F_{σ} -ideals, colorings, and representation in Banach spaces

J. Lopez-Abad

Structures in Banach Spaces

March 17 - 21, 2025

Erwin Schrödinger Institute, Vienna, Austria

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections with combinatorics and descriptive set theory.

Introduction (I)

Collections of subsets $\mathcal{I} \subseteq \mathcal{P}(S)$ of a given set S that are closed under union and subsets.

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections with combinatorics and descriptive set theory.

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections with combinatorics and descriptive set theory. In this talk, we explore particularly rich relationships between F_{σ} -ideals and their representations within Banach spaces.

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections with combinatorics and descriptive set theory.

In this talk, we explore particularly rich relationships between F_{σ} -ideals and their representations within Banach spaces.

Additionally, we introduce and examine *coloring ideals*, which are ideals generated by homogeneous sets arising, in particular, from combinatorial colorings of the form $c : [\mathbb{N}]^k \to r$.

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections with combinatorics and descriptive set theory.

In this talk, we explore particularly rich relationships between F_{σ} -ideals and their representations within Banach spaces.

Additionally, we introduce and examine *coloring ideals*, which are ideals generated by homogeneous sets arising, in particular, from combinatorial colorings of the form $c : [\mathbb{N}]^k \to r$.

This talk is based on joint work with Víctor Olmos (as part of his PhD thesis) and C. Uzcátegui.

Preliminaries

Preliminaries

2 Tallness, *c*₀-saturation and summability.

- Preliminaries
- 2 Tallness, *c*₀-saturation and summability.
- **3** Representing non-pathological F_{σ} -ideals on spaces of continuous functions.

- Preliminaries
- 2 Tallness, *c*₀-saturation and summability.
- 3 Representing non-pathological F_{σ} -ideals on spaces of continuous functions.
- Coloring ideals; examples of pathological and non-pathological *c*-coloring ideals; universal *d*-colorings; tall colorings; the block sequence coloring and *c*₀.

The simplest F_{σ} -ideals are *summable ideals*,

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S : \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S : \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S \ : \ \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

$$\mathrm{FIN}(\varphi) := \{A \subseteq S \, : \, \varphi(A) < \infty\},\$$

for some *total lower semicontinuous submeasure* φ .

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S \ : \ \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

$$\mathrm{FIN}(\varphi) := \{ A \subseteq S \, : \, \varphi(A) < \infty \},\$$

for some *total lower semicontinuous submeasure* φ . This characterization leads to three categories:

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S : \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

$$\mathrm{FIN}(\varphi) := \{A \subseteq S \, : \, \varphi(A) < \infty\},\$$

for some *total lower semicontinuous submeasure* φ . This characterization leads to three categories:

1 Summable ideals, generated by measures.

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S : \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

$$\mathrm{FIN}(\varphi) := \{A \subseteq S \, : \, \varphi(A) < \infty\},\$$

for some *total lower semicontinuous submeasure* φ . This characterization leads to three categories:

- 1 Summable ideals, generated by measures.
- 2 Non-pathological ideals FIN(φ), generated by supremum of measures, $\varphi = \sup_k \varphi_k, \varphi_k$ measure.

The simplest F_{σ} -ideals are *summable ideals*,

$$\operatorname{FIN}(\mu) := \{ A \subseteq S \ : \ \mu(A) < \infty \},\$$

where μ is a *total measure* on *S*.

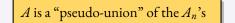
K. Mazur showed that any F_{σ} -ideal is structurally similar to summable ideals since each is representable as

$$\mathrm{FIN}(\varphi) := \{A \subseteq S \ : \ \varphi(A) < \infty\},\$$

for some *total lower semicontinuous submeasure* φ . This characterization leads to three categories:

- 1 Summable ideals, generated by measures.
- 2 Non-pathological ideals FIN(φ), generated by supremum of measures, $\varphi = \sup_k \varphi_k, \varphi_k$ measure.
- **3** Pathological ideals.

P-ideals extend the notion of summable ideals and are defined via a sequential condition:



S. Solecki showed that every analytic *P*-ideal can be represented as

S. Solecki showed that every analytic *P*-ideal can be represented as

$$\operatorname{Exh}(\varphi) := \{A \subseteq X : \lim_{n \to \infty} \varphi(A \setminus \{0, 1, \dots, n\}) = 0\}$$

using a lower semicontinuous submeasure φ .

S. Solecki showed that every analytic *P*-ideal can be represented as

$$\operatorname{Exh}(\varphi) := \{A \subseteq X : \lim_{n \to \infty} \varphi(A \setminus \{0, 1, \dots, n\}) = 0\}$$

using a lower semicontinuous submeasure φ . This provides a classification parallel to F_{σ} -ideals into summable, non-pathological, and pathological types.

L. Drewnowski and I. Labuda defined ideals associated with sequences in Banach spaces:

$$\mathcal{C}(\mathbf{x}) = \{A \subseteq \mathbb{N} : \sum_{n \in A} x_n \text{ is unconditionally convergent}\},\$$

and studied the conditions under which these ideals are F_{σ} -ideals.

Drewnowski and Labuda's result states that a Banach space does not contain c_0 exactly when every ideal $C(\mathbf{x})$ is F_{σ} .

L. Drewnowski and I. Labuda defined ideals associated with sequences in Banach spaces:

$$\mathcal{C}(\mathbf{x}) = \{A \subseteq \mathbb{N} : \sum_{n \in A} x_n \text{ is unconditionally convergent}\},\$$

and studied the conditions under which these ideals are F_{σ} -ideals.

Drewnowski and Labuda's result states that a Banach space does not contain c_0 exactly when every ideal $C(\mathbf{x})$ is F_{σ} .

Another important class are $\mathcal{B}(\mathbf{x})$ ideals, defined using weak unconditional convergence, or equivalently, boundedness of partial sums:

L. Drewnowski and I. Labuda defined ideals associated with sequences in Banach spaces:

$$\mathcal{C}(\mathbf{x}) = \{A \subseteq \mathbb{N} : \sum_{n \in A} x_n \text{ is unconditionally convergent}\},\$$

and studied the conditions under which these ideals are F_{σ} -ideals.

Drewnowski and Labuda's result states that a Banach space does not contain c_0 exactly when every ideal $C(\mathbf{x})$ is F_{σ} .

