THE NIKODYM PROPERTY IN THE SACKS MODEL

DAMIAN SOBOTA AND LYUBOMYR ZDOMSKYY

ABSTRACT. We prove that if \mathcal{A} is a σ -complete Boolean algebra in a ground model V of set theory, then \mathcal{A} has the Nikodym property in every side-by-side Sacks forcing extension V[G], i.e. every pointwise bounded sequence of measures on \mathcal{A} in V[G] is uniformly bounded. This gives a consistent example of a class of infinite Boolean algebras with the Nikodym property and of cardinality strictly less than the continuum.

1. Introduction

Let \mathcal{A} be a Boolean algebra. A sequence of measures $\langle \mu_n \colon n \in \omega \rangle$ on \mathcal{A} is pointwise bounded if $\sup_{n \in \omega} |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$ and it is uniformly bounded if $\sup_{n \in \omega} |\mu_n| < \infty$. The Nikodym Boundedness Theorem states that if \mathcal{A} is σ -complete, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded. This principle, due to its numerous applications, is one of the most important results in the theory of vector measures, see Diestel and Uhl [7, Section I.3].

Since σ -completeness is rather a strong property of Boolean algebras, Schachermayer [12] made a detailed study of the Nikodym theorem and introduced the Nikodym property for general Boolean algebras.

Definition 1.1. A Boolean algebra \mathcal{A} has the *Nikodym property* if every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

The property has been studied by many authors, e.g. Darst [5], Seever [13], Haydon [10], Moltó [11], Freniche [8], Aizpuru [1, 2] or Valdivia [15].

Let us pose the following question. Let V be a model of ZFC+CH and $A \in V$ be a σ -complete Boolean algebra of cardinality equal to the continuum \mathfrak{c} . Let \mathbb{P} be a notion of forcing preserving ω_1 and G its generic filter over V. Assume that in the extension V[G] the CH does not hold. Then, A will have cardinality ω_1 in V[G], and hence it will no longer be σ -complete. However, will A still have the Nikodym property?

Brech [4, Theorem 3.1] proved that if \mathbb{P} is the side-by-side Sacks forcing \mathbb{S}^{κ} for some regular cardinal number κ , then \mathcal{A} will have the *Grothendieck property* in V[G], i.e. every sequence of measures in V[G] which is weak* convergent on \mathcal{A} is also weakly convergent. The Nikodym and Grothendieck properties are closely related to each other, see e.g. Schachermayer [12]. Thus, motivated by Brech's result, we studied the preservation of the Nikodym property by the Sacks forcing \mathbb{S}^{κ} and proved that if \mathcal{A} is a σ -complete Boolean algebra in V, then \mathcal{A} has the Nikodym property in the \mathbb{S}^{κ} -generic extension V[G] (Theorem 3.3).

Complementing the result of Brech was not the only reason we dealt with the side-by-side Sacks forcing \mathbb{S}^{κ} instead of iterations. The other one was the fact the size of the continuum can be arbitrary large when forcing with \mathbb{S}^{κ} ($\mathfrak{c} = \kappa$ holds in

²⁰¹⁰ Mathematics Subject Classification. Primary: 28A33, 03E75. Secondary: 28E15.

Key words and phrases. Nikodym property, Sacks model, convergence of measures, uniform

The authors were supported by the Austrian Science Fund FWF, Grant I 2374-N35.

V[G]), while iterations give only models where the continuum is at most ω_2 (see Geschke and Quickert [9, Section 7]). This has an important consequence for us. In Sobota [14], the first author studied the relation between the Nikodym property and cardinal characteristics of the continuum. In particular, a ZFC construction of a Boolean algebra with the Nikodym property and of cardinality equal to $cof(\mathcal{N})$, the cofinality of the σ -ideal \mathcal{N} of subsets of the real line with zero Lebesgue measure, was presented. Since the construction was rather intricate, the natural question about the consistent existence of a *simple* example of a Boolean algebra with the Nikodym property and cardinality strictly smaller than arbitrarily large \mathfrak{c} was posed. This paper answers this question.

1.1. **Terminology and notation.** Throughout the paper \mathcal{A} will always denote a Boolean algebra. The Stone space of \mathcal{A} is denoted by $K_{\mathcal{A}}$. Recall that by the Stone duality theorem \mathcal{A} is isomorphic with the algebra of clopen subsets of $K_{\mathcal{A}}$; if $A \in \mathcal{A}$, then [A] denotes the corresponding clopen subset of $K_{\mathcal{A}}$.

A subset X of a Boolean algebra \mathcal{A} is an antichain if $x \wedge y = \mathbf{0}_{\mathcal{A}}$ for every distinct $x, y \in X$, i.e. every two distinct elements of X are disjoint. On the other hand, a subset X of a poset \mathbb{P} is an antichain if no distinct $x, y \in X$ are compatible.

A measure $\mu: \mathcal{A} \to \mathbb{C}$ on \mathcal{A} is always a finitely additive complex-valued function with finite variation. The measure μ has a unique Borel extension (denoted also by μ) onto the space $K_{\mathcal{A}}$, preserving the variation of μ . By the Riesz representation theorem the dual space $C(K_{\mathcal{A}})^*$ of the Banach space of continuous complex-valued functions on $K_{\mathcal{A}}$ is isometrically isomorphic with the space of all measures on \mathcal{A} . For more information concerning measure theory and Banach spaces, see the book of Diestel [6].

V always denotes the set-theoretic universum. By \mathbb{S}^{κ} we denote the side-by-side product of κ many Sacks forcings \mathbb{S} for some uncountable regular cardinal number κ . Regarding all other notions related to the Sacks forcing, we follow the paper of Baumgartner [3]. If $s \in \mathbb{S}$ and $p \in s$, then $s|p = \{q \in s : q \subseteq p \text{ or } p \subseteq q\} \in \mathbb{S}$. If $n \in \omega$, then l(n,s) denotes the n-th forking level of s.

