THE NIKODYM PROPERTY IN THE SACKS MODEL

DAMIAN SOBOTA AND LYUBOMYR ZDOMSKYY

ABSTRACT. We prove that if A is a o-complete Boolean algebra in a ground
model V' of set theory, then A has the Nikodym property in every side-by-side
Sacks forcing extension V[G], i.e. every pointwise bounded sequence of mea-
sures on A in V[G] is uniformly bounded. This gives a consistent example of a
class of infinite Boolean algebras with the Nikodym property and of cardinality
strictly less than the continuum.

1. INTRODUCTION

Let A be a Boolean algebra. A sequence of measures (i,: n € w) on A is
pointwise bounded if sup,,, |un(A)| < oo for every A € A and it is uniformly
bounded if sup,,c,, || ,unH < o0. The Nikodym Boundedness Theorem states that
if A is o-complete, then every pointwise bounded sequence of measures on A is
uniformly bounded. This principle, due to its numerous applications, is one of the
most important results in the theory of vector measures, see Diestel and Uhl [7,
Section 1.3].

Since o-completeness is rather a strong property of Boolean algebras, Schacher-
mayer [12] made a detailed study of the Nikodym theorem and introduced the
Nikodym property for general Boolean algebras.

Definition 1.1. A Boolean algebra A has the Nikodym property if every pointwise
bounded sequence of measures on A is uniformly bounded.

The property has been studied by many authors, e.g. Darst [5], Seever [13],
Haydon [10], Molt6 [11], Freniche [8], Aizpuru [1, 2] or Valdivia [15].

Let us pose the following question. Let V be a model of ZFC+CH and A € V be
a o-complete Boolean algebra of cardinality equal to the continuum c¢. Let P be a
notion of forcing preserving wy and G its generic filter over V. Assume that in the
extension V[G] the CH does not hold. Then, A will have cardinality wy in V]G],
and hence it will no longer be o-complete. However, will A still have the Nikodym
property?

Brech [4, Theorem 3.1] proved that if P is the side-by-side Sacks forcing S* for
some regular cardinal number k, then A will have the Grothendieck property in
V|G, i.e. every sequence of measures in V|G| which is weak® convergent on A
is also weakly convergent. The Nikodym and Grothendieck properties are closely
related to each other, see e.g. Schachermayer [12]. Thus, motivated by Brech’s
result, we studied the preservation of the Nikodym property by the Sacks forcing
S* and proved that if A is a o-complete Boolean algebra in V', then A has the
Nikodym property in the S®-generic extension V[G] (Theorem 3.3).

Complementing the result of Brech was not the only reason we dealt with the
side-by-side Sacks forcing S* instead of iterations. The other one was the fact the
size of the continuum can be arbitrary large when forcing with S* (¢ = x holds in
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V|G]), while iterations give only models where the continuum is at most ws (see
Geschke and Quickert [9, Section 7]). This has an important consequence for us. In
Sobota [14], the first author studied the relation between the Nikodym property and
cardinal characteristics of the continuum. In particular, a ZFC construction of a
Boolean algebra with the Nikodym property and of cardinality equal to cof (A), the
cofinality of the o-ideal N of subsets of the real line with zero Lebesgue measure, was
presented. Since the construction was rather intricate, the natural question about
the consistent existence of a simple example of a Boolean algebra with the Nikodym
property and cardinality strictly smaller than arbitrarily large ¢ was posed. This
paper answers this question.

1.1. Terminology and notation. Throughout the paper .4 will always denote
a Boolean algebra. The Stone space of A is denoted by K 4. Recall that by the
Stone duality theorem A is isomorphic with the algebra of clopen subsets of K 4; if
A € A, then [A] denotes the corresponding clopen subset of K 4.

A subset X of a Boolean algebra A is an antichain if x Ay = 0 4 for every distinct
z,y € X, i.e. every two distinct elements of X are disjoint. On the other hand, a
subset X of a poset P is an antichain if no distinct z,y € X are compatible.