Another important class are $\mathcal{B}(\mathbf{x})$ ideals, defined using weak unconditional convergence, or equivalently, boundedness of partial sums:

 $\mathcal{B}(\mathbf{x}) = \{A \subseteq \mathbb{N} : \sum_{n \in A} x_n \text{ is weakly-unconditionally convergent}\}$

$$= \{A \subseteq \mathbb{N} : \sup_{F \subseteq A, F \text{ finite}} \|\sum_{n \in F} x_n\| < \infty\}$$

Martínez et al. characterized $\mathcal{B}(\mathbf{x})$ -ideals as non-pathological F_{σ} -ideals: Given $\mathcal{I} = \text{FIN}(\varphi)$ with φ a non pathological l.s.c. submeasure $\varphi = \sup_k \varphi_k$ we define for each *n* the sequence

$$x_n := (\varphi_k(\{n\}))_k \in \ell_\infty$$

Martínez et al. characte We assume all ideals contain FIN! F_{σ} -ideals: Given $\mathcal{I} = \text{FIN}(\varphi)$ with φ a non pathological i.s.c. pomeasure $\varphi = \sup_k \varphi_k$ we define for each *n* the sequence

$$x_n := (\varphi_k(\{n\}))_k \in \ell_\infty$$

Martínez et al. characterized $\mathcal{B}(\mathbf{x})$ -ideals as non-pathological F_{σ} -ideals: Given $\mathcal{I} = \text{FIN}(\varphi)$ with φ a non pathological l.s.c. submeasure $\varphi = \sup_k \varphi_k$ we define for each *n* the sequence

$$x_n := (\varphi_k(\{n\}))_k \in \ell_\infty$$

We have then that

$$\|\sum_{n\in F} x_n\|_{\infty} = \sup_{k\in\mathbb{N}} (\sum_{n\in F} x_n)(k) = \sup_{k\in\mathbb{N}} \sum_{n\in F} x_n(k) =$$
$$= \sup_{k\in\mathbb{N}} \varphi_k(F) = \varphi(F).$$

Martínez et al. characterized $\mathcal{B}(\mathbf{x})$ -ideals as non-pathological F_{σ} -ideals: Given $\mathcal{I} = \text{FIN}(\varphi)$ with φ a non pathological l.s.c. submeasure $\varphi = \sup_k \varphi_k$ we define for each *n* the sequence

$$x_n := (\varphi_k(\{n\}))_k \in \ell_\infty$$

We have then that

$$\|\sum_{n\in F} x_n\|_{\infty} = \sup_{k\in\mathbb{N}} (\sum_{n\in F} x_n)(k) = \sup_{k\in\mathbb{N}} \sum_{n\in F} x_n(k) =$$
$$= \sup_{k\in\mathbb{N}} \varphi_k(F) = \varphi(F).$$

Similarly one sees that for non-pathological analytic *P*-ideals $Exh(\varphi) = C((x_n)_n)$.

Martínez et al. characterized $\mathcal{B}(\mathbf{x})$ -ideals as non-pathological F_{σ} -ideals: Given $\mathcal{I} = \text{FIN}(\varphi)$ with φ a non pathological l.s.c. submeasure $\varphi = \sup_k \varphi_k$ we define for each *n* the sequence

$$x_n := (\varphi_k(\{n\}))_k \in \ell_\infty$$

We have then that

$$\|\sum_{n\in F} x_n\|_{\infty} = \sup_{k\in\mathbb{N}} (\sum_{n\in F} x_n)(k) = \sup_{k\in\mathbb{N}} \sum_{n\in F} x_n(k) =$$
$$= \sup_{k\in\mathbb{N}} \varphi_k(F) = \varphi(F).$$

Similarly one sees that for non-pathological analytic *P*-ideals $\text{Exh}(\varphi) = C((x_n)_n)$. However, representations of the ideals $\mathcal{B}((x_n))$ and $C((x_n))$ in the universal space ℓ_{∞} are not optimal for a descriptive set-theoretic analysis. To overcome this limitation, we present effective representations of these ideals within the universal Polish spaces C([0, 1]) and $C(2^{\mathbb{N}})$. The following is a classical characterization that uses the uniform boundedness principle.

Proposition

A series $\sum_{n \in \mathbb{N}} x_n$ in a Banach space X is weakly unconditionally convergent exactly when the numerical series $\sum_n x^*(x_n)$ converge unconditionally for every $x^* \in X^*$. Consequently, if the ideal $\mathcal{B}(\mathbf{x})$ is tall, then the sequence \mathbf{x} is weakly null.

Recall that an ideal of the form $C(\mathbf{x})$ is tall if and only if \mathbf{x} is norm-null (i.e. norm-converging to zero). Moreover, using a classical Bessaga-Pełczyński's theorem

The following is a classical characterization that uses the uniform boundedness principle.

Proposition

A series $\sum_{n \in \mathbb{N}} x_n$ in a Banach space X is weakly unconditionally convergent exactly when the numerical series $\sum_n x^*(x_n)$ converge unconditionally for every $x^* \in X^*$. Consequently, if the ideal $\mathcal{B}(\mathbf{x})$ is tall, then the sequence \mathbf{x} is weakly null.

Recall that an ideal of the form $C(\mathbf{x})$ is tall if and only if \mathbf{x} is norm-null (i.e. norm-converging to zero). Moreover, using a classical Bessaga-Pełczyński's theorem

Theorem (Drewnowski and Labuda)

If c_0 does not embed in X, then $\mathcal{B}(\mathbf{x}) = \mathcal{C}(\mathbf{x})$ for every sequence, hence we have the same characterization of tallness.

However, using the well-known fact that weakly unconditional bases are precisely the sequences equivalent to the unit basis of c_0 , we can show a general characterization which explicitly takes c_0 into account.

Theorem

- Let $\mathbf{x} = (x_n)_n$ be a sequence in a Banach space X. The following are equivalent. **1** $\mathcal{B}(\mathbf{x})$ is tall.
- 2 Every subsequence of **x** has a further subsequence that is either norm-null or equivalent to the unit basis of c_0 .

However, using the well-known fact that weakly unconditional bases are precisely the sequences equivalent to the unit basis of c_0 , we can show a general characterization which explicitly takes c_0 into account.