Let $s, s' \in \mathbb{S}^{\kappa}$, $F \in [\text{dom}(s)]^{<\omega}$ and $n \in \omega$. We put $l(F, n, s) = \{\sigma \colon \text{dom}(\sigma) = F \& \forall \alpha \in F \colon \sigma(\alpha) \in l(n, s(\alpha))\}$. Note that $|l(F, n, s)| = 2^{n|F|}$. We write $s' \leq_{F,n} s$ if $s' \leq s$ and l(F, n, s') = l(F, n, s). If $\sigma \colon F \to 2^{<\omega}$ is such that $\sigma(\alpha) \in s(\alpha)$ for every $\alpha \in F$, then we write $s|\sigma$ for a condition defined as $(s|\sigma)(\alpha) = s(\alpha)$ for $\alpha \in \text{dom}(s) \setminus F$ and $(s|\sigma)(\alpha) = s(\alpha)|\sigma(\alpha)$.

2. Anti-Nikodym sequences in the Sacks model

In this section, assuming in a forcing extension the existence of sequences of measures on a ground model Boolean algebra $\mathcal A$ which are pointwise bounded but not uniformly bounded, we build (Proposition 2.9) in the ground model a special antichain in $\mathcal A$ which will be crucial in proving the main theorem of the paper — Theorem 3.3.

Definition 2.1. A sequence $\langle \mu_n \colon n \in \omega \rangle$ of measures on a Boolean algebra \mathcal{A} is called *anti-Nikodym* if it is pointwise bounded but not uniformly bounded.

Lemma 2.2. If a sequence $\langle \mu_n \colon n \in \omega \rangle$ of measures on a Boolean algebra \mathcal{A} is anti-Nikodym, then there exists a point $t \in K_{\mathcal{A}}$ such that for every clopen neighborhood $U \in \mathcal{A}$ of t we have $\sup_{n \in \omega} \|\mu_n \upharpoonright U\| = \infty$.

The point t will be called a Nikodym concentration point of the sequence $\langle \mu_n \colon n \in \omega \rangle$.

Proof. Assume that for every point $t \in K_{\mathcal{A}}$ there exists $A_t \in \mathcal{A}$ such that $t \in [A_t]$ and $\langle \mu_n \upharpoonright A_t \colon n \in \omega \rangle$ is uniformly bounded. Then, by compactness of $K_{\mathcal{A}}$ there exist $t_1, \ldots, t_n \in K_{\mathcal{A}}$ such that $A_{t_1} \vee \ldots \vee A_{t_m} = \mathbf{1}_{\mathcal{A}}$. This in turn implies that

$$\sup_{n\in\omega} \|\mu_n\| = \sup_{n\in\omega} |\mu_n|(\mathbf{1}_{\mathcal{A}}) \le \sup_{n\in\omega} |\mu_n|(A_{t_1}) + \ldots + \sup_{n\in\omega} |\mu_n|(A_{t_m}) =$$

$$\sup_{n\in\omega} \|\mu_n \upharpoonright A_{t_1}\| + \ldots + \sup_{n\in\omega} \|\mu_n \upharpoonright A_{t_m}\| < \infty,$$

which is a contradiction, since $\langle \mu_n \colon n \in \omega \rangle$ is not uniformly bounded.

(Note that in the above proof we did not use the pointwise boundedness of $\langle \mu_n \colon n \in \omega \rangle$.)

Lemma 2.3. Let $\langle \mu_n : n \in \omega \rangle$ be an anti-Nikodym sequence on \mathcal{A} and let $t \in K_{\mathcal{A}}$ be its Nikodym concentration point. Assume that $t \in [A]$ for some $A \in \mathcal{A}$. Then, for every positive real number ρ and natural number M there exist an element $B \in \mathcal{A}$ and a natural number n > M such that:

- $B \leq A$ and $t \in [A \setminus B]$,
- $\bullet ||\mu_n(B)| > \rho.$

Proof. Since $\langle \mu_n \colon n \in \omega \rangle$ is anti-Nikodym and $t \in [A]$, there exist $C \leq A$ and n > M such that

$$\left|\mu_n(C)\right| > \sup_{m \in \omega} \left|\mu_m(A)\right| + \rho$$

and hence

$$\left|\mu_n(A \setminus C)\right| = \left|\mu_n(C) - \mu_n(A)\right| \ge \left|\mu_n(C)\right| - \left|\mu_n(A)\right| > \rho.$$
 If $t \in [C]$, then put $B = A \setminus C$, otherwise put $B = C$.

To the end of this section <u>let A be</u> a ground model infinite Boolean algebra.

Lemma 2.4. Let $A_0, \ldots, A_k \in \mathcal{A}$, K, $M \in \omega$. Let $\langle \dot{\mu}_n \colon n \in \omega \rangle$ be a sequence of names for measures on \mathcal{A} , \dot{t} a name for a point in $K_{\mathcal{A}}$ and $\dot{\rho}$ a name for a positive real number. Let $s \in \mathbb{S}^{\kappa}$ force that $\langle \dot{\mu}_n \colon n \in \omega \rangle$ is anti-Nikodym, \dot{t} is its Nikodym concentration point and $\dot{t} \notin \bigcup_{i=0}^{k} [\mathring{A}_i]$.

concentration point and $\dot{t} \notin \bigcup_{j=0}^k \left[\mathring{A}_j \right]$. Then, there exist a sequence B_1, \ldots, B_K of pairwise disjoint elements of \mathcal{A} disjoint with $\bigvee_{j=0}^k A_j$, a sequence $n_K > \ldots > n_1 > M$ of natural numbers and a condition $s^* \leq s$ forcing for every $1 \leq i \leq K$ that $\dot{t} \notin \left[\check{B}_i \right]$ and $\left| \dot{\mu}_{n_i} \left(\check{B}_i \right) \right| > \dot{\rho}$.