A measure p: A — C on A is always a finitely additive complex-valued function
with finite variation. The measure p has a unique Borel extension (denoted also by
w) onto the space K 4, preserving the variation of u. By the Riesz representation
theorem the dual space C' (K A) * of the Banach space of continuous complex-valued
functions on K 4 is isometrically isomorphic with the space of all measures on A.
For more information concerning measure theory and Banach spaces, see the book
of Diestel [6].

V' always denotes the set-theoretic universum. By S* we denote the side-by-side
product of K many Sacks forcings S for some uncountable regular cardinal number
k. Regarding all other notions related to the Sacks forcing, we follow the paper of
Baumgartner [3]. If s € S and p € s, then s|p = {q €s: gCporpC q} es. If
n € w, then I(n, s) denotes the n-th forking level of s.

Let 5,8 € S, F € [dom(s)]~* and n € w. We put I(F,n,s) = {o: dom(c) =
F&VaeF: o(a) €l(n,s(a))}. Note that |I(F,n,s)| = 2"1Fl. We write s’ <p,, s
if s/ < sand I(F,n,s") = (F,n,s). If c: F — 2<% is such that o(a) € s(a) for
every a € F, then we write s|o for a condition defined as (s|o)(a) = s(a) for
a € dom(s) \ F and (s|o)(a) = s(a)|o(a).

2. ANTI-NIKODYM SEQUENCES IN THE SACKS MODEL

In this section, assuming in a forcing extension the existence of sequences of
measures on a ground model Boolean algebra A which are pointwise bounded but
not uniformly bounded, we build (Proposition 2.9) in the ground model a special
antichain in A which will be crucial in proving the main theorem of the paper —
Theorem 3.3.

Definition 2.1. A sequence (u,,: n € w) of measures on a Boolean algebra A is
called anti-Nikodym if it is pointwise bounded but not uniformly bounded.

Lemma 2.2. If a sequence <un: n € w> of measures on a Boolean algebra A is
anti-Nikodym, then there exists a point t € K4 such that for every clopen neigh-
borhood U € A of t we have sup,,c,, Hpn I UH = 00.

The point t will be called a Nikodym concentration point of the sequence <un T nE

w).
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Proof. Assume that for every point ¢ € K 4 there exists A; € A such that ¢ € [A;]
and <un [ A;: n € w> is uniformly bounded. Then, by compactness of K 4 there
exist t1,...,t, € K4 such that A;, V...V A; =14. This in turn implies that

sup ||:U'n|| = sup |ﬂn|(1A) < sup |Nn| (Atl) + ...+ sup |ﬂn|(Atm) =
new new new new

< 00,

sup [|pn I Ag ||+ -+ sup || | A,
necw new
which is a contradiction, since <un: n e w> is not uniformly bounded. (]

(Note that in the above proof we did not use the pointwise boundedness of < bn: M E
w).)

Lemma 2.3. Let <un: n e w> be an anti-Nikodym sequence on A and let t € K4
be its Nikodym concentration point. Assume thatt € [A] for some A € A. Then, for
every positive real number p and natural number M there exist an element B € A
and a natural number n > M such that:

e B<Aandte|[A\ B,
® |:un(B){>p'

Proof. Since (pin,: n € w) is anti-Nikodym and ¢ € [A], there exist C < A and
n > M such that

|1 (C)] > sup | (A)] +

and hence

(AN O)| = [1n(C) = pn(A)] = [1n (C)] = | (A)] > p.
If t € [C], then put B = A\ C, otherwise put B = C. O

To the end of this section let A be a ground model infinite Boolean algebra.

Lemma 2.4. Let Ag,...,Ap € A, K, M € w. Let <,[Ln5 n e w> be a sequence of
names for measures on A, t a name for a point in K 4 and p a name for a positive
real number. Let s € S® force that </jLn: n e w> is anti-Nikodym, t is its Nikodym
concentration point and t ¢ U?:o [4;].

Then, there exist a sequence By, ..., Bk of pairwise disjoint elements of A dis-
joint with \/?=0 Aj, a sequence ng > ... > n1 > M of natural numbers and a
condition s* < s forcing for every 1 <i < K that { ¢ [BZ] and |un (BZ)| > p.
Proof. Use Lemma 2.3 inductively K times to obtain sequences Bi,...,Bg € A,
ng > ... >mny > M and sg < ... < 517 < s such that for every 1 < ¢ < K
the element B; is disjoint with \/?:0 Aj; vV \/;;} B; and the condition s; forces that
t¢ [BL] and |,um(Bz)| > p. Let s* = sk. O

Using Lemma 2.4, we will usually assume that s I p = Z?:o SUp,, cu ‘ﬂm (Aj) ‘ +
N + 2 for some given N € w (or something alike).

