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Abstract. We prove that if A is a σ-complete Boolean algebra in a ground

model V of set theory, then A has the Nikodym property in every side-by-side
Sacks forcing extension V [G], i.e. every pointwise bounded sequence of mea-

sures on A in V [G] is uniformly bounded. This gives a consistent example of a

class of infinite Boolean algebras with the Nikodym property and of cardinality
strictly less than the continuum.

1. Introduction

Let A be a Boolean algebra. A sequence of measures
〈
µn : n ∈ ω

〉
on A is

pointwise bounded if supn∈ω
∣∣µn(A)

∣∣ < ∞ for every A ∈ A and it is uniformly

bounded if supn∈ω
∥∥µn∥∥ < ∞. The Nikodym Boundedness Theorem states that

if A is σ-complete, then every pointwise bounded sequence of measures on A is
uniformly bounded. This principle, due to its numerous applications, is one of the
most important results in the theory of vector measures, see Diestel and Uhl [7,
Section I.3].

Since σ-completeness is rather a strong property of Boolean algebras, Schacher-
mayer [12] made a detailed study of the Nikodym theorem and introduced the
Nikodym property for general Boolean algebras.

Definition 1.1. A Boolean algebra A has the Nikodym property if every pointwise
bounded sequence of measures on A is uniformly bounded.

The property has been studied by many authors, e.g. Darst [5], Seever [13],
Haydon [10], Moltó [11], Freniche [8], Aizpuru [1, 2] or Valdivia [15].

Let us pose the following question. Let V be a model of ZFC+CH and A ∈ V be
a σ-complete Boolean algebra of cardinality equal to the continuum c. Let P be a
notion of forcing preserving ω1 and G its generic filter over V . Assume that in the
extension V [G] the CH does not hold. Then, A will have cardinality ω1 in V [G],
and hence it will no longer be σ-complete. However, will A still have the Nikodym
property?

Brech [4, Theorem 3.1] proved that if P is the side-by-side Sacks forcing Sκ for
some regular cardinal number κ, then A will have the Grothendieck property in
V [G], i.e. every sequence of measures in V [G] which is weak* convergent on A
is also weakly convergent. The Nikodym and Grothendieck properties are closely
related to each other, see e.g. Schachermayer [12]. Thus, motivated by Brech’s
result, we studied the preservation of the Nikodym property by the Sacks forcing
Sκ and proved that if A is a σ-complete Boolean algebra in V , then A has the
Nikodym property in the Sκ-generic extension V [G] (Theorem 3.3).

Complementing the result of Brech was not the only reason we dealt with the
side-by-side Sacks forcing Sκ instead of iterations. The other one was the fact the
size of the continuum can be arbitrary large when forcing with Sκ (c = κ holds in
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V [G]), while iterations give only models where the continuum is at most ω2 (see
Geschke and Quickert [9, Section 7]). This has an important consequence for us. In
Sobota [14], the first author studied the relation between the Nikodym property and
cardinal characteristics of the continuum. In particular, a ZFC construction of a
Boolean algebra with the Nikodym property and of cardinality equal to cof(N ), the
cofinality of the σ-idealN of subsets of the real line with zero Lebesgue measure, was
presented. Since the construction was rather intricate, the natural question about
the consistent existence of a simple example of a Boolean algebra with the Nikodym
property and cardinality strictly smaller than arbitrarily large c was posed. This
paper answers this question.

1.1. Terminology and notation. Throughout the paper A will always denote
a Boolean algebra. The Stone space of A is denoted by KA. Recall that by the
Stone duality theorem A is isomorphic with the algebra of clopen subsets of KA; if
A ∈ A, then [A] denotes the corresponding clopen subset of KA.

A subset X of a Boolean algebra A is an antichain if x∧y = 0A for every distinct
x, y ∈ X, i.e. every two distinct elements of X are disjoint. On the other hand, a
subset X of a poset P is an antichain if no distinct x, y ∈ X are compatible.