Proof. Use Lemma 2.3 inductively K times to obtain sequences $B_1, \ldots, B_K \in \mathcal{A}$, $n_K > \ldots > n_1 > M$ and $s_K \leq \ldots \leq s_1 \leq s$ such that for every $1 \leq i \leq K$ the element B_i is disjoint with $\bigvee_{j=0}^k A_j \vee \bigvee_{l=1}^{i-1} B_l$ and the condition s_i forces that $i \notin [\check{B}_i]$ and $|\dot{\mu}_{n_i}(\check{B}_i)| > \dot{\rho}$. Let $s^* = s_K$.

Using Lemma 2.4, we will usually assume that $s \Vdash \dot{\rho} = \sum_{j=0}^{k} \sup_{m \in \omega} |\dot{\mu}_m(\check{A}_j)| + \check{N} + 2$ for some given $N \in \omega$ (or something alike).

Lemma 2.5. Let $K, P \in \omega$. Let μ_1, \ldots, μ_K be a sequence of K measures on A. Assume that $K \cdot \|\mu_j\| < P$ for every $1 \leq j \leq K$. Then, for every $Q > K \cdot P$ and every pairwise disjoint elements C_1, \ldots, C_Q of A there exist natural numbers $k_1 < \ldots < k_{Q-K\cdot P}$ such that

$$|\mu_j|(C_{k_l}) < 1/K$$

for every $1 \le j \le K$ and $1 \le l \le Q - K \cdot P$.

Proof. Let $Q > K \cdot P$ and C_1, \ldots, C_Q be an antichain in \mathcal{A} . Notice that if there exist $k_1 < \ldots < k_P$ such that

$$|\mu_j|(C_{k_l}) \ge 1/K$$

for some $1 \le j \le K$ and every $1 \le l \le P$, then we have:

$$\|\mu_j\| \ge \sum_{l=1}^P |\mu_j|(C_{k_l}) \ge P \cdot 1/K > K \cdot \|\mu_j\| \cdot 1/K = \|\mu_j\|,$$

a contradiction, so for every $1 \leq j \leq K$ there must exist at most P-1 elements C_{k_l} 's such that

$$|\mu_j|(C_{k_l}) \ge 1/K.$$

Hence, the thesis of the lemma holds for some $Q - K \cdot (P - 1) \ge Q - K \cdot P$ elements

The following lemma is standard, cf. Baumgartner [3, Lemmas 1.5–1.8].

Lemma 2.6. Let $s \in \mathbb{S}^{\kappa}$, $N \in \omega$ and $F_N \in [\text{dom}(s)]^{<\omega}$.

- a) $\{s|\sigma\colon \ \sigma\in l(F_N,N,s)\}$ is an antichain in \mathbb{S}^κ and $s=\bigcup_{\sigma\in l(F_N,N,s)}s|\sigma.$
- b) If $\sigma \in l(F_N, N, s)$ and $p \leq s | \sigma$, then there exists $q \leq_{F,N} s$ such that $q | \sigma = p$.
- c) If $D \subseteq \mathbb{S}^{\kappa}$ is open dense below s, then there exists $q \leq_{F_N,N} s$ such that $q|\sigma \in D$ for every $\sigma \in l(F_N, N, s)$.

Lemma 2.7. Let $A_0, \ldots, A_k, M, \langle \dot{\mu}_n : n \in \omega \rangle, \dot{t}$ and s be as in the assumptions of Lemma 2.4. Let $N \in \omega$ and $F_N \in [\text{dom}(s)]^{<\omega}$. Put $K = |l(F_N, N, s)|$ and enumerate $l(F_N, N, s) = \langle \sigma_i : 1 \leq i \leq K \rangle$.

Then, there exist a condition $s^* \leq_{F_N,N} s$, a sequence B_1,\ldots,B_K of pairwise disjoint elements of A disjoint with $\bigvee_{j=0}^k A_j$ and a sequence $n_K > \ldots > n_1 > M$ such that for every $1 \le i \le K$ the condition $s^* | \sigma_i$ forces that:

- $|\dot{\mu}_{n_i}(\check{B}_i)| > \sum_{j=0}^k |\dot{\mu}_{n_i}(\check{A}_j)| + \sum_{j=1}^{i-1} |\dot{\mu}_{n_i}(\check{B}_j)| + \check{N} + 2$,
- $|\dot{\mu}_{n_i}| \left(\bigvee_{j=i+1}^K \check{B}_j \right) < 1,$ $\dot{t} \notin \bigcup_{i=1}^K \left[\check{B}_i \right].$

Proof. The proof basically goes by induction in K steps — each step for one σ_i $(1 \le i \le K)$. We start simply as follows — by Lemmas 2.4 and 2.6.b) there exist a condition $s_1 \leq_{F_N,N} s$, a family $\mathscr{B}_1^1 = \{B_1^1, \dots, B_K^1\}$ of pairwise disjoint elements of \mathcal{A} disjoint with $\bigvee_{j=0}^k A_j$, a sequence $n_K^1 > \ldots > n_1^1 > M$ of natural numbers and a natural number $P_1 > 0$ such that for every $1 \leq j \leq K$ we have:

$$s_{1}|\sigma_{1} \Vdash \left|\dot{\mu}_{n_{j}^{1}}\left(\check{B}_{j}^{1}\right)\right| > \sum_{l=0}^{k} \left|\dot{\mu}_{n_{j}^{1}}\left(\check{A}_{l}\right)\right| + \check{N} + 2,$$

$$s_{1}|\sigma_{1} \Vdash \check{K} \cdot \left\|\dot{\mu}_{n_{j}^{1}}\right\| < \check{P}_{1}, \text{ and}$$

$$s_{1}|\sigma_{1} \Vdash \dot{t} \notin \bigcup_{B \in \check{\mathscr{B}}_{1}^{1}} [B].$$

