this result can be strenghtened.

Proposition 6.14. ne ≤ d.

Proof. Let D =
〈
gη : η < d

〉
be a dominating family in ωω consisting of increasing

functions and G =
〈
Aξ : ξ < ω1

〉
be a family of infinite almost disjoint subsets of

ω. For every ξ < κ enumerate Aξ as
〈
m(ξ, n) : n ∈ ω

〉
and for every η < d let

Aξη =
〈
m(ξ, nηk) : k ∈ ω

〉
be a subsequence of Aξ such that for every k ∈ ω

m
(
ξ, nηk+1

)
> gη

(
m
(
ξ, nηk

))
.
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Put:

F =
{
Aξ : ξ < ω1

}
∪
{
Aξη : ξ < ω1, η < d

}
.

Then |F| = d. We will show that F is Nikodym extracting.
Let

〈
µn : n ∈ ω

〉
be a sequence of positive measures on a Boolean algebra A

and
〈
an : n ∈ ω

〉
an F-complete antichain in A. As G is uncountable, by Lemma

2.6, there exists ξ < ω1 such that for every k ∈ ω

µk

( ∨
n∈Aξ

an

)
=
∑
n∈Aξ

µk
(
an
)
.

It follows that there exists f ∈ ωω such that for every k ∈ ω∑
n>f(k)
n∈Aξ

µk
(
an
)
< 1.

Let η < d be such that f(n) < gη(n) for every n ∈ ω. By F-completeness of〈
an : n ∈ ω

〉
, we have for every k ∈ ω

µk

( ∨
n∈Aξη

an

)
=
∑
n∈Aξη

µk
(
an
)
.

For every k ∈ ω put l(k) = m
(
ξ, nηk

)
, i.e. Aξη =

〈
l(k) : k ∈ ω

〉
. Fix k ∈ ω. Since

l(k + 1) > gη(l(k)) > f(l(k)), we have

µl(k)

( ∨
n>l(k)
n∈Aξη

an

)
=
∑
n>l(k)
n∈Aξη

µl(k)
(
an
)

=
∑

n>gη(l(k))
n∈Aξη

µl(k)
(
an
)
< 1.

�

Proposition 6.15. Let κ be a cardinal number. Assuming MAκ(countable), ne >
κ.

Proof. The proof has two steps.

The first step. Let us say for a moment that a family F ⊆ [ω]
ω

has the property
(*) if there is no antichain

〈
an : n ∈ ω

〉
⊆ [ω]2 (antichain of pairs) such that for

every A ∈ F there is n ∈ ω such that an ⊆ A. Define the following auxiliary
cardinal invariant:

λ = min
{
|F| : non-empty F ⊆ [ω]

ω
has the property (*)

}
.

It is easy to see that λ ≤ c. We prove that assuming MAκ(countable) the inequality
λ > κ holds.

Define a poset P as follows:

P =
{

(a1, . . . , an) : n ∈ ω, a1, . . . , an ∈ [ω]2 mutually disjoint
}
,

where
(
a1, . . . , an

)
≤
(
b1, . . . , bm

)
if n ≥ m and ai = bi for every i ≤ m. Then, P is

countable.
Let F ⊆ [ω]

ω
be an arbitrary family such that |F| ≤ κ. We shall show that F

does not have the property (*) which will imply that κ < λ. For every A ∈ F and
every n ∈ ω put:

DA =
{(
a1, . . . , am

)
∈ P : am ⊆ A

}
,

En =
{(
a1, . . . , ak

)
∈ P : k ≥ n}.