A measure µ : A → C on A is always a finitely additive complex-valued function
with finite variation. The measure µ has a unique Borel extension (denoted also by
µ) onto the space KA, preserving the variation of µ. By the Riesz representation

theorem the dual space C
(
KA
)∗

of the Banach space of continuous complex-valued
functions on KA is isometrically isomorphic with the space of all measures on A.
For more information concerning measure theory and Banach spaces, see the book
of Diestel [6].
V always denotes the set-theoretic universum. By Sκ we denote the side-by-side

product of κ many Sacks forcings S for some uncountable regular cardinal number
κ. Regarding all other notions related to the Sacks forcing, we follow the paper of
Baumgartner [3]. If s ∈ S and p ∈ s, then s|p =

{
q ∈ s : q ⊆ p or p ⊆ q

}
∈ S. If

n ∈ ω, then l(n, s) denotes the n-th forking level of s.

Let s, s′ ∈ Sκ, F ∈ [dom(s)]
<ω

and n ∈ ω. We put l(F, n, s) =
{
σ : dom(σ) =

F & ∀α ∈ F : σ(α) ∈ l(n, s(α))
}

. Note that |l(F, n, s)| = 2n|F |. We write s′ ≤F,n s
if s′ ≤ s and l(F, n, s′) = l(F, n, s). If σ : F → 2<ω is such that σ(α) ∈ s(α) for
every α ∈ F , then we write s|σ for a condition defined as (s|σ)(α) = s(α) for
α ∈ dom(s) \ F and (s|σ)(α) = s(α)|σ(α).

2. Anti-Nikodym sequences in the Sacks model

In this section, assuming in a forcing extension the existence of sequences of
measures on a ground model Boolean algebra A which are pointwise bounded but
not uniformly bounded, we build (Proposition 2.9) in the ground model a special
antichain in A which will be crucial in proving the main theorem of the paper —
Theorem 3.3.

Definition 2.1. A sequence
〈
µn : n ∈ ω

〉
of measures on a Boolean algebra A is

called anti-Nikodym if it is pointwise bounded but not uniformly bounded.

Lemma 2.2. If a sequence
〈
µn : n ∈ ω

〉
of measures on a Boolean algebra A is

anti-Nikodym, then there exists a point t ∈ KA such that for every clopen neigh-
borhood U ∈ A of t we have supn∈ω

∥∥µn � U
∥∥ =∞.

The point t will be called a Nikodym concentration point of the sequence
〈
µn : n ∈

ω
〉
.
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Proof. Assume that for every point t ∈ KA there exists At ∈ A such that t ∈ [At]
and

〈
µn � At : n ∈ ω

〉
is uniformly bounded. Then, by compactness of KA there

exist t1, . . . , tn ∈ KA such that At1 ∨ . . . ∨Atm = 1A. This in turn implies that

sup
n∈ω

∥∥µn∥∥ = sup
n∈ω

∣∣µn∣∣(1A) ≤ sup
n∈ω

∣∣µn∣∣(At1)+ . . .+ sup
n∈ω

∣∣µn∣∣(Atm) =

sup
n∈ω

∥∥µn � At1
∥∥+ . . .+ sup

n∈ω

∥∥µn � Atm
∥∥ <∞,

which is a contradiction, since
〈
µn : n ∈ ω

〉
is not uniformly bounded. �

(Note that in the above proof we did not use the pointwise boundedness of
〈
µn : n ∈

ω
〉
.)

Lemma 2.3. Let
〈
µn : n ∈ ω

〉
be an anti-Nikodym sequence on A and let t ∈ KA

be its Nikodym concentration point. Assume that t ∈ [A] for some A ∈ A. Then, for
every positive real number ρ and natural number M there exist an element B ∈ A
and a natural number n > M such that:

• B ≤ A and t ∈ [A \B],
•
∣∣µn(B)

∣∣ > ρ.

Proof. Since
〈
µn : n ∈ ω

〉
is anti-Nikodym and t ∈ [A], there exist C ≤ A and

n > M such that∣∣µn(C)
∣∣ > sup

m∈ω

∣∣µm(A)
∣∣+ ρ

and hence∣∣µn(A \ C)
∣∣ =

∣∣µn(C)− µn(A)
∣∣ ≥ ∣∣µn(C)

∣∣− ∣∣µn(A)
∣∣ > ρ.