Assume now that for some $1 \le L < K$ we have found:

- a sequence of conditions $s_L \leq_{F_N,N} \ldots \leq_{F_N,N} s_1 \leq_{F_N,N} s,$
- for every $1 \leq i \leq L$ a sequence of families $\mathscr{B}_L^i \subseteq \ldots \subseteq \mathscr{B}_i^i \subseteq \mathscr{B}^i \subseteq$ $\mathcal A$ of pairwise disjoint non-zero elements of $\mathcal A$ with $\mathscr B_L^i \neq \emptyset$ and $\mathscr B^i =$ $\{B_1^i,\ldots,B_K^i\},$

- a sequence of natural numbers $n_K^L > \ldots > n_1^L > n_K^{L-1} > \ldots > n_1^{L-1} >$ $\ldots > n_K^1 > \ldots > n_1^1 > M$, and
- a sequence of natural numbers $P_L > \ldots > P_1 > 0$,

such that:

(i) for every $1 \le i \le L$ and $1 \le j \le K$ we have:

$$(1) s_i|\sigma_i \Vdash \left|\dot{\mu}_{n_j^i}\big(\check{B}_j^i\big)\right| > \sum_{l=0}^k \left|\dot{\mu}_{n_j^i}\big(\check{A}_l\big)\right| + \sum_{l=1}^{i-1} \sum_{B \in \check{\mathscr{B}}^l} \left|\dot{\mu}_{n_j^i}(B)\right| + \check{N} + 2, \text{ and}$$

- $s_i | \sigma_i \Vdash \check{K} \cdot \|\dot{\mu}_{n_i^i} \| < \check{P}_i;$
 - (ii) for every $1 \le j \le i \le L$ we have:

(3)
$$s_i | \sigma_j \Vdash \dot{t} \notin \bigcup_{l=1}^i \bigcup_{B \in \check{\mathscr{B}}_i^l} [B];$$

(iii) for every $1 \le l < i \le L$, $1 \le j \le K$ and $B \in \mathcal{B}^i$ we have:

$$(4) s_i|\sigma_l \Vdash |\dot{\mu}_{n_i^l}|(\check{B}) < 1/\check{K}.$$

Let us now construct $s_{L+1} \leq_{F_N,N} s_L$, $\mathscr{B}^1_{L+1} \subseteq \mathscr{B}^1_L$, ..., $\mathscr{B}^L_{L+1} \subseteq \mathscr{B}^L_L$, $\mathscr{B}^{L+1}_{L+1} \subseteq \mathscr{B}^L$, $\mathscr{B}^{L+1}_{L+1} \subseteq \mathcal{A}$, $n_K^{L+1} > \ldots > n_1^{L+1} > n_K^L$ and $P_{L+1} > P_L$ satisfying also the properties

First, we modify a bit the condition s_L . By density, there exists $p \leq s_L | \sigma_{L+1}$ such that for every $1 \leq i \leq L$ either there exists unique $1 \leq j_i \leq K$ such that $p \Vdash \dot{t} \in [\mathring{B}^{i}_{j_{i}}],$ or for every $B \in \mathscr{B}^{i}_{L}$ we have $p \Vdash \dot{t} \notin [\mathring{B}].$ In the former case put $\mathscr{B}_{L+1}^i = \mathscr{B}_L^i \setminus \{B_{j_i}^i\}$, in the latter — $\mathscr{B}_{L+1}^i = \mathscr{B}_L^i$. By Lemma 2.6.b), there exists $q \leq_{F_N,N} s_L$ such that $q|\sigma_{L+1} = p$. Note that

(5)
$$q|\sigma_{L+1} \Vdash \dot{t} \notin \bigcup_{j=0}^{k} \left[\check{A}_{j} \right] \cup \bigcup_{l=1}^{L} \bigcup_{B \in \mathscr{B}_{L}} \left[B \right].$$

By Lemmas 2.4 and 2.6.b), there exist a condition $r \leq_{F_N,N} q$, a family $\mathscr{C} =$ $\{C_1,\ldots,C_Q\}$ of pairwise disjoint elements of \mathcal{A} disjoint with $(\bigvee_{j=1}^k A_j \vee \bigvee_{l=1}^L \bigvee_{j=1}^L \mathcal{B}_{L+1}^l)$, where $Q = K \cdot L \cdot P_L + K$, a sequence $m_Q > \ldots > m_1 > n_K^L$ of natural numbers and a natural number $P_{L+1} > P_L$ such that for every $1 \le j \le Q$ we have:

(6)
$$r|\sigma_{L+1} \Vdash |\dot{\mu}_{m_j}(\check{C}_j)| > \sum_{l=0}^k |\dot{\mu}_{m_j}(\check{A}_l)| + \sum_{l=1}^L \sum_{B \in \check{\mathscr{B}}_{L+1}^l} |\dot{\mu}_{m_j}(B)| + \check{N} + 2,$$

$$r|\sigma_{L+1} \Vdash \check{K} \cdot \|\dot{\mu}_{m_j}\| < \check{P}_{L+1}, \text{ and }$$

(7)
$$r|\sigma_{L+1} \Vdash \check{K} \cdot \|\dot{\mu}_{m_j}\| < \check{P}_{L+1}, \text{ and}$$
$$r|\sigma_{L+1} \Vdash \dot{t} \notin \bigcup_{j=1}^{Q} \left[\check{C}_j \right].$$