Lemma 2.5. Let K, P € w. Let py,...,ux be a sequence of K measures on A.
Assume that K - ||u]| < P for every 1 < j < K. Then, for every Q@ > K - P
and every pairwise disjoint elements C1,...,Cq of A there exist natural numbers

kh<...< kQ_K.p such that

‘,uj](Ckl) < I/K
foreveryl<j<Kand1 <I<Q-K-P.
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Proof. Let Q > K - P and C4,...,Cg be an antichain in 4. Notice that if there
exist k1 < ... < kp such that

|'uj|(0kl) 2 I/K
for some 1 < j < K and every 1 <[ < P, then we have:

P
il = 5] (Cr) = P 1/ K > K -l - 1/K = ||,
=1

a contradiction, so for every 1 < j < K there must exist at most P — 1 elements
Cy,’s such that

|| (Cr,) = 1/K.

Hence, the thesis of the lemma holds for some @ — K- (P —1) > @Q — K - P elements
Ckl ’s. O

The following lemma is standard, cf. Baumgartner [3, Lemmas 1.5-1.8].

Lemma 2.6. Let s € S*, N € w and Fy € [dom(s)]~“.
a) {slo: o €l(Fn,N,s)} is an antichain in S* and s = Usei(ry.n,s Slo-
b) Ifo € l(Fiy, N, s) and p < s|o, then there ezists ¢ <p N s such that glo = p.
¢) If D C S* is open dense below s, then there exists ¢ <py N s such that
qlo € D for every o € I(Fn, N, s).
O

Lemma 2.7. Let Ag,..., A, M, </ln: n € w>, t and s be as in the assumptions
of Lemma 2.4. Let N € w and Fy € [dom(s)]~*. Put K = |I(Fy,N,s)| and
enumerate [(Fn,N,s) = <ai: 1<:< K>.

Then, there exist a condition s* <py, N s, a sequence Bi,..., Bk of pairwise
disjoint elements of A disjoint with \/?:0 A; and a sequence ng > ... >ny > M
such that for every 1 < i < K the condition s*|o; forces that:

o Jin (Bi)| > 7o litns (A3) |+ 32520 i, (B)) | + N +2,
° |'“" (Vf:’i-Fl Bj) <1,
o i Uszl [BZ]
Proof. The proof basically goes by induction in K steps — each step for one o;

(1 < i< K). We start simply as follows — by Lemmas 2.4 and 2.6.b) there exist
a condition s; <p, n s, a family Z] = {B%, ey B}(} of pairwise disjoint elements

of A disjoint with \/?Z0 Aj, a sequence nk > ... > n} > M of natural numbers
and a natural number P; > 0 such that for every 1 < j < K we have:
k
. o1 . 1 7
s1loq IF |,un; (Bj)| > Z |,un; (Al)| + N+ 2,
1=0

s1loq IF K- Hunle < Py, and
silovlbi¢ | (B

Be%!

Assume now that for some 1 < L < K we have found:

e a sequence of conditions s;, <py N ... <py,N 51 <Fy,N S,
o for every 1 < ¢ < L a sequence of families #; C ... C & C %'
() and A"

A of pairwise disjoint non-zero elements of A with %% #
{Bi,...,Bi},

N
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L—-1

L L L71>...>n1

e a sequence of natural numbers ng > ... > ny > ng
co.>nk>...>nl>M, and
e a sequence of natural numbers Pr, > ... > P; > 0,

such that:
(i) for every 1 <i < L and 1 < j < K we have:

k i—1
(1) siloi Ik ’Nn;( v;)’ > Z ’l’[’n; (AZH +Z Z ’MnS(B)’ + N 42, and
1=0 I=1 Be%!
(2) siloi IF K - ||/1n;’. < Pj
(ii) for every 1 < j <i < L we have:

3)  siloyirig ) U 1Bl
I=1pBe%!