Theorem

Let $\mathbf{x} = (x_n)_n$ be a sequence in a Banach space X. The following are equivalent. **1** $\mathcal{B}(\mathbf{x})$ is tall.

2 Every subsequence of x has a further subsequence that is either norm-null or equivalent to the unit basis of c₀.

Consequently,

However, using the well-known fact that weakly unconditional bases are precisely the sequences equivalent to the unit basis of c_0 , we can show a general characterization which explicitly takes c_0 into account.

Theorem

- Let $\mathbf{x} = (x_n)_n$ be a sequence in a Banach space X. The following are equivalent. **1** $\mathcal{B}(\mathbf{x})$ is tall.
- 2 Every subsequence of **x** has a further subsequence that is either norm-null or equivalent to the unit basis of c_0 .

Consequently,

- **3** if $(x_n)_n$ does not have subsequences equivalent to the unit basis of c_0 , then $\mathcal{B}(\mathbf{x})$ is tall exactly when \mathbf{x} is a norm-null sequence, and
- (a) if X is isomorphic to a subspace of c_0 , then $\mathcal{B}(\mathbf{x})$ is tall exactly when \mathbf{x} is weakly-null.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

The extension of ideals to summable ones has led to intriguing characterizations, including connections to Riemann summability. Notably, several classical ideals, such as the Mazur ideal \mathcal{M} and the ideal \mathcal{Z} , cannot be extended in this way, and consequently they are pathological.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

The extension of ideals to summable ones has led to intriguing characterizations, including connections to Riemann summability. Notably, several classical ideals, such as the Mazur ideal \mathcal{M} and the ideal \mathcal{Z} , cannot be extended in this way, and consequently they are pathological.

Proposition

An ideal is \mathcal{B} -representable in a finite dimensional space exactly when it is summable.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

The extension of ideals to summable ones has led to intriguing characterizations, including connections to Riemann summability. Notably, several classical ideals, such as the Mazur ideal \mathcal{M} and the ideal \mathcal{Z} , cannot be extended in this way, and consequently they are pathological.

Proposition

An ideal is B-representable in a finite dimensional space exactly when it is summable.

It follows from the generalized parallelogram identity the following.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

for every sequence $(y_k)_{k=1}^n$ in a Hilbert space we have that $\mathbb{E}_{(\theta_k)_k \in \{-1,1\}^n} \left(\|\sum_{k=1}^n \theta_k y_k\|^2 \right) := \frac{1}{2^n} \sum_{(\theta_k)_k \in \{-1,1\}^n} \|\sum_{k=1}^n \theta_k y_k\|^2 = \sum_{k=1}^n \|y_k\|^2.$ An ideal is B-representable in a finite dynemic presentable in a finite dynemic presentable in a finite dynemic presentable.

It follows from the generalized parallelogram identity the following.

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial \mathcal{B} -ideal can be extended to a non-trivial summable ideal.

The extension of ideals to summable ones has led to intriguing characterizations, including connections to Riemann summability. Notably, several classical ideals, such as the Mazur ideal \mathcal{M} and the ideal \mathcal{Z} , cannot be extended in this way, and consequently they are pathological.

Proposition

An ideal is \mathcal{B} -representable in a finite dimensional space exactly when it is summable.

It follows from the generalized parallelogram identity the following.

Proposition

An ideal can be \mathcal{B} -represented in a Hilbert space by an unconditional basic sequence exactly when it is summable.

Non-trivial cotype

It is natural to ask for properties similar the generalized parallelogram identity in a given Banach space. Recall that a Banach space X has *cotype* $1 \le q \le \infty$ if there is a constant C such that for every finite sequence $(x_k)_{k=1}^n$ one has that

$$\sum_{k=1}^{n} \|x_k\|^q \le C \mathbb{E}_{\theta} \left(\|\sum_{k=1}^{n} \theta_k x_k\|^q \right), \tag{1}$$

where when for $q = \infty$ the previous inequality has to be interpreted as $\max_{k=1}^{n} ||x_k|| \le C\mathbb{E}_{\theta} ||\sum_{k=1}^{n} \theta_k x_k||$. This means, by a simple use of the triangle inequality, that every space has cotype ∞ , and by using constant sequences, that cotypes q are always at least 2. A Banach space X has *non trivial cotype* when it has cotype q for some $q < \infty$. We have the following.

Non-trivial cotype

It is natural to ask for properties similar the generalized parallelogram identity in a given Banach space. Recall that a Banach space X has *cotype* $1 \le q \le \infty$ if there is a constant C such that for every finite sequence $(x_k)_{k=1}^n$ one has that

$$\sum_{k=1}^{n} \|x_k\|^q \le C \mathbb{E}_{\theta} \left(\|\sum_{k=1}^{n} \theta_k x_k\|^q \right), \tag{1}$$

where when for $q = \infty$ the previous inequality has to be interpreted as $\max_{k=1}^{n} ||x_k|| \le C\mathbb{E}_{\theta} ||\sum_{k=1}^{n} \theta_k x_k||$. This means, by a simple use of the triangle inequality, that every space has cotype ∞ , and by using constant sequences, that cotypes q are always at least 2. A Banach space X has *non trivial cotype* when it has cotype q for some $q < \infty$. We have the following.

Proposition

For every sequence $\mathbf{x} = (x_n)_n$ in a space X with non-trivial cotype q one has that

$$\operatorname{Sum}((||x_n||)_n) \subseteq \mathcal{B}(\mathbf{x}) \subseteq \operatorname{Sum}((||x_n||^q)_n).$$

A well-known result by B. Maurey and G. Pisier states that a space X has non-trivial cotype exactly when c_0 is not *finitely representable*, that, in the case of c_0 , means that there is no constant C such that every ℓ_{∞}^n has C-isomorphic subspace of X. Combining this with the Drewnowski-Labuda Theorem we obtain the following.

A well-known result by B. Maurey and G. Pisier states that a space X has non-trivial cotype exactly when c_0 is not *finitely representable*, that, in the case of c_0 , means that there is no constant C such that every ℓ_{∞}^n has C-isomorphic subspace of X. Combining this with the Drewnowski-Labuda Theorem we obtain the following.