We now define s_{L+1} out of r in two steps. In the first step, by induction, the inequality (2) and Lemmas 2.5 and 2.6.b), we get a sequence $\mathscr{C}_L \subseteq \ldots \subseteq \mathscr{C}_1 \subseteq \mathscr{C}$ with $|\mathscr{C}_L| = K$, a sequence $k_K > \ldots > k_1$ of natural numbers and a sequence of conditions $p_L \leq_{F_N,N} \ldots \leq_{F_N,N} p_1 \leq_{F_N,N} r$ such that $\mathscr{C}_L = \{C_{k_1},\ldots,C_{k_K}\}$ and for every $1 \leq i \leq L, \ 1 \leq j \leq K$ and $C \in \mathscr{C}_i$ we have:

(8)
$$p_i | \sigma_i \Vdash \left| \dot{\mu}_{n_i^i} \right| (\check{C}) < 1/\check{K}.$$

For every $1 \leq j \leq K$ write $B_j^{L+1} = C_{k_j}$ and $n_j^{L+1} = m_{k_j}$, and put $\mathscr{B}^{L+1} = m_{k_j}$ $\{B_1^{L+1},\ldots,B_{\kappa}^{L+1}\}.$

In the second step, by induction and again Lemma 2.6.b), we get a sequence $t_L \leq_{F_N,N} \ldots \leq_{F_N,N} t_1 \leq_{F_N,N} p_L$ such that for every $1 \leq i \leq L$ either there exists $1 \leq j_i \leq K$ such that $t_i | \sigma_i \Vdash \dot{t} \in [\check{B}_{j_i}^{L+1}]$, or for every $1 \leq j \leq K$ we have $t_i | \sigma_i \Vdash \dot{t} \notin [\check{B}_j^{L+1}]$. Put:

(9)
$$\mathscr{B}_{L+1}^{L+1} = \mathscr{B} \setminus \left\{ B_{j_i}^{L+1} : \ t_i | \sigma_i \Vdash \dot{t} \in \left[\check{B}_{j_i}^{L+1} \right], 1 \le i \le L \right\}$$

and

$$s_{L+1} = t_L$$
.

Note that by (7) and (9), for every $1 \le i \le L + 1$ we have:

$$(10) s_{L+1}|\sigma_i \Vdash \dot{t} \not\in \bigcup_{B \in \tilde{\mathscr{B}}_{L+1}^{L+1}} [B].$$

After the K-th step of the induction has been finished, we are left with the non-empty collections $\mathscr{B}_K^1,\ldots,\mathscr{B}_K^K$ (some of them may be singletons), the sequence $n_K^K>n_{K-1}^K>\ldots>n_2^1>n_1^1>M$ and the conditions $s_K\leq_{F_N,N}\ldots\leq_{F_N,N}s_1\leq_{F_N,N}s$. From each \mathscr{B}_K^i pick one element $B_{l_i}^i$. Then, for every $1\leq i\leq K$ by (1) and (6) we have:

$$s_K |\sigma_i \Vdash |\dot{\mu}_{n_{l_i}^i}(\check{B}_{l_i}^i)| > \sum_{j=0}^k |\dot{\mu}_{n_{l_i}^i}(\check{A}_j)| + \sum_{j=1}^{i-1} |\dot{\mu}_{n_{l_i}^i}(\check{B}_{l_j}^j)| + \check{N} + 2,$$

and by (4) and (8):

$$s_K|\sigma_i \Vdash \big|\dot{\mu}_{n^i_{l_i}}\big|\Big(\bigvee_{j=i+1}^K \check{B}^j_{l_j}\Big) = \sum_{j=i+1}^K \big|\dot{\mu}_{n^i_{l_i}}\big|\big(\check{B}^i_{l_i}\big) < \check{K} \cdot 1/\check{K} = 1,$$

and finally by (3), (5) and (10):

$$s_K | \sigma_i \Vdash \dot{t} \notin \bigcup_{j=1}^K \left[\check{B}_{l_j}^j \right].$$

Put:

$$s^* = s_K$$

and for every $1 \le i \le K$:

$$B_i = B_{l_i}^i$$
 and $n_i = n_{l_i}^i$.

By Lemma 2.6.a) we immediately obtain the following corollary.

Corollary 2.8. Let $A_0, \ldots, A_k, K, M, N, \langle \dot{\mu}_n : n \in \omega \rangle, \dot{t}, s \text{ and } F_N \text{ be as in the assumptions of Lemma 2.7.}$

Then, there exist a condition $s^* \leq_{F_N,N} s$, a sequence B_1, \ldots, B_K of pairwise disjoint elements of \mathcal{A} disjoint with $\bigvee_{j=0}^k A_j$ and a sequence $n_K > \ldots > n_1 > M$ such that s^* forces that $\dot{t} \notin \bigcup_{i=1}^K \left[\check{B}_i \right]$ and that there exists $1 \leq i \leq \check{K}$ for which it holds:

$$|\dot{\mu}_{n_i}(\check{B}_i)| > \sum_{j=0}^k |\dot{\mu}_{n_i}(\check{A}_j)| + \sum_{j=1}^{i-1} |\dot{\mu}_{n_i}(\check{B}_j)| + \check{N} + 2$$

and

$$|\dot{\mu}_{n_i}| \Big(\bigvee_{j=i+1}^K \check{B}_j\Big) < 1.$$

Proposition 2.9. Let $\langle \dot{\mu}_n : n \in \omega \rangle$ be a sequence of names for measures on \mathcal{A} . Let $s \in \mathbb{S}^{\kappa}$ force that $\langle \dot{\mu}_n : n \in \omega \rangle$ is anti-Nikodym.