If t ∈ [C], then put B = A \ C, otherwise put B = C. �

To the end of this section let A be a ground model infinite Boolean algebra.

Lemma 2.4. Let A0, . . . , Ak ∈ A, K, M ∈ ω. Let
〈
µ̇n : n ∈ ω

〉
be a sequence of

names for measures on A, ṫ a name for a point in KA and ρ̇ a name for a positive
real number. Let s ∈ Sκ force that

〈
µ̇n : n ∈ ω

〉
is anti-Nikodym, ṫ is its Nikodym

concentration point and ṫ /∈
⋃k
j=0

[
Ǎj
]
.

Then, there exist a sequence B1, . . . , BK of pairwise disjoint elements of A dis-

joint with
∨k
j=0Aj, a sequence nK > . . . > n1 > M of natural numbers and a

condition s∗ ≤ s forcing for every 1 ≤ i ≤ K that ṫ /∈
[
B̌i
]

and
∣∣µ̇ni

(
B̌i
)∣∣ > ρ̇.

Proof. Use Lemma 2.3 inductively K times to obtain sequences B1, . . . , BK ∈ A,
nK > . . . > n1 > M and sK ≤ . . . ≤ s1 ≤ s such that for every 1 ≤ i ≤ K

the element Bi is disjoint with
∨k
j=0Aj ∨

∨i−1
l=1 Bl and the condition si forces that

ṫ /∈
[
B̌i
]

and
∣∣µ̇ni

(
B̌i
)∣∣ > ρ̇. Let s∗ = sK . �

Using Lemma 2.4, we will usually assume that s 
 ρ̇ =
∑k
j=0 supm∈ω

∣∣µ̇m(Ǎj)∣∣+
Ň + 2 for some given N ∈ ω (or something alike).

Lemma 2.5. Let K,P ∈ ω. Let µ1, . . . , µK be a sequence of K measures on A.
Assume that K · ‖µj‖ < P for every 1 ≤ j ≤ K. Then, for every Q > K · P
and every pairwise disjoint elements C1, . . . , CQ of A there exist natural numbers
k1 < . . . < kQ−K·P such that∣∣µj∣∣(Ckl) < 1/K

for every 1 ≤ j ≤ K and 1 ≤ l ≤ Q−K · P .
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Proof. Let Q > K · P and C1, . . . , CQ be an antichain in A. Notice that if there
exist k1 < . . . < kP such that∣∣µj∣∣(Ckl) ≥ 1/K

for some 1 ≤ j ≤ K and every 1 ≤ l ≤ P , then we have:

‖µj‖ ≥
P∑
l=1

∣∣µj∣∣(Ckl) ≥ P · 1/K > K · ‖µj‖ · 1/K = ‖µj‖,

a contradiction, so for every 1 ≤ j ≤ K there must exist at most P − 1 elements
Ckl ’s such that∣∣µj∣∣(Ckl) ≥ 1/K.

Hence, the thesis of the lemma holds for some Q−K · (P −1) ≥ Q−K ·P elements
Ckl ’s. �

The following lemma is standard, cf. Baumgartner [3, Lemmas 1.5–1.8].

Lemma 2.6. Let s ∈ Sκ, N ∈ ω and FN ∈ [dom(s)]
<ω

.

a)
{
s|σ : σ ∈ l(FN , N, s)

}
is an antichain in Sκ and s =

⋃
σ∈l(FN ,N,s)

s|σ.

b) If σ ∈ l(FN , N, s) and p ≤ s|σ, then there exists q ≤F,N s such that q|σ = p.
c) If D ⊆ Sκ is open dense below s, then there exists q ≤FN ,N s such that

q|σ ∈ D for every σ ∈ l(FN , N, s).
�

Lemma 2.7. Let A0, . . . , Ak, M ,
〈
µ̇n : n ∈ ω

〉
, ṫ and s be as in the assumptions

of Lemma 2.4. Let N ∈ ω and FN ∈ [dom(s)]
<ω

. Put K = |l(FN , N, s)| and
enumerate l(FN , N, s) =

〈
σi : 1 ≤ i ≤ K

〉
.