Corollary

If c_0 is not finitely representable in X, then there is some $2 \leq q < \infty$ such that

$$\operatorname{Sum}((\|x_n\|)_n) \subseteq \mathcal{B}(\mathbf{x}) = \mathcal{C}(\mathbf{x}) \subseteq \operatorname{Sum}((\|x_n\|^q)_n)$$

for every sequence $\mathbf{x} = (x_n)_n$ in X.

Representing on $C(2^{\mathbb{N}})$

We see how to effectively \mathcal{B} -represent an ideal $\mathcal{B}(\varphi), \varphi = \sup_k \varphi_k$ on $C(2^{\mathbb{N}})$.

Representing on $C(2^{\mathbb{N}})$

For C[0,1] a small modification works

We see how to effectively \mathcal{B} -represent an ideal $\mathcal{B}(\varphi), \varphi = \sup_k \varphi_k$ on $C(2^{\mathbb{N}})$.

We see how to effectively \mathcal{B} -represent an ideal $\mathcal{B}(\varphi)$, $\varphi = \sup_k \varphi_k$ on $C(2^{\mathbb{N}})$. For each *n*, let $L_n = \{\varphi_k(\{n\}) : k \in \mathbb{N}\}$ which we can assume to be finite. Consider the following tree:

$$T:=\{\langle \varphi_k(0),\ldots,\varphi_k(n)\rangle: k,n\in\mathbb{N}\}.$$

Since each L_n is finite, T is clearly finitely branching. Notice that each measure φ_k is a branch of T. Let $\rho : T \to 2^{<\omega}$ be an embedding, that is, $\rho(s) \prec \rho(s')$ iff $s \prec s'$, for all $s, s' \in T$.

We see how to effectively \mathcal{B} -represent an ideal $\mathcal{B}(\varphi)$, $\varphi = \sup_k \varphi_k$ on $C(2^{\mathbb{N}})$. For each *n*, let $L_n = \{\varphi_k(\{n\}) : k \in \mathbb{N}\}$ which we can assume to be finite. Consider the following tree:

$$T:=\{\langle \varphi_k(0),\ldots,\varphi_k(n)\rangle: k,n\in\mathbb{N}\}.$$

Since each L_n is finite, T is clearly finitely branching. Notice that each measure φ_k is a branch of T. Let $\rho : T \to 2^{<\omega}$ be an embedding, that is, $\rho(s) \prec \rho(s')$ iff $s \prec s'$, for all $s, s' \in T$. Then FIN $(\varphi) = \mathcal{B}((g_n))$ where for each n,

$$g_n := \sum_{s \in T, |s|=n+1} s(n) \mathbb{1}_{[\rho(s)]}.$$
 (2)

We have observed the close relationship between tall \mathcal{B} -ideals and the space c_0 . Thus, it is natural to expect that ideals represented in separable, c_0 -saturated C(K) spaces exhibit distinctive structural properties.

Representing on $C(\alpha)$

i.e., C(K) with K countable

We have conserved the close relationship between tall \mathcal{B} -ideals and the space c_0 . Thus, it is natural to expect that ideals represented in separable, c_0 -saturated C(K) spaces exhibit distinctive structural properties. We have observed the close relationship between tall \mathcal{B} -ideals and the space c_0 . Thus, it is natural to expect that ideals represented in separable, c_0 -saturated C(K) spaces exhibit distinctive structural properties.

Theorem

Every tall ideal I that admits a \mathcal{B} -representation in a space C(K), with K countable, is necessarily effectively tall.

We have observed the close relationship between tall \mathcal{B} -ideals and the space c_0 .

there is a borel $\Phi : \mathcal{P}(\mathbb{N}) \to \mathcal{I}$ such that $\varphi(A) \subseteq A$ for every $A \in \mathcal{P}(\mathbb{N})$

Theorem

Every tall ideal I that admits $\int \mathcal{B}$ -representation in a space C(K), with K countable, is necessarily effectively tall.

(K)

We have observed the close relationship between tall \mathcal{B} -ideals and the space c_0 . Thus, it is natural to expect that ideals represented in separable, c_0 -saturated C(K) spaces exhibit distinctive structural properties.

Theorem

Every tall ideal I that admits a \mathcal{B} -representation in a space C(K), with K countable, is necessarily effectively tall.

From where does the Borel choice function arise?

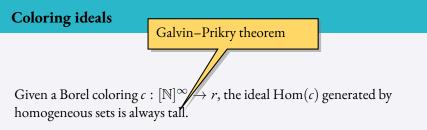
We have observed the close relationship between tall \mathcal{B} -ideals and the space c_0 . Thus, it is natural to expect that ideals represented in separable, c_0 -saturated C(K) spaces exhibit distinctive structural properties.

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable, is necessarily effectively tall.

From where does the Borel choice function arise? Precisely from *c-coloring ideals*.

Given a Borel coloring $c : [\mathbb{N}]^{\infty} \to r$, the ideal Hom(c) generated by homogeneous sets is always tall.



Proposition

Every tall F_{σ} ideal is an open coloring ideal.

Given a Borel coloring c: $\begin{bmatrix} D \\ D \\ d \end{bmatrix}$ a 2-coloring where one of the two colors is open Every tall coloring ideal \mathcal{I} is of this form Hom f, $c := \mathbb{1}_{\mathcal{I}}$.

Proposition

Every tall F_{σ} ideal is an open coloring ideal.

Proposition

Every tall F_{σ} ideal is an open coloring ideal.

Moreover, if the coloring *c* is continuous,

Given a Borel coloring $c : [\mathbb{N}]^{\infty} \to r$, the ideal $\operatorname{Hom}(c)$ generated by homogeneous sets is always tall. Every tall coloring ideal \mathcal{I} is of this *all* colors are open Proposition *Every tall* F_{σ} *ideal is an open coloring ideal* Moreover, if the coloring c is continuous,

Proposition

Every tall F_{σ} ideal is an open coloring ideal.

Moreover, if the coloring c is continuous, a result by J. Grebík and C. Uzcátegui shows that Hom(c) is effectively tall.

Proposition

Every tall F_{σ} ideal is an open coloring ideal.

Moreover, if the coloring c is continuous, a result by J. Grebík and C. Uzcátegui shows that Hom(c) is effectively tall.