DA’s and En’s are dense in P. By MAκ(countable), there exists a P-generic ultra-
filter G intersecting every DA and every En. Put g =

⋃
G. By properties of G, the

sequence g witnesses that F does not have the property (*).
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The second step. Let F ⊆ [ω]
ω

be such that |F| < λ. We now prove that F is not
Nikodym extracting by constructing a sequence of positive measures

〈
µk : k ∈ ω

〉
on ℘(ω) and an antichain

〈
bn : n ∈ ω

〉
in ℘(ω) such that for every A ∈ F and some

k ∈ A the inequality

µk

( ∨
m∈A
m>k

bm

)
< 1

is not satisfied.
Since |F| < λ, there exists an antichain of pairs

〈
an : n ∈ ω

〉
such that for every

A ∈ F there exists n ∈ ω for which an ⊆ A. Write an =
{
kn, ln

}
, where kn < ln.

For every k ∈ ω define µk ∈ ba(℘(ω)) as follows:

µk =

{
δln , if k = kn,

0, otherwise,

and put bn = {n}. The antichain
〈
bn : n ∈ ω

〉
is [ω]

ω
-complete in ℘(ω).

Take any A ∈ F . Then an = {kn, ln
}
⊆ A for some n. We have:

µkn

( ⋃
m∈A
m>kn

bm

)
= δln

(
bln
)

= δln
({
ln
})

= 1.

This proves that F is not a Nikodym extracting family. Thus, under MAκ(countable),
ne ≥ λ > κ. �

By Proposition 2.9, we immediately obtain the following corollary.

Corollary 6.16.

(1) cov(M) ≤ ne ≤ d.
(2) Under Martin’s axiom, ne = c. �

7. The main construction

In this section for every κ such that cof
(

[κ]
ω )

= κ ≥ max(na, ne) we present a
construction of a Boolean algebra with the Nikodym property and of cardinality κ.

Lemma 7.1. Let κ > 0 be a cardinal such that cof
(

[κ]
ω )

= κ. Then, cf(κ) > ω.

Proof. (Let α be a cardinal and X a set. If f : α→ X is a function and ξ < α (i.e.
ξ ∈ α), then f(ξ) denotes as usual the value of f at ξ, and f [ξ] stands for the image
of the set ξ =

{
η : η < ξ

}
through f , i.e. f [ξ] =

{
f(η) : η < ξ

}
.)

Assume cf(κ) = ω. Let f : κ→ [κ]
ω

be a function. We shall show that the range
ran f is not cofinal in [κ]

ω
.

Let
〈
αn : n ∈ ω

〉
be a strictly increasing sequence of infinite cardinals less than

κ such that limn→∞ αn = κ. Since for every n ∈ ω we have:∣∣∣⋃ f
[
αn
]∣∣∣ ≤ αn · ω = αn < αn+1,

we can pick

ξn ∈ αn+1 \
⋃
f
[
αn
]
.

Put:

A =
{
ξn : n ∈ ω

}
.

Then, A ∈ [κ]
ω

, but there is no ξ < κ such that A ⊆ f(ξ). Indeed, assume there is
such ξ. Let n ∈ ω be such that ξ ∈ αn. Then, f(ξ) ∈ f

[
αn
]
, so

ξn ∈ A ⊆ f(ξ) ⊆
⋃
f
[
αn
]
,
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but ξn 6∈
⋃
f
[
αn
]

— a contradiction. �

Theorem 7.2. Assume that max(na, ne) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ. Then, there exists a Boolean algebra B with the Nikodym property
and of cardinality κ.

Proof. The constructed algebra will be a subalgebra of ℘(κ) (if κ < c, then we can
conduct the construction in ℘(ω)). Let G ⊆ [ω]

ω
be a Nikodym extracting family

such that |G| = ne. Enumerate G =
〈
Aξ : ξ < ne

〉
.

We shall now construct by induction an increasing sequence
〈
Bζ : ζ ≤ ω1

〉
of

subalgebras of ℘(κ) such that |Bζ | = κ for each ζ ≤ κ and B = Bω1
has the Nikodym

property. Thus, let B0 be any subalgebra of ℘(κ) of cardinality κ and for a limit
ordinal λ ≤ ω1 put Bλ = ∪ζ<λBζ . Let ζ < ω1 and assume Bζ is constructed. We
extend Bζ to Bζ+1 as follows.