(iii) forevery 1<l <i<L,1<j <K and B € %" we have:
@) silovlF [ |(B) < 1/K.

Let us now construct spi1 <py N Sp, B, C Bi,...,Br,, C %’f,%’fﬂ C
BEHLC A, nﬁ“ >0 > nlLJrl > nf( and Pr4q > Pr, satisfying also the properties
(1)—(iii).

First, we modify a bit the condition s;. By density, there exists p < sp|or4+1
such that for every 1 < i < L either there exists unique 1 < j; < K such that
plEte [B;i], or for every B € A% we have p IF t ¢ [B] In the former case put
By =B\ {B.}, in the latter — B} | = ). By Lemma 2.6.b), there exists
¢ <py,~ S such that glor41 = p. Note that

k L
5)  dornkie J[4IulY U B
=0 I=1pes, ,,

By Lemmas 2.4 and 2.6.b), there exist a condition r <p, y ¢, a family € =
{Cy,...,Cq} of pairwise disjoint elements of A disjoint with (\/;?:1 A, \/\/lL:1 V %ILH) )
where Q = K - L - P, + K, a sequence mg > ... > my > nf( of natural numbers
and a natural number Pr; > P, such that for every 1 < j < @ we have:

k L
(6) rlop4a IF |'[l’m9‘ (OJ)| > Z }ﬂmj (Al)| + Z z |/lmj(B)| +N+2,

= = 2l
1=0 I=1 Begl,

T’|O’L+1 I+ K . HMmJH < pL+1, and

Q
(1) rloralrig |J[Ch]

j=1

We now define sy 11 out of r in two steps. In the first step, by induction, the

inequality (2) and Lemmas 2.5 and 2.6.b), we get a sequence ¢, C ... C 6 C ¥
with "KL| = K, a sequence kx > ... > k; of natural numbers and a sequence of
conditions pr, <py .~ .. <Fy,N D1 <py,n T such that €, = {Ckl,...7C’;€K} and
for every 1 <i< L,1<j <K and C € %; we have:

(8) pilos IF |[Ln§_ (C) < 1/K.

For every 1 < j < K write Bf“ = Cj, and n]LH = my,, and put pL+l —
{B{,....BgL
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In the second step, by induction and again Lemma 2.6.b), we get a sequence
tr, <py,N --- <Fy,N t1 <Fy,~ pr such that for every 1 < ¢ < L either there
exists 1 < j; < K such that t;]o; IF te [Bﬁ“], or for every 1 < j < K we have
tilo; - £ ¢ [Bf ). Put:

9) B =2\{BI*': tioil-ie BT, 1<i<L}
and

SL+1 = tL.
Note that by (7) and (9), for every 1 <14 < L + 1 we have:
(10)  spploilbég () (B

L+1
Be#Lt!

After the K-th step of the induction has been finished, we are left with the non-

empty collections %, ..., BE (some of them may be singletons), the sequence
nf > nf > .. >nl >nl > M and the conditions sxg <py n ... <py.N

51 <py,N §. From each %7 pick one element Bj . Then, for every 1 < i < K by
(1) and (6) we have:

skloj Ik |un Bl

Zm |+Z¢un, )|+ N +2,

and by (4) and (8):

j=i+1 Jj=i+1
and finally by (3), (5) and (10):

skloil-i¢ LKJ[ }

Jj=1

) <K-1/K =1,

SK‘O'Z‘

Put:
s* = sk
and for every 1 <7 < K:

_ i _ i
B; =Bj, and n;=n.

By Lemma 2.6.a) we immediately obtain the following corollary.

Corollary 2.8. Let Ag,..., Ay, K, M, N, </1n: n e w>, t, s and Fy be as in the
assumptions of Lemma 2.7.