A continuous coloring is completely determined by a coloring of a *front* \mathcal{F} *on* \mathbb{N} , a Sperner family that is unavoidable.

Proposition

every $M \subseteq \mathbb{N}$ infinite has a unique initial part in \mathcal{F}

Moreover, if the coloring c is continuous, a result by J. Grebík and C. Uzcátegui shows that Hom(c) is effectively tall.

A continuous coloring is completely determined by a coloring of a *front* \mathcal{F} *on* \mathbb{N} , a Sperner family that is unavoidable.

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form $\langle \operatorname{Hom}(c) \rangle$ for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form $\langle \operatorname{hom}(c) \rangle$ for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form $\langle \operatorname{Hom}(c) \rangle$ for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form $\langle \operatorname{hom}(c) \rangle$ for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable contains a c-coloring ideal of a coloring $c : \mathcal{F} \to r$

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form (Hom(c)) for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form (hom(c)) for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable contains a c-coloring ideal of a coloring $c : \mathcal{F} \to r$

The Cantor-Bendixson rank of the closure of $\mathcal F$ is closely related to that of K

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form (Hom(c)) for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form (hom(c)) for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable contains a c-coloring ideal of a coloring $c : \mathcal{F} \to r$

The Cantor-Bendixson rank of the closure of \mathcal{F} is closely related to that of K (Observe that a front $\mathcal{F} \subseteq$ FIN is precompact.)

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form (Hom(c)) for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form (hom(c)) for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that a the contains a \mathcal{L} representation in a space C(K), with K countable contains a c-coloring ideal of a coloring of $\mathcal{F} \to r$

The Cantor-Bendixson rank of the clopure of \mathcal{F} is closely related to that of K (Observe that a front $\mathcal{F} \subseteq$ FIN is precompact.)

Definition

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form (Hom(c)) for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form (hom(c)) for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable contains a c-coloring ideal of a coloring $c : \mathcal{F} \to r$

The Cantor-Bendixson rank of the closure of \mathcal{F} is closely related to that of K (Observe that a front $\mathcal{F} \subseteq$ FIN is precompact.) In particular, when K has finite C-B-rank we have

Definition

An ideal is a *continuous coloring ideal (c-coloring ideal in short)* when it is of the form (Hom(c)) for some continuous coloring $c : [\mathbb{N}]^{\omega} \to r \in \mathbb{N}$ or, equivalently, of the form (hom(c)) for some $c : \mathcal{F} \to r$ defined on a front \mathcal{F} .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable contains a c-coloring ideal of a coloring $c : \mathcal{F} \to r$

The Cantor-Bendixson rank of the closure of \mathcal{F} is closely related to that of K (Observe that a front $\mathcal{F} \subseteq$ FIN is precompact.) In particular, when K has finite C-B-rank we have

Corollary

An ideal that admits a \mathcal{B} -representation in c_0 is tall if and only if it contains a c-coloring ideal induced by a coloring $c : [\mathbb{N}]^2 \to 2$.

Question

Is a c-coloring ideal non-pathological,

Question

Is a c-coloring ideal non-pathological, i.e. a B-ideal?

Question

Is a c-coloring ideal non-pathological, i.e. a B-ideal?

Theorem

Every tall ideal I that admits a \mathcal{B} -representation in a space C(K), with K countable contains a non-pathological c-coloring ideal.

Question

Is the Random ideal non-pathological?

Question

Is the Random ideal non-pathological? Are the d-Random ideals non-pathological?

Question

Is the Random ideal non-pathological? Are the d-Random ideals non-pathological?

The *c*-coloring ideal $\langle hom(e) \rangle$ for a 2-coloring coincides with the ideal generated by cliques and anticliques of the hyperedges. More generally, for an *r*-coloring, it is the ideal of complete sub-hypergraphs of each \mathcal{H}_i .

We do not know the full answer to this question, but we have some partial ones, for some colorings $c : [\mathbb{N}]^2 \to 2$ so that $c(\{m, n\}_{<}) = i$ induces a partial ordering on \mathbb{N} . To analyze these partial orders we will use *Dilworth's theorem*.

non-pathological c-colorings

For a partially ordered set \mathcal{P} , the supremum of the cardinalities of its antichains, when finite, equals the minimum number of chains needed to cover \mathcal{P} . The dual of Dilworth theorem, called *Mirsky's theorem* is also true.

We do not know the full answer to this question, by we have some partial ones, for some colorings $c : [\mathbb{N}]^2 \to 2$ so that $c(\{m, n\}_{<}) =$ induces a partial ordering on \mathbb{N} . To analyze these partial orders we will use *Dilworth's theorem*.

We do not know the full answer to this question, but we have some partial ones, for some colorings $c : [\mathbb{N}]^2 \to 2$ so that $c(\{m, n\}_{<}) = i$ induces a partial ordering on \mathbb{N} . To analyze these partial orders we will use *Dilworth's theorem*.

Theorem

Fix a coloring $c : [\mathbb{N}]^2 \to 2$ such that m < n and c(m, n) = i defines a partial ordering on \mathbb{N} . The corresponding c-coloring ideal hom(c) is non-pathological when

 $\hom_i(c) \subseteq FIN \text{ or when } \hom_{1-i}(c) \subseteq FIN.$

Of particular interest are c-colorings $c : [\mathbb{N}]^2 \to r$ where both colors define a partial ordering. We call them *Sierpinski* colorings.

A \mathbb{Q} -coloring is a Sierpinski coloring $\widehat{\theta} : [\mathbb{N}]^2 \to 2$ associated to some enumeration $\theta : \mathbb{N} \to \mathbb{Q}$, that is, $\widehat{\theta}(\{m, n\}_{\leq}) := 1$ exactly when $\theta(m) < \theta(n)$. The Sierpinski ideal associated to θ , $\langle \operatorname{hom}(\widehat{\theta}) \rangle$, will be called a \mathbb{Q} -coloring ideal.

A \mathbb{Q} -coloring is a Sierpinski coloring $\widehat{\theta} : [\mathbb{N}]^2 \to 2$ associated to some enumeration $\theta : \mathbb{N} \to \mathbb{Q}$, that is, $\widehat{\theta}(\{m, n\}_{<}) := 1$ exactly when $\theta(m) < \theta(n)$. The Sierpinski ideal associated to θ , $\langle \operatorname{hom}(\widehat{\theta}) \rangle$, will be called a \mathbb{Q} -coloring ideal.