Then, there exist a condition s∗ ≤FN ,N s, a sequence B1, . . . , BK of pairwise

disjoint elements of A disjoint with
∨k
j=0Aj and a sequence nK > . . . > n1 > M

such that for every 1 ≤ i ≤ K the condition s∗|σi forces that:

•
∣∣µ̇ni

(
B̌i
)∣∣ >∑k

j=0

∣∣µ̇ni

(
Ǎj
)∣∣+

∑i−1
j=1

∣∣µ̇ni

(
B̌j
)∣∣+ Ň + 2,

•
∣∣µ̇ni

∣∣(∨K
j=i+1 B̌j

)
< 1,

• ṫ /∈
⋃K
i=1

[
B̌i
]
.

Proof. The proof basically goes by induction in K steps — each step for one σi
(1 ≤ i ≤ K). We start simply as follows — by Lemmas 2.4 and 2.6.b) there exist
a condition s1 ≤FN ,N s, a family B1

1 =
{
B1

1 , . . . , B
1
K

}
of pairwise disjoint elements

of A disjoint with
∨k
j=0Aj , a sequence n1

K > . . . > n1
1 > M of natural numbers

and a natural number P1 > 0 such that for every 1 ≤ j ≤ K we have:

s1|σ1 

∣∣µ̇n1

j

(
B̌1
j

)∣∣ > k∑
l=0

∣∣µ̇n1
j

(
Ǎl
)∣∣+ Ň + 2,

s1|σ1 
 Ǩ ·
∥∥µ̇n1

j

∥∥ < P̌1, and

s1|σ1 
 ṫ /∈
⋃

B∈B̌1
1

[B] .

Assume now that for some 1 ≤ L < K we have found:

• a sequence of conditions sL ≤FN ,N . . . ≤FN ,N s1 ≤FN ,N s,
• for every 1 ≤ i ≤ L a sequence of families Bi

L ⊆ . . . ⊆ Bi
i ⊆ Bi ⊆

A of pairwise disjoint non-zero elements of A with Bi
L 6= ∅ and Bi ={

Bi1, . . . , B
i
K

}
,
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• a sequence of natural numbers nLK > . . . > nL1 > nL−1
K > . . . > nL−1

1 >
. . . > n1

K > . . . > n1
1 > M , and

• a sequence of natural numbers PL > . . . > P1 > 0,

such that:

(i) for every 1 ≤ i ≤ L and 1 ≤ j ≤ K we have:

(1) si|σi 

∣∣µ̇ni

j

(
B̌ij
)∣∣ > k∑

l=0

∣∣µ̇ni
j

(
Ǎl
)∣∣+

i−1∑
l=1

∑
B∈B̌l

i

∣∣µ̇ni
j
(B)

∣∣+ Ň + 2, and

(2) si|σi 
 Ǩ ·
∥∥µ̇ni

j

∥∥ < P̌i;

(ii) for every 1 ≤ j ≤ i ≤ L we have:

(3) si|σj 
 ṫ /∈
i⋃
l=1

⋃
B∈B̌l

i

[B] ;

(iii) for every 1 ≤ l < i ≤ L, 1 ≤ j ≤ K and B ∈ Bi we have:

(4) si|σl 

∣∣µ̇nl

j

∣∣(B̌) < 1/Ǩ.

Let us now construct sL+1 ≤FN ,N sL, B1
L+1 ⊆ B1

L, . . . ,B
L
L+1 ⊆ BL

L ,B
L+1
L+1 ⊆

BL+1 ⊆ A, nL+1
K > . . . > nL+1

1 > nLK and PL+1 > PL satisfying also the properties
(i)–(iii).

First, we modify a bit the condition sL. By density, there exists p ≤ sL|σL+1

such that for every 1 ≤ i ≤ L either there exists unique 1 ≤ ji ≤ K such that
p 
 ṫ ∈

[
B̌iji
]
, or for every B ∈ Bi

L we have p 
 ṫ /∈
[
B̌
]
. In the former case put

Bi
L+1 = Bi

L \
{
Biji
}

, in the latter — Bi
L+1 = Bi

L. By Lemma 2.6.b), there exists
q ≤FN ,N sL such that q|σL+1 = p. Note that

(5) q|σL+1 
 ṫ /∈
k⋃
j=0

[
Ǎj
]
∪

L⋃
l=1

⋃
B∈B̌l

L+1

[B] .