Since cof
(

[κ]
ω )

= κ, there exists a cofinal family Fζ ⊆ [Bζ ]ω of cardinality κ. We
may assume that elements of Fζ are Boolean algebras, hence any element A of Fζ
has the na-anti-Nikodym property. So let A ∈ Fζ and let

{〈
aγn : n ∈ ω

〉
: γ < na

}
be a family of antichains in A witnessing this property. For every γ < na and ξ < ne
define:

bγξ =
∨
n∈Aξ

aγn.

and put:

Φ(A) =
{
bγξ : γ < na, ξ < ne

}
.

We define the algebra Bζ+1 as an algebra generated by the set

Bζ ∪
⋃
A∈Fζ

Φ(A).

It is immediate that
∣∣Bζ+1

∣∣ = κ.
We shall first prove that there are no anti-Nikodym sequences of real-valued

measures on B. So, for the sake of contradiction, assume there is an anti-Nikodym
sequence µ =

〈
µn : n ∈ ω

〉
of real-valued measures on B. By inductive use of

Lemma 4.7, there exist an antichain
〈
ak : k ∈ ω

〉
in B and a sequence

〈
m(k) : k ∈

ω
〉

of natural numbers such that
∣∣µm(k)

(
ak
)∣∣ > k for every k ∈ ω. By Lemma 7.1,

there exists ζ < ω1 such that
〈
ak : k ∈ ω

〉
⊆ Bζ and hence there exists A ∈ Fζ for

which
〈
ak : k ∈ ω

〉
⊆ A. Let

{〈
aγn ∈ A : n ∈ ω

〉
: γ < na

}
be a family of antichains

witnessing that A has the na-anti-Nikodym property. As µ � A is anti-Nikodym on
A, there exist γ < na and an increasing sequence

〈
n(k) : k ∈ ω

〉
of natural numbers

such that for every k ∈ ω∣∣µn(k)(aγk)∣∣ > k−1∑
i=0

∣∣µn(k)(aγi )∣∣+ k + 1.

Since
〈
aγn : n ∈ ω

〉
is G-complete in B, there exists ξ < ne such that for every

k ∈ Aξ we have:∣∣µn(k)∣∣( ∨
i>k
i∈Aξ

aγi

)
< 1,

and hence for every k ∈ Aξ we obtain the following sequence of inequalities:∣∣µn(k)(bγξ )∣∣ =
∣∣ ∑
i<k
i∈Aξ

µn(k)
(
aγi
)

+ µn(k)
(
aγk
)

+ µn(k)

( ∨
i>k
i∈Aξ

aγi

)∣∣ ≥
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i<k
i∈Aξ

∣∣µn(k)(aγi )∣∣− ∣∣µn(k)( ∨
i>k
i∈Aξ

aγi

)∣∣ >
(∑
i<k

∣∣µn(k)(aγi )∣∣+ k + 1

)
−
∑
i<k
i∈Aξ

∣∣µn(k)(aγi )∣∣− ∣∣µn(k)∣∣( ∨
i>k
i∈Aξ

aγi

)
>

k + 1− 1 = k.

Thus, we have found an element b = bγξ of B such that

sup
n

∣∣µn(b)
∣∣ ≥ sup

k

∣∣µn(k)(b)| =∞,
which contradicts the fact that µ is anti-Nikodym on B.

Finally, notice that if there are no anti-Nikodym sequences of real-valued mea-
sures on B, then there are not any anti-Nikodym sequences of complex-valued
measures on B as well. To see this, assume there is an anti-Nikodym sequence〈
µn : n ∈ ω

〉
of complex-valued measures. Since it is elementwise bounded, its real

and imaginary parts,
〈

Re (µn) : n ∈ ω
〉

and
〈

Im (µn) : n ∈ ω
〉

respectively, are
also elementwise bounded. As these are sequences of real-valued measures, they
are uniformly bounded. The triangle inequality implies that