Theorem (Universality)

Suppose that $\theta : \mathbb{N} \to \mathbb{Q}$ is an enumeration. Then for every coloring $c : [\mathbb{N}]^2 \to l$ there is some $M \subseteq \mathbb{N}$ such that $\theta(M)$ is order-isomorphic to \mathbb{Q} and such that $\hom(\widehat{\theta}) \upharpoonright M \subseteq \hom(c)$. A \mathbb{Q} -coloring is a Sierpinski coloring $\widehat{\theta} : [\mathbb{N}]^2 \to 2$ associated to some enumeration $\theta : \mathbb{N} \to \mathbb{Q}$, that is, $\widehat{\theta}(\{m, n\}_{\leq}) := 1$ exactly when $\theta(m) < \theta(n)$. The Sierpinski ideal associated to θ , $\langle \operatorname{hom}(\widehat{\theta}) \rangle$, will be called a \mathbb{Q} -coloring ideal.

Theorem (Universality)

Suppose that $\theta : \mathbb{N} \to \mathbb{Q}$ is an enumeration. Then for every coloring $c : [\mathbb{N}]^2 \to l$ there is some $M \subseteq \mathbb{N}$ such that $\theta(M)$ is order-isomorphic to \mathbb{Q} and such that $\hom(\widehat{\theta}) \upharpoonright M \subseteq \hom(c)$.

The proof uses crucially the following Galvin's Theorem

Theorem

For every coloring $c : [\mathbb{Q}]^2 \longrightarrow l$, there is $X \subseteq \mathbb{Q}$ order-isomorphic to \mathbb{Q} such that $|c[X]^2| \leq 2$.

This can be extended to any dimension *d* using the concept of *Devlin types*.

Theorem

For every $d \in \mathbb{N}$ there is a number $t_d \in \mathbb{N}$ satisfying:

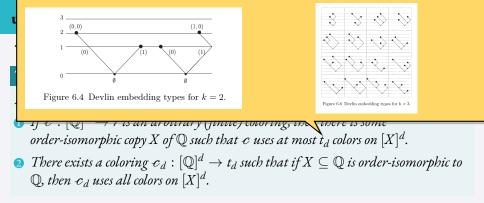
- If $c : [\mathbb{Q}]^d \to r$ is an arbitrary (finite) coloring, then there is some order-isomorphic copy X of \mathbb{Q} such that c uses at most t_d colors on $[X]^d$.
- **2** There exists a coloring $c_d : [\mathbb{Q}]^d \to t_d$ such that if $X \subseteq \mathbb{Q}$ is order-isomorphic to \mathbb{Q} , then c_d uses all colors on $[X]^d$.

The number t_d represents the count of canonical patterns of arbitrary d points on the binary tree $2^{<\mathbb{N}}$. It is interesting to note that the sequence $(t_d)_d$ is a well known sequence of numbers known as the *odd tangent numbers*, because $t_d = T_{2d-1}$, where $\tan(z) = \sum_{n=0}^{\infty} (T_n/n!) z^n$.

• If $c : [\mathbb{Q}]^d \to r$ is an arbitrary (finite) coloring, then there is some order-isomorphic copy X of \mathbb{Q} such that c uses at most t_d colors on $[X]^d$.

CIC IS IL ILIUIII

2 There exists a coloring $c_d : [\mathbb{Q}]^d \to t_d$ such that if $X \subseteq \mathbb{Q}$ is order-isomorphic to \mathbb{Q} , then c_d uses all colors on $[X]^d$.



This can be extended to any dimension *d* using the concept of *Devlin types*.

Theorem

For every $d \in \mathbb{N}$ there is a number $t_d \in \mathbb{N}$ satisfying:

- If $c : [\mathbb{Q}]^d \to r$ is an arbitrary (finite) coloring, then there is some order-isomorphic copy X of \mathbb{Q} such that c uses at most t_d colors on $[X]^d$.
- **2** There exists a coloring $c_d : [\mathbb{Q}]^d \to t_d$ such that if $X \subseteq \mathbb{Q}$ is order-isomorphic to \mathbb{Q} , then c_d uses all colors on $[X]^d$.

This can be extended to any dimension *d* using the concept of *Devlin types*.

Theorem

For every $d \in \mathbb{N}$ there is a number $t_d \in \mathbb{N}$ satisfying:

- If $c : [\mathbb{Q}]^d \to r$ is an arbitrary (finite) coloring, then there is some order-isomorphic copy X of \mathbb{Q} such that c uses at most t_d colors on $[X]^d$.
- **2** There exists a coloring $c_d : [\mathbb{Q}]^d \to t_d$ such that if $X \subseteq \mathbb{Q}$ is order-isomorphic to \mathbb{Q} , then c_d uses all colors on $[X]^d$.

A \mathbb{Q}_d -coloring is some $\widehat{\theta}^d := c_d \circ \theta^n : [\mathbb{N}]^d \to t_d, \{n_j\}_{j < d} \mapsto c_d(\{\theta(n_j)\}_{j < d})$ for a bijection $\theta : \mathbb{N} \to \mathbb{Q}$.

This can be extended to any dimension *d* using the concept of *Devlin types*.

Theorem

For every $d \in \mathbb{N}$ there is a number $t_d \in \mathbb{N}$ satisfying:

- If $c : [\mathbb{Q}]^d \to r$ is an arbitrary (finite) coloring, then there is some order-isomorphic copy X of \mathbb{Q} such that c uses at most t_d colors on $[X]^d$.
- **2** There exists a coloring $c_d : [\mathbb{Q}]^d \to t_d$ such that if $X \subseteq \mathbb{Q}$ is order-isomorphic to \mathbb{Q} , then c_d uses all colors on $[X]^d$.

A \mathbb{Q}_d -coloring is some $\widehat{\theta}^d := c_d \circ \theta^n : [\mathbb{N}]^d \to t_d, \{n_j\}_{j < d} \mapsto c_d(\{\theta(n_j)\}_{j < d})$ for a bijection $\theta : \mathbb{N} \to \mathbb{Q}$.