Then, there exists:

- an increasing sequence $\langle K_N \colon N \in \omega \rangle$ of natural numbers,
- a sequence $\langle B_i^N \colon 1 \leq i \leq K_N, \ N \in \omega \rangle$ of pairwise disjoint elements of \mathcal{A} , a sequence $\langle n_i^N \colon 1 \leq 1 \leq K_N, \ N \in \omega \rangle$ in ω such that $n_1^N > n_{K_M}^M > \ldots >$ n_1^M for every N > M, and
- a condition $s^* \leq s$ forcing for every $N \in \omega$ that there exists $1 \leq i \leq \check{K}_N$

$$\left|\dot{\mu}_{n_{i}^{N}}\big(\check{B}_{i}^{N}\big)\right| > \sum_{M=0}^{N-1} \sum_{j=1}^{K_{M}} \left|\dot{\mu}_{n_{i}^{N}}\big(\check{B}_{j}^{M}\big)\right| + \sum_{j=1}^{i-1} \left|\dot{\mu}_{n_{i}^{N}}\big(\check{B}_{j}^{N}\big)\right| + \check{N} + 2$$

$$|\dot{\mu}_{n_i^N}|\Big(\bigvee_{j=i+1}^{K_N} \check{B}_j^N\Big) < 1.$$

Proof. The conclusion follows by the inductive use of Corollary 2.8 (to obtain an appropriate fusion sequence $\langle s_N \colon N \in \omega \rangle$ of conditions in \mathbb{S}^{κ}) and the ultimate use of the fusion lemma (to obtain a fusion condition $s^* \in \mathbb{S}^{\kappa}$ such that $s^* \leq_{F_N,N} s_N$ for every $N \in \omega$; see Baumgartner [3, Lemma 1.8]).

3. Main result

Throughout this section \mathcal{A} is a ground model σ -complete Boolean algebra, i.e. $\mathcal{A} \in V$ and \mathcal{A} is σ -complete in V.

Lemma 3.1. Let $X \in [\omega]^{\omega}$ and $X = \bigcup_{k \in \omega} X_k$ be an infinite partition of X into infinite subsets. For every measure μ on A and an antichain $\langle B_N : N \in \omega \rangle$ in Athere exists $L \in \omega$ such that

$$|\mu|\Big(\bigvee_{N\in X_k}B_N\Big)<1$$

for every k > L.

Proof. Since μ is finitely additive and bounded, we have:

$$\sum_{k\in\omega}|\mu|\Big(\bigvee_{N\in X_k}B_N\Big)\leq |\mu|\Big(\bigvee_{N\in\omega}B_N\Big)\leq |\mu|\big(\mathbf{1}_{\mathcal{A}}\big)<\infty.$$

Lemma 3.2. Let $\langle B_N \colon N \in \omega \rangle \in V$ be an antichain in \mathcal{A} and $X \in [\omega]^{\omega} \cap V$. Let $s \in \mathbb{S}^{\kappa}$ be a condition, $N \in \omega$, $F_N \subseteq [\text{dom}(s)]^{<\omega}$ and $\dot{\mu}_1, \ldots, \dot{\mu}_K$ names for measures on \mathcal{A} . Then, there exist a condition $s^* \leq_{F_N,N} s$ and a set $X' \in [X]^{\omega} \cap V$ such that for every $1 \le i \le K$ we have:

$$s^* \Vdash \big|\dot{\mu}_i\big|\Big(\bigvee_{M \in \check{X}'} \check{B}_M\Big) < 1.$$

Proof. Let $X = \bigcup_{k \in \omega} X_k$ be an infinite partition of X into infinite sets. By Lemma 3.1 the following set is open dense below s:

$$D = \Big\{ p \leq s \colon \ \forall \ 1 \leq i \leq K \ \exists \ L \in \omega \ \forall \ k > L \colon \ p \Vdash \big| \dot{\mu}_i \big| \Big(\bigvee_{M \in \check{X}_k} \check{B}_M \Big) < 1 \Big\}.$$

By Lemma 2.6.c) there exists $s^* \leq_{F_N,N} s$ such that $s^* | \sigma \in D$ for every $\sigma \in l(F_N, N, s)$. Hence, for every $\sigma \in l(F_N, N, s)$ there exists $L_{\sigma} \in \omega$ such that for every $k > L_{\sigma}$ the condition $s^* | \sigma$ forces that:

$$|\dot{\mu}_i| \Big(\bigvee_{M \in \check{X}_k} \check{B}_M\Big) < 1.$$

Let $L = \max (L_{\sigma}: \sigma \in l(F_N, N, s)) + 1$. Put $X' = X_L$ and appeal to Lemma 2.6.a).

We are now in the position to prove the main theorem of this paper.

Theorem 3.3. Let G be an \mathbb{S}^{κ} -generic filter over V. Then, in V[G] the Boolean algebra \mathcal{A} has the Nikodym property.

Proof. Working in V[G] assume that \mathcal{A} does not have the Nikodym property. Then, there exists an anti-Nikodym sequence $\langle \mu_n \colon n \in \omega \rangle$ of measures on \mathcal{A} . Let $t \in K_{\mathcal{A}}$ be its Nikodym concentration point.

Now and to the end of the proof, let us work in the ground model V. Let $\langle \dot{\mu}_n \colon n \in \omega \rangle$ be a sequence of names for measures in the sequence $\langle \mu_n \colon n \in \omega \rangle$ and \dot{t} a name for t. There exists a condition $s \in G$ forcing that $\langle \dot{\mu}_n \colon n \in \omega \rangle$ is anti-Nikodym on $\check{\mathcal{A}}$ and \dot{t} is its Nikodym concentration point.