By Lemmas 2.4 and 2.6.b), there exist a condition r ≤FN ,N q, a family C ={
C1, . . . , CQ

}
of pairwise disjoint elements ofA disjoint with

(∨k
j=1Aj∨

∨L
l=1

∨
Bl
L+1

)
,

where Q = K · L · PL + K, a sequence mQ > . . . > m1 > nLK of natural numbers
and a natural number PL+1 > PL such that for every 1 ≤ j ≤ Q we have:

(6) r|σL+1 

∣∣µ̇mj

(
Čj
)∣∣ > k∑

l=0

∣∣µ̇mj

(
Ǎl
)∣∣+

L∑
l=1

∑
B∈B̌l

L+1

∣∣µ̇mj (B)
∣∣+ Ň + 2,

r|σL+1 
 Ǩ ·
∥∥µ̇mj

∥∥ < P̌L+1, and

(7) r|σL+1 
 ṫ /∈
Q⋃
j=1

[
Čj
]
.

We now define sL+1 out of r in two steps. In the first step, by induction, the
inequality (2) and Lemmas 2.5 and 2.6.b), we get a sequence CL ⊆ . . . ⊆ C1 ⊆ C
with

∣∣CL∣∣ = K, a sequence kK > . . . > k1 of natural numbers and a sequence of

conditions pL ≤FN ,N . . . ≤FN ,N p1 ≤FN ,N r such that CL =
{
Ck1 , . . . , CkK

}
and

for every 1 ≤ i ≤ L, 1 ≤ j ≤ K and C ∈ Ci we have:

(8) pi|σi 

∣∣µ̇ni

j

∣∣(Č) < 1/Ǩ.

For every 1 ≤ j ≤ K write BL+1
j = Ckj and nL+1

j = mkj , and put BL+1 ={
BL+1

1 , . . . , BL+1
K

}
.
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In the second step, by induction and again Lemma 2.6.b), we get a sequence
tL ≤FN ,N . . . ≤FN ,N t1 ≤FN ,N pL such that for every 1 ≤ i ≤ L either there

exists 1 ≤ ji ≤ K such that ti|σi 
 ṫ ∈
[
B̌L+1
ji

]
, or for every 1 ≤ j ≤ K we have

ti|σi 
 ṫ /∈
[
B̌L+1
j

]
. Put:

(9) BL+1
L+1 = B \

{
BL+1
ji

: ti|σi 
 ṫ ∈
[
B̌L+1
ji

]
, 1 ≤ i ≤ L

}
and

sL+1 = tL.

Note that by (7) and (9), for every 1 ≤ i ≤ L+ 1 we have:

(10) sL+1|σi 
 ṫ 6∈
⋃

B∈B̌L+1
L+1

[B] .

After the K-th step of the induction has been finished, we are left with the non-
empty collections B1

K , . . . ,B
K
K (some of them may be singletons), the sequence

nKK > nKK−1 > . . . > n1
2 > n1

1 > M and the conditions sK ≤FN ,N . . . ≤FN ,N

s1 ≤FN ,N s. From each Bi
K pick one element Bili . Then, for every 1 ≤ i ≤ K by

(1) and (6) we have:

sK |σi 

∣∣µ̇ni

li

(
B̌ili
)∣∣ > k∑

j=0

∣∣µ̇ni
li

(
Ǎj
)∣∣+

i−1∑
j=1

∣∣µ̇ni
li

(B̌jlj )
∣∣+ Ň + 2,

and by (4) and (8):

sK |σi 

∣∣µ̇ni

li

∣∣( K∨
j=i+1

B̌jlj

)
=

K∑
j=i+1

∣∣µ̇ni
li

∣∣(B̌ili) < Ǩ · 1/Ǩ = 1,

and finally by (3), (5) and (10):

sK |σi 
 ṫ /∈
K⋃
j=1

[
B̌jlj

]
.

Put:

s∗ = sK

and for every 1 ≤ i ≤ K:

Bi = Bili and ni = nili .