〈
µn : n ∈ ω

〉
is also

uniformly bounded.
Since B has no anti-Nikodym sequence, B has the Nikodym property. �
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Figure 1. A diagram to Theorems 7.2 and 7.3 (note that we as-
sume that cof

(
[κ]

ω )
= κ). Cichoń’s diagram is marked with dou-

ble arrows. A single continuous arrow means that the inequality
may be consistently strict while a dashed arrow means that we do
not know that.
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In terms of n, Theorem 7.2 states that if max(na, ne) ≤ κ for a cardinal number
κ such that cof

(
[κ]

ω )
= κ, then n ≤ κ. Note that since cof(N ) ≥ max(na, ne), as

a corollary we obtain the theorem announced in the introductory section.

Theorem 7.3. Assume that cof(N ) ≤ κ for a cardinal number κ such that cof
(

[κ]
ω )

=
κ. Then, there exists a Boolean algebra B with the Nikodym property and of cardi-
nality κ. �

Note that in the above construction, we did not assume that κ < c — this
assumption is only necessary to obtain an algebra of cardinality strictly less than
continuum; e.g. as cof

(
[ω1]

ω
) = ω1, we have immediately the following corollary.

Corollary 7.4. Assuming cof(N ) = ω1 < c, there exists a Boolean algebra with
the Nikodym property and of cardinality ω1 < c. �

Note that the assumption cof(N ) = ω1 < c is satisfied e.g. in the Sacks model,
see Blass [4, Section 11.5].

Corollary 7.5. The existence of an infinite Boolean algebra with the Nikodym
property and of cardinality strictly less than c is independent of ZFC + ¬CH. �

8. Consequences and open problems

In the previous section, under the assumption that cof(N ) ≤ κ for κ such that
cof
(

[κ]
ω )

= κ, we have constructed an example of a Boolean algebra with the

Nikodym property and of cardinality κ. Since the assumption that cof
(

[cof(N )]
ω )

=
cof(N ) < c is satisfied in certain models of ZFC, we obtain that a system of the
inequalities n ≤ cof(N ) < c is relatively consistent. In connection to Question 3.5
we ask the following.

Question 8.1. Is the equality n = cof(N ) true?

Mej́ıa [33, Section 6.1] proved that for any regular uncountable cardinal κ in
some model of ZFC, there is a ZFC extension of this model in which

ω1 < cov(M) = cof(N ) = κ < c.

Since cov(M) ≤ n by Proposition 3.1, this implies that it is relatively consistent
that

ω1 < cov(M) = n = cof(N ) < c.

8.1. Cofinalities of Boolean algebras. If A is an infinite Boolean algebra, then
the cofinality cof(A) of A is the least cardinal number κ such that A is a union of
strictly increasing sequence of length κ of subalgebras of A and the homomorphism
type h(A) of A is the least cardinality of an infinite homomorphic image of A.
Koppelberg [31] proved that for every infinite Boolean algebra A the following
inequalities hold:

ω ≤ cof(A) ≤ h(A) ≤ c.

Moreover, under Martin’s axiom, she proved that cof(A) = h(A) = ω whenever
ω ≤ |A| < c.

Just and Koszmider [28] showed that the assumption of Martin’s axiom in Kop-
pelberg’s result is important — they constructed a model of ZFC (being a variant
of the Sacks model) in which there is a Boolean algebra A such that

ω < |A| = h(A) = cof(A) = ω1 < c.

Ciesielski and Pawlikowski [9] improved the result of Just and Koszmider and proved
the existence of such an algebra assuming only that cof(N ) = ω1 (which again holds
e.g. in the Sacks model).
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Schachermayer [40, Proposition 4.6] proved that if an infinite Boolean algebra
A has the Nikodym property, then cof(A) > ω. Since for every infinite subset
F ⊆ A the algebra generated by F has the same cardinality as F , this yields the
following immediate consequence concerning the cofinality of n, already announced
in Remark 3.6.