Let $\langle K_N \colon N \in \omega \rangle$, $\langle B_i^N \colon 1 \leq i \leq K_N, N \in \omega \rangle$, $\langle n_i^N \colon 1 \leq i \leq K_N, N \in \omega \rangle$ and $s^* \leq s$ be given by Proposition 2.9. We will find a condition $s^{**} \leq s^*$ and a set $Y \in [\omega]^{\omega} \cap V$ such that s^{**} forces that

$$\dot{B} = \bigvee_{N \in Y} \bigvee_{i=1}^{K_N} \check{B}_i^N \in \check{\mathcal{A}}$$

and

$$\sup_{n \in \omega} \left| \dot{\mu}_n(\dot{B}) \right| = \infty,$$

which will contradict the fact that s forces that $\langle \dot{\mu}_n \colon n \in \omega \rangle$ is pointwise bounded. To obtain s^{**} and Y we follow by induction and use Lemma 3.2 to construct a fusion sequence $\langle s_N \colon N \in \omega \rangle$ of conditions such that $s_0 = s^*$ and for every $N \in \omega$ we have $s_{N+1} \leq_{F_N,N} s_N$, where $F_N = \{\alpha_i^k \colon i,k < N\}$ and $\mathrm{dom}(s_N) = \{\alpha_k^N \colon k \in \omega\}$, and a decreasing sequence $\langle X_N \colon N \in \omega \rangle$ of infinite subsets of ω such that:

- $X_0 = \omega$ and for every $N \in \omega$ we have min $X_N < \min X_{N+1}$, and
- for every $N \in \omega$ and $L = \min X_N$ the condition s_N forces that:

$$\big|\dot{\mu}_{n_i^L}\big|\Big(\bigvee_{M\in \check{X}_{N+1}}\bigvee_{j=1}^{K_M}\check{B}_j^M\Big)<1$$

for every $1 \le i \le K_L$.

Let $s^{**} \in \mathbb{S}^{\kappa}$ be such a condition that $s^{**} \leq_{F_N,N} s_N$ for every $N \in \omega$ (see Baumgartner [3, Lemma 1.8]). Put:

$$Y = \{ \min X_N \colon N \in \omega \}$$

and

$$B = \bigvee_{N \in Y} \bigvee_{i=1}^{K_N} B_i^N.$$

Then, $B \in \mathcal{A}$ and, since $\langle X_N \colon N \in \omega \rangle$ is decreasing, s^{**} forces that for every $N \in Y$ and $1 \le i \le K_N$ the following inequality holds:

$$\big|\dot{\mu}_{n_i^N}\big|\Big(\bigvee_{\substack{M\in Y\\M>N}}\bigvee_{j=1}^{K_M}\check{B}_j^M\Big)<1.$$

Finally, since $s^{**} \leq s^*$, s^{**} forces for every $N \in Y$ that there exists $1 \leq i \leq K_N$ such that

$$\left|\dot{\mu}_{n_{i}^{N}}(\check{B}_{i}^{N})\right| > \sum_{\substack{M \in Y \\ M < N}} \sum_{j=1}^{K_{M}} \left|\dot{\mu}_{n_{i}^{N}}(\check{B}_{j}^{M})\right| + \sum_{j=1}^{i-1} \left|\dot{\mu}_{n_{i}^{N}}(\check{B}_{j}^{N})\right| + \check{N} + 2$$

and

$$\left|\dot{\mu}_{n_i^N}\right|\left(\bigvee_{j=i+1}^{K_N} \check{B}_j^N\right) < 1,$$

and hence:

$$\begin{split} |\dot{\mu}_{n_{i}^{N}}(\check{B})| &= |\dot{\mu}_{n_{i}^{N}}\Big(\bigvee_{\substack{M \in Y \\ M < N}}\bigvee_{j=1}^{K_{M}} \check{B}_{j}^{M}\Big) + \dot{\mu}_{n_{i}^{N}}\Big(\bigvee_{j=1}^{i-1} \check{B}_{j}^{N}\Big) + \dot{\mu}_{n_{i}^{N}}\Big(\check{B}_{i}^{N}\Big) + \\ &+ \dot{\mu}_{n_{i}^{N}}\Big(\bigvee_{j=i+1}^{K_{N}} \check{B}_{j}^{N}\Big) + \dot{\mu}_{n_{i}^{N}}\Big(\bigvee_{\substack{M \in Y \\ M > N}}\bigvee_{j=1}^{K_{M}} \check{B}_{j}^{M}\Big)| \geq \\ &\geq |\dot{\mu}_{n_{i}^{N}}\big(\check{B}_{i}^{N}\big)| - \sum_{\substack{M \in Y \\ M < N}}\sum_{j=1}^{K_{M}} |\dot{\mu}_{n_{i}^{N}}\Big(\check{B}_{j}^{M}\Big)| - \sum_{j=1}^{i-1} |\dot{\mu}_{n_{i}^{N}}\Big(\check{B}_{j}^{N}\Big)| - \\ &- |\dot{\mu}_{n_{i}^{N}}|\Big(\bigvee_{j=i+1}^{K_{N}} \check{B}_{j}^{N}\Big) - |\dot{\mu}_{n_{i}^{N}}|\Big(\bigvee_{\substack{M \in Y \\ M > N}}\bigvee_{j=1}^{K_{M}} \check{B}_{j}^{M}\Big) \geq \\ &> \check{N} + 2 - 1 - 1 = \check{N}. \end{split}$$

Thus, s^{**} forces that for every $N \in \omega$ there exists n such that $|\dot{\mu}_n(\check{B})| > N$ and hence s^{**} forces that $\sup_{n \in \omega} |\dot{\mu}_n(\check{B})| = \infty$.

Since the forcing \mathbb{S}^{κ} preserves ω_1 and $\kappa = \mathfrak{c}$ in any \mathbb{S}^{κ} -generic extension (see Baumgartner [3, Theorems 1.11 and 1.14]), we immediately obtain the following corollary.