Theorem

Suppose that $\theta : \mathbb{N} \to \mathbb{Q}$ is an enumeration. Then for every coloring $c : [\mathbb{N}]^d \to l$ there is some $M \subseteq \mathbb{N}$ such that $\theta(M)$ is order-isomorphic to \mathbb{Q} and such that $\hom(\widehat{\theta}^d) \upharpoonright M \subseteq \hom(c)$.

c-coloring ideals

 $\varphi = \sup\{\mu : \mu \text{ is a measure on } X \text{ such that } \mu \leq \varphi\}.$

When φ is lower semicontinuous, these measures can be chosen to be σ -additive.

 $\varphi = \sup\{\mu : \mu \text{ is a measure on } X \text{ such that } \mu \leq \varphi\}.$

 $\varphi = \sup\{\mu : \mu \text{ is a measure on } X \text{ such that } \mu \leq \varphi\}.$

Every F_{σ} -ideal \mathcal{I} can be written as $\mathcal{I} = \operatorname{Fin}(\varphi)$ for some lower semicontinuous submeasure φ . It is called *non-pathological* if φ can be chosen to be non-pathological.

 $\varphi = \sup\{\mu : \mu \text{ is a measure on } X \text{ such that } \mu \leq \varphi\}.$

Every F_{σ} -ideal \mathcal{I} can be written as $\mathcal{I} = \operatorname{Fin}(\varphi)$ for some lower semicontinuous submeasure φ . It is called *non-pathological* if φ can be chosen to be non-pathological. Equivalently, \mathcal{I} is pathological if it cannot be \mathcal{B} -represented in any Banach space.

 $\varphi = \sup\{\mu : \mu \text{ is a measure on } X \text{ such that } \mu \leq \varphi\}.$

Every F_{σ} -ideal \mathcal{I} can be written as $\mathcal{I} = \operatorname{Fin}(\varphi)$ for some lower semicontinuous submeasure φ . It is called *non-pathological* if φ can be chosen to be non-pathological.

Equivalently, \mathcal{I} is pathological if it cannot be \mathcal{B} -represented in any Banach space. The first known example of a pathological ideal is *Mazur's ideal*, which we now proceed to describe. From now on X is a finite set.

From now on X is a finite set. We proceed to list the key facts of these ideals: Suppose that S is a covering of X.

1 One can define the *submeasure covering* ψ_S associated to S for $A \subseteq X$ by

$$\psi_{\mathcal{S}}(A) = \min\{\#\mathcal{T} : A \subseteq \bigcup \mathcal{T}, \, \mathcal{T} \subseteq \mathcal{S}\}.$$

From now on X is a finite set. We proceed to list the key facts of these ideals: Suppose that S is a covering of X.

1 One can define the *submeasure covering* ψ_S associated to S for $A \subseteq X$ by

$$\psi_{\mathcal{S}}(A) = \min\{\#\mathcal{T} : A \subseteq \bigcup \mathcal{T}, \, \mathcal{T} \subseteq \mathcal{S}\}.$$

2 Kelley's covering number: One defines

$$\delta(X,\mathcal{S}) := \frac{1}{\#\mathcal{S}} \min_{x \in X} \#\{S \in \mathcal{S} : x \in S\}.$$

From now on X is a finite set. We proceed to list the key facts of these ideals: Suppose that S is a covering of X.

1 One can define the *submeasure covering* ψ_S associated to S for $A \subseteq X$ by

$$\psi_{\mathcal{S}}(A) = \min\{\#\mathcal{T} : A \subseteq \bigcup \mathcal{T}, \, \mathcal{T} \subseteq \mathcal{S}\}.$$

2 *Kelley's covering number*: One defines

$$\delta(X,\mathcal{S}) := \frac{1}{\#\mathcal{S}} \min_{x \in X} \#\{S \in \mathcal{S} : x \in S\}.$$

If μ is an arbitrary measure on X, then there is $S \in S$ such that

$$\mu(S) \ge \delta(X, \mathcal{S})\mu(X). \tag{3}$$

From now on X is a finite set. We proceed to list the key facts of these ideals: Suppose that S is a covering of X.

1 One can define the *submeasure covering* $\psi_{\mathcal{S}}$ associated to \mathcal{S} for $A \subseteq X$ by

$$\psi_{\mathcal{S}}(A) = \min\{\#\mathcal{T} : A \subseteq \bigcup \mathcal{T}, \, \mathcal{T} \subseteq \mathcal{S}\}.$$

2 Kelley's covering number: One defines

$$\delta(X,\mathcal{S}) := \frac{1}{\#\mathcal{S}} \min_{x \in X} \#\{S \in \mathcal{S} : x \in S\}.$$

If μ is an arbitrary measure on X, then there is $S \in S$ such that

$$\mu(S) \ge \delta(X, \mathcal{S})\mu(X). \tag{3}$$

3 Certain submeasure coverings exhibit extreme violations of (3).

a By amalgamating these covering submeasures, Mazur constructs a submeasure ψ on a countable set E, yielding the F_{σ} -ideal Fin (ψ) . This ideal is *super-pathological*, meaning that it is not contained in any non-pathological F_{σ} -ideal.

- **3** By amalgamating these covering submeasures, Mazur constructs a submeasure ψ on a countable set E, yielding the F_{σ} -ideal Fin (ψ) . This ideal is *super-pathological*, meaning that it is not contained in any non-pathological F_{σ} -ideal.
- The index set X is a collection of subsets of a fixed finite set E not containing E. The family

$$\mathcal{S} := \{\widehat{e}_X : e \in E\}$$

is a covering of X, where

$$\widehat{e}_X := \{A \in X : e \notin A\}.$$

- **a** By amalgamating these covering submeasures, Mazur constructs a submeasure ψ on a countable set E, yielding the F_{σ} -ideal Fin (ψ) . This ideal is *super-pathological*, meaning that it is not contained in any non-pathological F_{σ} -ideal.
- The index set X is a collection of subsets of a fixed finite set E not containing E. The family

$$\mathcal{S} := \{\widehat{e}_X : e \in E\}$$

is a covering of X, where

$$\widehat{e}_X := \{A \in X : e \notin A\}.$$

6 We fix some $0 \le \beta < 1$, a disjoint sequence $(E_n)_n$ of arbitrarily large finite sets and $X_n := [E_n]^{\le \beta \# E_n}$. Then each covering submeasure ψ_n associated to the covering S_n guarantees that Kelley's fact fails badly, so that one can amalgamate the ψ_n 's to obtain ψ on $\bigsqcup_n X_n$, defined by $\psi(A) := \sup_n \psi_n(A \cap X_n)$, to obtain a super pathological F_σ ideal.

c-coloring ideals

Observe that Mazur's ideal is generated by sets of the form $\bigsqcup_n (\hat{e_n})_{X_n}$ for some sequence $(e_n)_n \in \prod_n E_n$ because each $\psi(\hat{e}_X) = 1$, so $\psi(\bigsqcup_n (\hat{e_n})_{X_n}) = 1$.