�

By Lemma 2.6.a) we immediately obtain the following corollary.

Corollary 2.8. Let A0, . . . , Ak, K, M , N ,
〈
µ̇n : n ∈ ω

〉
, ṫ, s and FN be as in the

assumptions of Lemma 2.7.
Then, there exist a condition s∗ ≤FN ,N s, a sequence B1, . . . , BK of pairwise

disjoint elements of A disjoint with
∨k
j=0Aj and a sequence nK > . . . > n1 > M

such that s∗ forces that ṫ /∈
⋃K
i=1

[
B̌i
]

and that there exists 1 ≤ i ≤ Ǩ for which it
holds: ∣∣µ̇ni

(
B̌i
)∣∣ > k∑

j=0

∣∣µ̇ni

(
Ǎj
)∣∣+

i−1∑
j=1

∣∣µ̇ni

(
B̌j
)∣∣+ Ň + 2

and ∣∣µ̇ni

∣∣( K∨
j=i+1

B̌j

)
< 1.
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�

Proposition 2.9. Let
〈
µ̇n : n ∈ ω

〉
be a sequence of names for measures on A.

Let s ∈ Sκ force that
〈
µ̇n : n ∈ ω

〉
is anti-Nikodym.

Then, there exists:

• an increasing sequence
〈
KN : N ∈ ω

〉
of natural numbers,

• a sequence
〈
BNi : 1 ≤ i ≤ KN , N ∈ ω

〉
of pairwise disjoint elements of A,

• a sequence
〈
nNi : 1 ≤ 1 ≤ KN , N ∈ ω

〉
in ω such that nN1 > nMKM

> . . . >

nM1 for every N > M , and
• a condition s∗ ≤ s forcing for every N ∈ ω that there exists 1 ≤ i ≤ ǨN

such that:∣∣µ̇nN
i

(
B̌Ni
)∣∣ > N−1∑

M=0

KM∑
j=1

∣∣µ̇nN
i

(
B̌Mj

)∣∣+

i−1∑
j=1

∣∣µ̇nN
i

(
B̌Nj
)∣∣+ Ň + 2

and∣∣µ̇nN
i

∣∣( KN∨
j=i+1

B̌Nj

)
< 1.

Proof. The conclusion follows by the inductive use of Corollary 2.8 (to obtain an
appropriate fusion sequence

〈
sN : N ∈ ω

〉
of conditions in Sκ) and the ultimate use

of the fusion lemma (to obtain a fusion condition s∗ ∈ Sκ such that s∗ ≤FN ,N sN
for every N ∈ ω; see Baumgartner [3, Lemma 1.8]). �

3. Main result

Throughout this section A is a ground model σ-complete Boolean algebra, i.e.
A ∈ V and A is σ-complete in V .

Lemma 3.1. Let X ∈ [ω]
ω

and X =
⋃
k∈ωXk be an infinite partition of X into

infinite subsets. For every measure µ on A and an antichain
〈
BN : N ∈ ω

〉
in A

there exists L ∈ ω such that

|µ|
( ∨
N∈Xk

BN

)
< 1

for every k > L.

Proof. Since µ is finitely additive and bounded, we have:∑
k∈ω

|µ|
( ∨
N∈Xk

BN

)
≤ |µ|

( ∨
N∈ω

BN

)
≤ |µ|

(
1A
)
<∞.

�

Lemma 3.2. Let
〈
BN : N ∈ ω

〉
∈ V be an antichain in A and X ∈ [ω]

ω ∩ V .

Let s ∈ Sκ be a condition, N ∈ ω, FN ⊆ [dom(s)]
<ω

and µ̇1, . . . , µ̇K names for
measures on A. Then, there exist a condition s∗ ≤FN ,N s and a set X ′ ∈ [X]

ω ∩ V
such that for every 1 ≤ i ≤ K we have:

s∗ 

∣∣µ̇i∣∣( ∨

M∈X̌′

B̌M

)
< 1.