Proposition 8.2. cf(n) > ω. �

Schachermayer also proved that the class of Boolean algebras with the Nikodym
property is closed under homomorphic images ([40, Proposition 2.11]). This imme-
diately implies that for every infinite Boolean algebra A with the Nikodym property
it holds that h(A) ≥ n. Moreover, since for the algebra B constructed in the proof
of Theorem 7.3 we have cof(B) ≤ ω1, we immediately obtain the following general-
ization of the above-mentioned result of Pawlikowski and Ciesielski.

Corollary 8.3. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ. Then, there exists a Boolean algebra A such that |A| = κ, h(A) ≥ n
and cof(A) = ω1. �

8.2. The Efimov problem. Recall that the problem reads as follows.

Problem 8.4 (Efimov [18]). Does every infinite compact space contain either a
non-trivial convergent sequence or a copy of βω, the Čech–Stone compactification
of ω?

Thus, an infinite compact space without any non-trivial convergent sequences
and any copy of βω is called a Efimov space.

Note that for a given Boolean algebra A, if its Stone space KA contains a non-
trivial convergent sequence, then h(A) = ω. Indeed, if

〈
xn ∈ KA : n ∈ ω

〉
is non-

trivial and converges to x ∈ KA, then {xn : n ∈ ω}∪{x} is a closed countable subset
of KA, and hence by the Stone duality h(A) = ω. Also recall that w

(
KA
)

= |A|
and w(βω) = c. Thus, the Stone spaces of the Boolean algebras constructed by
Just and Koszmider and by Ciesielski and Pawlikowski, mentioned in the previous
section, are also Efimov spaces. Similarly, if in Theorem 7.3 we assume that κ < c,
then the Stone space KB of the constructed algebra B is a Efimov space as well.
Moreover, due to the Stone duality, KB has an additional feature: its every infinite
closed subset has large weight.

Corollary 8.5. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ < c. Then, there exists a Efimov space K such that the weight
w(K) = κ and for every infinite closed subset L of K we have w(L) ≥ n. �

By Geschke’s result (see the proof of Proposition 3.1) and Proposition 2.9, given
a cardinal number κ under Martin’s axiom MAκ(countable) every Efimov space has
weight strictly greater than κ.

Corollary 8.6. Let κ be a cardinal number. Assume MAκ(countable). Then, every
Efimov space K has weight w(K) > κ. In particular, if L is a closed infinite subset
of a Efimov space, then w(L) > κ. �

Corollary 8.7. Assuming Martin’s axiom, every Efimov space is of weight at least
c. In particular, if L is a closed infinite subset of a Efimov space, then w(L) ≥ c.�

Note that Dow and Shelah [17] proved that assuming Martin’s axiom there do
exist Efimov spaces of weight c.

8.3. The Nikodym property for C*-algebras. In the introductory section of
this paper the generalization of the Nikodym property to C*-algebras in terms of
sequences of functionals bounded on projections was presented (Definition 1.4).
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Note that this generalization coincides with the Nikodym property for Boolean
algebras in the case of A = C

(
KA
)
, where A is a Boolean algebra. A simple use

of the Hahn–Banach theorem (Rudin [37, Theorem 3.5]) shows that if a C*-algebra
A has the Nikodym property, then its set of projections Proj(A ) must be linearly
dense in A . This implies e.g. that if a compact space K has a non-degenerate
connected component, then C(K) does not have the Nikodym property. On the
other hand, since for every n ∈ ω the C*-algebra B(Cn) of bounded operators on
the n-dimensional Hilbert space Cn contains a Hamel basis consisting of orthogonal
projections, by the Banach–Steinhaus theorem B(Cn) has the Nikodym property.

The next proposition, which is a version of Proposition 3.2 for C*-algebras, yields
that the set Proj(A ) cannot be too small if A is infinite-dimensional.

Proposition 8.8. If an infinite-dimensional C*-algebra A has the Nikodym prop-
erty, then |Proj(A )| ≥ b.

Proof. The assertion can be proved in the exactly same way as Proposition 3.2
replacing only the space Bs(A) with the space span Proj(A ). However, we present
below a completely different approach to the proof.