Then, there exist a condition s* <py, N s, a sequence Bi,..., Bk of pairwise
disjoint elements of A disjoint with \/?:0 Aj and a sequence ng > ... >ny > M

such that s* forces that t ¢ U1K:1 [Bl] and that there exists 1 < i < K for which it
holds:

k
|/‘m(Bz)|>Z|ﬂm ""ZLU%Z ’+N+2
)

and

i,
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O

Proposition 2.9. Let </jLn: n € w> be a sequence of names for measures on A.
Let s € S* force that <;ln: ne w> is anti-Nikodym.
Then, there exists:

® an increasing sequence <KN: N e w> of natural numbers,

® a sequence <BlNz 1<i< Ky, Ne€ w> of pairwise disjoint elements of A,

® a sequence <nfv 1<1< Ky, N€w> n w such thatn{v >n%M > >
M for every N > M, and
a condition s* < s forcing for every N € w that there exists 1 < ¢ < Ky

such that:
) N-1 K ) i—1 ) .
it (BI)[ > D23 Loy (BI) [+ [fn (BY) [ + N +2
M=0j=1 j=1
and

(IVBJN><1.

j=i+1

[

Proof. The conclusion follows by the inductive use of Corollary 2.8 (to obtain an
appropriate fusion sequence (sy: N € w) of conditions in $*) and the ultimate use
of the fusion lemma (to obtain a fusion condition s* € S* such that s* <p, ny sy
for every N € w; see Baumgartner [3, Lemma 1.8]). O

3. MAIN RESULT

Throughout this section A is a ground model o-complete Boolean algebra, i.e.
A €V and A is o-complete in V.

Lemma 3.1. Let X € [w]* and X = Uy, Xx be an infinite partition of X into
infinite subsets. For every measure pn on A and an antichain <BN: N € w> in A
there exists L € w such that

M(N!(k BN) <1

for every k > L.

Proof. Since p is finitely additive and bounded, we have:

SSll(V B) <lul((\ By) < lul(14) < oo

kEw NEXy New
]

Lemma 3.2. Let (By: N € w) € V be an antichain in A and X € [w]“ NV.

Let s € S* be a condition, N € w, Fy C [dom(s)]<°J and fi1,..., g names for
measures on A. Then, there exist a condition s* <py n s and a set X' € [X]” NV
such that for every 1 < i < K we have:

5* Ik g V Bu) < 1.
MeX’

Proof. Let X = J,,c,, Xi be an infinite partition of X into infinite sets. By Lemma
3.1 the following set is open dense below s:

D={p<s:vi<i<KILewvk>L pklul( \/ Bu)<1}.
MeX,
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By Lemma 2.6.c) there exists s* <g, n s such that s*|c € D for every o €
I(Fn,N,s). Hence, for every o € I[(Fy,N,s) there exists L, € w such that for
every k > L, the condition s*|o forces that:

il (N Bar) < 1.
MGXk
Let L = max (LU: o€ l(FN,N,s)) + 1. Put X’ = X; and appeal to Lemma
2.6.a). O

We are now in the position to prove the main theorem of this paper.

Theorem 3.3. Let G be an S"-generic filter over V. Then, in V|G| the Boolean
algebra A has the Nikodym property.

Proof. Working in V[G] assume that A does not have the Nikodym property. Then,
there exists an anti-Nikodym sequence <un: n e w> of measures on A. Let t € K4
be its Nikodym concentration point.

Now and to the end of the proof, let us work in the ground model V. Let
<ﬂn: n € w> be a sequence of names for measures in the sequence <un: n € w>
and ¢ a name for . There exists a condition s € G forcing that (fi,,: n € w) is
anti-Nikodym on A and ¢ is its Nikodym concentration point.

Let (Kn: N €w), (BN: 1<i< Ky, New),(n: 1<i< Ky, N €w)
and s* < s be given by Proposition 2.9. We will find a condition s** < s* and a
set Y € [w]” NV such that s** forces that

Kn
b=\ \/BY A
NEY i=1
and

sup |un(B)‘ = o0,

new
which will contradict the fact that s forces that <pn; n e w> is pointwise bounded.
To obtain s** and Y we follow by induction and use Lemma 3.2 to construct a
fusion sequence (sy: N € w) of conditions such that so = s* and for every N € w
we have syy1 <py N SN, where Fy = {af: 1,k < N} and dom(sy) = {oz,lcv: ke
w}, and a decreasing sequence <XN: N e w> of infinite subsets of w such that:

e Xy =w and for every N € w we have min Xy < min Xy41, and
e for every N € w and L = min Xy the condition sy forces that:

( \/ I<I/WB§”><1

MEXN+1 Jj=1

) L
[

for every 1 <i < K.