Proof. Let X =
⋃
k∈ωXk be an infinite partition of X into infinite sets. By Lemma

3.1 the following set is open dense below s:

D =
{
p ≤ s : ∀ 1 ≤ i ≤ K ∃ L ∈ ω ∀ k > L : p 


∣∣µ̇i∣∣( ∨
M∈X̌k

B̌M

)
< 1
}
.
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By Lemma 2.6.c) there exists s∗ ≤FN ,N s such that s∗|σ ∈ D for every σ ∈
l(FN , N, s). Hence, for every σ ∈ l(FN , N, s) there exists Lσ ∈ ω such that for
every k > Lσ the condition s∗|σ forces that:∣∣µ̇i∣∣( ∨

M∈X̌k

B̌M

)
< 1.

Let L = max
(
Lσ : σ ∈ l(FN , N, s)

)
+ 1. Put X ′ = XL and appeal to Lemma

2.6.a). �

We are now in the position to prove the main theorem of this paper.

Theorem 3.3. Let G be an Sκ-generic filter over V . Then, in V [G] the Boolean
algebra A has the Nikodym property.

Proof. Working in V [G] assume that A does not have the Nikodym property. Then,
there exists an anti-Nikodym sequence

〈
µn : n ∈ ω

〉
of measures on A. Let t ∈ KA

be its Nikodym concentration point.
Now and to the end of the proof, let us work in the ground model V . Let〈

µ̇n : n ∈ ω
〉

be a sequence of names for measures in the sequence
〈
µn : n ∈ ω

〉
and ṫ a name for t. There exists a condition s ∈ G forcing that

〈
µ̇n : n ∈ ω

〉
is

anti-Nikodym on Ǎ and ṫ is its Nikodym concentration point.
Let

〈
KN : N ∈ ω

〉
,
〈
BNi : 1 ≤ i ≤ KN , N ∈ ω

〉
,
〈
nNi : 1 ≤ i ≤ KN , N ∈ ω

〉
and s∗ ≤ s be given by Proposition 2.9. We will find a condition s∗∗ ≤ s∗ and a
set Y ∈ [ω]

ω ∩ V such that s∗∗ forces that

Ḃ =
∨
N∈Y

KN∨
i=1

B̌Ni ∈ Ǎ

and

sup
n∈ω

∣∣µ̇n(Ḃ)
∣∣ =∞,

which will contradict the fact that s forces that
〈
µ̇n : n ∈ ω

〉
is pointwise bounded.

To obtain s∗∗ and Y we follow by induction and use Lemma 3.2 to construct a
fusion sequence

〈
sN : N ∈ ω

〉
of conditions such that s0 = s∗ and for every N ∈ ω

we have sN+1 ≤FN ,N sN , where FN =
{
αki : i, k < N

}
and dom(sN ) =

{
αNk : k ∈

ω
}

, and a decreasing sequence
〈
XN : N ∈ ω

〉
of infinite subsets of ω such that:

• X0 = ω and for every N ∈ ω we have minXN < minXN+1, and
• for every N ∈ ω and L = minXN the condition sN forces that:

∣∣µ̇nL
i

∣∣( ∨
M∈X̌N+1

KM∨
j=1

B̌Mj

)
< 1

for every 1 ≤ i ≤ KL.

Let s∗∗ ∈ Sκ be such a condition that s∗∗ ≤FN ,N sN for every N ∈ ω (see Baum-
gartner [3, Lemma 1.8]). Put:

Y =
{

minXN : N ∈ ω
}

and

B =
∨
N∈Y

KN∨
i=1

BNi .
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Then, B ∈ A and, since
〈
XN : N ∈ ω

〉
is decreasing, s∗∗ forces that for every

N ∈ Y and 1 ≤ i ≤ KN the following inequality holds:∣∣µ̇nN
i

∣∣( ∨
M∈Y
M>N

KM∨
j=1

B̌Mj

)
< 1.