Recall that the Josefson–Nissenzweig theorem states that for every infinite-
dimensional Banach space X there exists a weak∗ null sequence of norm-one func-
tionals in X∗ (see Diestel [12, Chapter XII]). Let

〈
x∗n ∈ A ∗ : n ∈ ω

〉
be such a

sequence. For every p ∈ Proj(A ) define a sequence cp ∈ Rω+ as follows:

cp(n) =
∣∣x∗n(p)

∣∣+ 1/n

(the 1/n summand is contributed to shift cp away from 0). Then, limn→∞ cp(n) = 0.
Assume that |Proj(A )| < b. It is not difficult to see that if F ⊆ Rω+ is a family

of sequences converging to 0 of cardinality strictly less than b, then there is c ∈ Rω+
converging to 0 and dominating every element of F . Thus, since |Proj(A )| < b,
there is such an element c ∈ Rω+ for the family F =

{
cp : p ∈ Proj(A )

}
. Now,

define a sequence
〈
y∗n ∈ A ∗ : n ∈ ω

〉
as follows:

y∗n =
1

c(n)
x∗n.

Then ‖y∗n‖ tends to ∞, but
〈
y∗n(p) : n ∈ ω

〉
is bounded for every p ∈ Proj(A ),

which proves that A does not have the Nikodym property. �

Corollary 8.9. Under Martin’s axiom, every infinite-dimensional C*-algebra with
the Nikodym property has at least c many projections. �

Remark 8.10. Let us note that if H is a separable infinite-dimensional Hilbert space
(e.g. `2), then the von Neumann algebra B(H) of all bounded operators on H has
the Nikodym property, since due to Darst [11] all von Neumann algebras do. On
the other hand, it can be shown that the subalgebra K(H) ⊆ B(H) of all compact
operators on H has c many projections (since it contains the algebra B

(
C2
)
) yet

not the Nikodym property.

For an infinite-dimensional C*-algebra A its cofinality cof(A ) is the least car-
dinal κ for which there exists a strictly increasing sequence

〈
Aξ : ξ < κ

〉
of C*-

subalgebras of A such that
⋃
ξ<κ Aξ is dense in A , and the homomorphism type

h(A ) of A is the minimal density of an infinite-dimensional *-homomorphic image
of A . For an infinite Boolean algebra A, Geschke [23, Lemma 1.3] proved that
cof
(
C
(
KA
))

= cof(A). A similar result also holds for the homomorphism type.

Lemma 8.11. For an infinite Boolean algebra A, h
(
C
(
KA
))

= h(A).
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Proof. Let B be an infinite Boolean algebra such that there exists a homomorphism
from A onto B. Then by the Stone duality KB ⊆ KA. Due to the Tietze theorem
the *-homomorphism T : C

(
KA
)
→ C

(
KB
)

given by the formula T (f) = f � KB is

surjective. Since dens
(
C
(
KB
))

= |B|, h
(
C
(
KA
))
≤ h(A).

Let now Y be an infinite-dimensional C*-algebra such that there exists a sur-
jective *-homomorphism T : C(KA)→ Y . Since T is a homomorphism, Y must be
commutative and hence of the form Y = C

(
KB
)

for some Boolean algebra B (note
that a *-homomorphism transforms projections onto projections). T induces a ho-
momorphism ϕT : A → B such that for given a ∈ A and b ∈ B we have ϕT (a) = b
if and only if T

(
χ[a]

)
= χ[b]. This implies that h

(
C
(
KA
))
≥ h(A). �

By Theorem 7.3, Corollary 8.3 and Lemma 8.11, we obtain the following result.

Corollary 8.12. Assume that cof(N ) ≤ κ for a cardinal number κ such that
cof
(

[κ]
ω )

= κ. Then, there exists a commutative C*-algebra A with the Nikodym
property and such that dens(A ) = κ, h(A ) ≥ n and cof(A ) = ω1. �
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