Let s** € S* be such a condition that s** <p, n sy for every N € w (see Baum-
gartner [3, Lemma 1.8]). Put:

Y = {minXN: NEw}
and

Kn
B=1\/\/ B

NeY i=1



THE NIKODYM PROPERTY IN THE SACKS MODEL 9

Then, B € A and, since <XN: N € w> is decreasing, s** forces that for every
N €Y and 1 <i < Ky the following inequality holds:

( \V I.<733M><1'

Finally, since s** < s*, s** forces for every N € Y that there exists 1 < i < Ky
such that

|ty

i

K 1—1
it (B[ > D2 D Loy (BY)] 43 Loy (BY)] + N +2
MEeY j=1 j=1
M<N
and
Kn
il (V BY) <1
=il
and hence:
B Knm —
e (B = litay (N BY) + iy (\/ )+ fuy (BY) +
MeY j=1 j=1
M<N
Kn
i (VB +inr (V812
Jj=i+1 MeY j=1
M>N
5 K 3 i—1 5
2 i (BY) = 3 D iy (B = D Vi (B,1)] =
MEeY j=1 =1
M<N
Kn B Ky 5
iV BY) x|V OV BY) =
Jj=i+1 MeY j=1
M>N

>N+2—-1—-1=N.

Thus, s** forces that for every N Cw there exists n such that ‘,un B)| > N and
hence s** forces that sup,,c,, |fun(B)| = oc. O

Since the forcing S* preserves w; and k = ¢ in any S*-generic extension (see
Baumgartner [3, Theorems 1.11 and 1.14]), we immediately obtain the following
corollary.

Corollary 3.4. Assume that V is a model of ZFC+CH. If G is an S*-generic
filter, then in V[G] the relations wy < k = ¢ hold and A is an example of a Boolean
algebra with the Nikodym property and of cardinality w.

4. CONCLUDING REMARKS

4.1. The Vitali-Hahn—Sacks property. Schachermayer [12, Theorem 2.5] proved
that a Boolean algebra A has simultaneously the Nikodym property and the Grothendieck
property if and only if A has the Vitali-Hahn-Saks property, i.e. every pointwise
convergent sequence of measures on A is uniformly exhaustive. Thus, Theorem 3.3

and Brech’s result [4, Theorem 3.1] imply together that if A is a o-complete Boolean
algebra in the ground model V| then it has the Vitali-Hahn—Saks property in the
S*-generic extension V[G]. In particular, as in Corollary 3.4, this yields a simple
consistent example of a Boolean algebra with the Vitali-Hahn—Saks property and

of cardinality strictly less than c.
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4.2. Cardinal characteristics of the continuum. In Sobota [14], the first au-
thor studied relations between the Nikodym property and cardinal characteristics
of the continuum. In particular, the Nikodym number n denoting the smallest size
of an infinite Boolean algebra with the Nikodym property was introduced and the
inequality n > max (b,s,cov(./\/l)) was established in ZFC, where b denotes the
bounding number, s — the splitting number and cov(M) — the covering of cate-
gory. It was also proved in ZFC, however in a quite complicated manner, that n < k
for all cardinal numbers  such that cof(N) < k = cof ([k]“), where cof(N) de-
notes the cofinality of measure. Since cof (M) = w; in the side-by-side Sacks forcing
extensions and cof ([w,,]”) = w,, in ZFC for all n € w, it follows that n = w; in the
side-by-side Sacks model and the algebra constructed in Sobota [14] witnesses this
fact. However, Theorem 3.3 provides much simpler examples, namely all infinite
ground model o-complete Boolean algebras.

Since n > max (b,s,cov(M)), the natural question about the relation of the
dominating number 0 and the Nikodym number n arises. Obviously, under Martin’s
axiom it holds that w; < n = ? = ¢ and Theorem 3.3 yields consistently that
n=0=w; <c¢. However, we know neither whether any of the two relations 9 < n
and 0 > n may be consistently true, nor whether any of the relations 0 < n and
0 > n holds in ZFC.
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