Finally, since s∗∗ ≤ s∗, s∗∗ forces for every N ∈ Y that there exists 1 ≤ i ≤ KN

such that∣∣µ̇nN
i

(
B̌Ni
)∣∣ > ∑

M∈Y
M<N

KM∑
j=1

∣∣µ̇nN
i

(
B̌Mj

)∣∣+

i−1∑
j=1

∣∣µ̇nN
i

(
B̌Nj
)∣∣+ Ň + 2

and ∣∣µ̇nN
i

∣∣( KN∨
j=i+1

B̌Nj

)
< 1,

and hence:∣∣µ̇nN
i

(B̌)
∣∣ =

∣∣µ̇nN
i

( ∨
M∈Y
M<N

KM∨
j=1

B̌Mj

)
+ µ̇nN

i

( i−1∨
j=1

B̌Nj

)
+ µ̇nN

i

(
B̌Ni
)

+

+ µ̇nN
i

( KN∨
j=i+1

B̌Nj

)
+ µ̇nN

i

( ∨
M∈Y
M>N

KM∨
j=1

B̌Mj

)∣∣ ≥
≥
∣∣µ̇nN

i

(
B̌Ni
)
| −

∑
M∈Y
M<N

KM∑
j=1

∣∣µ̇nN
i

(
B̌Mj

)∣∣− i−1∑
j=1

∣∣µ̇nN
i

(
B̌Nj
)∣∣−

−
∣∣µ̇nN

i

∣∣( KN∨
j=i+1

B̌Nj

)
−
∣∣µ̇nN

i

∣∣( ∨
M∈Y
M>N

KM∨
j=1

B̌Mj

)
≥

≥ Ň + 2− 1− 1 = Ň .

Thus, s∗∗ forces that for every N ∈ ω there exists n such that
∣∣µ̇n(B̌)

∣∣ > N and

hence s∗∗ forces that supn∈ω
∣∣µ̇n(B̌)

∣∣ =∞. �

Since the forcing Sκ preserves ω1 and κ = c in any Sκ-generic extension (see
Baumgartner [3, Theorems 1.11 and 1.14]), we immediately obtain the following
corollary.

Corollary 3.4. Assume that V is a model of ZFC+CH. If G is an Sκ-generic
filter, then in V [G] the relations ω1 < κ = c hold and A is an example of a Boolean
algebra with the Nikodym property and of cardinality ω1.

4. Concluding remarks

4.1. The Vitali–Hahn–Sacks property. Schachermayer [12, Theorem 2.5] proved
that a Boolean algebraA has simultaneously the Nikodym property and the Grothendieck
property if and only if A has the Vitali–Hahn-Saks property, i.e. every pointwise
convergent sequence of measures on A is uniformly exhaustive. Thus, Theorem 3.3
and Brech’s result [4, Theorem 3.1] imply together that if A is a σ-complete Boolean
algebra in the ground model V , then it has the Vitali–Hahn–Saks property in the
Sκ-generic extension V [G]. In particular, as in Corollary 3.4, this yields a simple
consistent example of a Boolean algebra with the Vitali–Hahn–Saks property and
of cardinality strictly less than c.
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4.2. Cardinal characteristics of the continuum. In Sobota [14], the first au-
thor studied relations between the Nikodym property and cardinal characteristics
of the continuum. In particular, the Nikodym number n denoting the smallest size
of an infinite Boolean algebra with the Nikodym property was introduced and the
inequality n ≥ max

(
b, s, cov(M)

)
was established in ZFC, where b denotes the

bounding number, s — the splitting number and cov(M) — the covering of cate-
gory. It was also proved in ZFC, however in a quite complicated manner, that n ≤ κ
for all cardinal numbers κ such that cof(N ) ≤ κ = cof

(
[κ]

ω )
, where cof(N ) de-

notes the cofinality of measure. Since cof(N ) = ω1 in the side-by-side Sacks forcing
extensions and cof([ωn]

ω
) = ωn in ZFC for all n ∈ ω, it follows that n = ω1 in the

side-by-side Sacks model and the algebra constructed in Sobota [14] witnesses this
fact. However, Theorem 3.3 provides much simpler examples, namely all infinite
ground model σ-complete Boolean algebras.

Since n ≥ max
(
b, s, cov(M)

)
, the natural question about the relation of the

dominating number d and the Nikodym number n arises. Obviously, under Martin’s
axiom it holds that ω1 < n = d = c and Theorem 3.3 yields consistently that
n = d = ω1 < c. However, we know neither whether any of the two relations d < n
and d > n may be consistently true, nor whether any of the relations d ≤ n and
d ≥ n holds in ZFC.
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