Corollary 3.4. Assume that V is a model of ZFC+CH. If G is an \mathbb{S}^{κ} -generic filter, then in V[G] the relations $\omega_1 < \kappa = \mathfrak{c}$ hold and \mathcal{A} is an example of a Boolean algebra with the Nikodym property and of cardinality ω_1 .

4. Concluding remarks

4.1. The Vitali–Hahn–Sacks property. Schachermayer [12, Theorem 2.5] proved that a Boolean algebra \mathcal{A} has simultaneously the Nikodym property and the Grothendieck property if and only if \mathcal{A} has the Vitali–Hahn-Saks property, i.e. every pointwise convergent sequence of measures on \mathcal{A} is uniformly exhaustive. Thus, Theorem 3.3 and Brech's result [4, Theorem 3.1] imply together that if \mathcal{A} is a σ -complete Boolean algebra in the ground model V, then it has the Vitali–Hahn–Saks property in the \mathbb{S}^{κ} -generic extension V[G]. In particular, as in Corollary 3.4, this yields a simple consistent example of a Boolean algebra with the Vitali–Hahn–Saks property and of cardinality strictly less than \mathfrak{c} .

4.2. Cardinal characteristics of the continuum. In Sobota [14], the first author studied relations between the Nikodym property and cardinal characteristics of the continuum. In particular, the Nikodym number $\mathfrak n$ denoting the smallest size of an infinite Boolean algebra with the Nikodym property was introduced and the inequality $\mathfrak n \geq \max \left(\mathfrak b, \mathfrak s, \operatorname{cov}(\mathcal M) \right)$ was established in ZFC, where $\mathfrak b$ denotes the bounding number, $\mathfrak s$ — the splitting number and $\operatorname{cov}(\mathcal M)$ — the covering of category. It was also proved in ZFC, however in a quite complicated manner, that $\mathfrak n \leq \kappa$ for all cardinal numbers κ such that $\operatorname{cof}(\mathcal N) \leq \kappa = \operatorname{cof}\left(\left[\kappa\right]^\omega\right)$, where $\operatorname{cof}(\mathcal N)$ denotes the cofinality of measure. Since $\operatorname{cof}(\mathcal N) = \omega_1$ in the side-by-side Sacks forcing extensions and $\operatorname{cof}(\left[\omega_n\right]^\omega) = \omega_n$ in ZFC for all $n \in \omega$, it follows that $\mathfrak n = \omega_1$ in the side-by-side Sacks model and the algebra constructed in Sobota [14] witnesses this fact. However, Theorem 3.3 provides much simpler examples, namely all infinite ground model σ -complete Boolean algebras.

Since $\mathfrak{n} \geq \max (\mathfrak{b}, \mathfrak{s}, \operatorname{cov}(\mathcal{M}))$, the natural question about the relation of the dominating number \mathfrak{d} and the Nikodym number \mathfrak{n} arises. Obviously, under Martin's axiom it holds that $\omega_1 < \mathfrak{n} = \mathfrak{d} = \mathfrak{c}$ and Theorem 3.3 yields consistently that $\mathfrak{n} = \mathfrak{d} = \omega_1 < \mathfrak{c}$. However, we know neither whether any of the two relations $\mathfrak{d} < \mathfrak{n}$ and $\mathfrak{d} > \mathfrak{n}$ may be consistently true, nor whether any of the relations $\mathfrak{d} \leq \mathfrak{n}$ and $\mathfrak{d} \geq \mathfrak{n}$ holds in ZFC.

References

- [1] A. Aizpuru, Relaciones entre propiedades de supremo y propiedades de inerpolación en álgebras de Boole, Collect. Math. 39 (1988), 115–125.
- [2] A. Aizpuru, On the Grothendieck and Nikodym properties of Boolean algebras, Rocky Mountain J. Math. 22 (1992), no. 1, 1–10.
- [3] J.E. Baumgartner, Sacks forcing and the total failure of Martin's axiom, Topol. Appl. 19 (1985), 211-225.
- [4] C. Brech, On the density of Banach spaces C(K) with the Grothendieck property, Proc. Amer. Math. Soc. 134 (2006), no 12, 3653–3663.
- [5] R.B. Darst, On a theorem of Nikodym with applications to weak convergence and von Neumann algebras, Pacific J. Math. 23 (1967), no. 3, 473–477.
- [6] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, 1984.
- [7] J. Diestel, J.J. Uhl, Vector measures, American Mathematical Society, 1977.
- [8] F.J. Freniche, The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interpolation property, Proc. Amer. Math. Soc. 92 (1984), no. 3, 362–366.
- [9] S. Geschke, S. Quickert, On Sacks forcing and the Sacks property in Classical and new paradigms of computation and their complexity hierarchies, conference Foundations of the Formal Sciences III, Trends in Logic 23 (2004), 95–139.
- [10] R. Haydon, A nonreflexive Grothendieck space that does not contain ℓ_{∞} , Israel J. Math. 40 (1981), no. 1, 65–73.
- [11] A. Moltó, On the Vitali-Hahn-Saks theorem, Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 163–173
- [12] W. Schachermayer, On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras, Dissertationes Math. (Rozprawy Mat.) 214 (1982).
- [13] G.L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), no. 1, 267–280.
- [14] D. Sobota The Nikodym property and cardinal characteristics of the continuum, preprint, 2017.
- [15] M. Valdivia, On Nikodym boundedness property, Rev. Real Acad. Cien. Ex., Fis. Natur. Serie A. Matematicas 107 (2013), no. 2, 355–372.

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Strasse $25,\,1090$ Wien, Austria

 $E\text{-}mail\ address:$ damian.sobota@univie.ac.at URL: www.logic.univie.ac.at/~dsobota $E\text{-}mail\ address:$ lzdomsky@gmail.com URL: www.logic.univie.ac.at/~lzdomsky