Observe that Mazur's ideal is generated by sets of the form $\bigsqcup_n (\hat{e_n})_{X_n}$ for some sequence $(e_n)_n \in \prod_n E_n$ because each $\psi(\hat{e}_X) = 1$, so $\psi(\bigsqcup_n (\hat{e_n})_{X_n}) = 1$. We want to produce c-coloring ideals associated to some coloring c and so that FIN $(\psi) \subseteq \hom(c)$,

Observe that Mazur's ideal is generated by sets of the form $\bigsqcup_n (\widehat{e_n})_{X_n}$ for some sequence $(e_n)_n \in \prod_n E_n$ because each $\psi(\widehat{e_X}) = 1$, so $\psi(\bigsqcup_n (\widehat{e_n})_{X_n}) = 1$. We want to produce c-coloring ideals associated to some coloring c and so that FIN $(\psi) \subseteq \hom(c)$, and in this way, since FIN (ψ) is superpathological, we would have that $\hom(c)$ is also this way.

Observe that Mazur's ideal is generated by sets of the form $\bigsqcup_n (\widehat{e_n})_{X_n}$ for some sequence $(e_n)_n \in \prod_n E_n$ because each $\psi(\widehat{e_X}) = 1$, so $\psi(\bigsqcup_n (\widehat{e_n})_{X_n}) = 1$. We want to produce c-coloring ideals associated to some coloring c and so that FIN $(\psi) \subseteq \hom(c)$, and in this way, since FIN (ψ) is superpathological, we would have that $\hom(c)$ is also this way.

For example, fix $d \in \mathbb{N}$, recall that $X_n = [E_n]^{\leq \beta \# E_n}$. We define $c_n : [X_n]^d \to 2$ for $\{A_j\}_{j=1}^d, A_j \in [E_n]^{\leq \beta \# E_n}$, by

$$c_X(\{A_j\}_{j=1}^d) := egin{cases} 1 & ext{if } \psi_n(\{A_j\}_{j=1}^d) = 1, \ 0 & ext{otherwise.} \end{cases}$$

Observe that Mazur's ideal is generated by sets of the form $\bigsqcup_n (\hat{e_n})_{X_n}$ for some sequence $(e_n)_n \in \prod_n E_n$ because each $\psi(\hat{e}_X) = 1$, so $\psi(\bigsqcup_n (\hat{e_n})_{X_n}) = 1$. We want to produce c-coloring ideals associated to some coloring c and so that FIN $(\psi) \subseteq \hom(c)$, and in this way, since FIN (ψ) is superpathological, we would have that $\hom(c)$ is also this way.

For example, fix $d \in \mathbb{N}$, recall that $X_n = [E_n]^{\leq \beta \# E_n}$. We define $c_n : [X_n]^d \to 2$ for $\{A_j\}_{j=1}^d, A_j \in [E_n]^{\leq \beta \# E_n}$, by

$$c_X(\{A_j\}_{j=1}^d) := egin{cases} 1 & ext{if } \psi_n(\{A_j\}_{j=1}^d) = 1, \ 0 & ext{otherwise.} \end{cases}$$

In other words, $c_n(\{A_j\}_j) = 1$ exactly when $\{A_j\}_j$ is not a covering of E_n .

We freely amalgamate them: We define for the family $X := \bigsqcup_n X_n$ of subsets of $\bigsqcup_n E_n$ the *Mazur coloring* $e_X : [X]^d \to 2$ for $\{A_j\}_{j=1}^d \subseteq A$ by

$$c_X(\{A_j\}_j) := \begin{cases} 1 & \text{if } X_n \not\subseteq \bigcup_{j=1}^d A_j, \text{ for every } n \\ 0 & \text{otherwise.} \end{cases}$$

We freely amalgamate them: We define for the family $X := \bigsqcup_n X_n$ of subsets of $\bigsqcup_n E_n$ the *Mazur coloring* $e_X : [X]^d \to 2$ for $\{A_j\}_{j=1}^d \subseteq \mathcal{A}$ by

$$c_X(\{A_j\}_j) := egin{cases} 1 & ext{if } X_n \not\subseteq igcup_{j=1}^d A_j, ext{ for every } n \ 0 & ext{otherwise.} \end{cases}$$

We know that $FIN(\psi) \subseteq hom(e_X)$ so this c-coloring ideal is superpathological as well.

We freely amalgamate them: We define for the family $X := \bigsqcup_n X_n$ of subsets of $\bigsqcup_n E_n$ the *Mazur coloring* $e_X : [X]^d \to 2$ for $\{A_j\}_{j=1}^d \subseteq \mathcal{A}$ by

Not so fast!

$$\mathcal{C}_X(\{A_j\}_j) := \begin{cases} 1 & \text{if } X_n \not\subseteq \bigcup_{j=1}^d A_j, \text{ for every } n \\ 0 & \text{otherwise.} \end{cases}$$

We know that $FIN(\psi) \subseteq hom(c_X)$ so this c-coloring ideal is superpathological as well.

We freely amalgamate them: We define for the family $X := \bigsqcup_n X_n$ of subsets of $\bigsqcup_n E_n$ the *Mazur coloring* $e_X : [X]^d \to 2$ for $\{A_j\}_{j=1}^d \subseteq \mathcal{A}$ by

We know that $FIN(\psi) \subseteq hom(c_X)$ so this c-coloring ideal is superpathological as well.

 $\begin{cases} 1 & \text{if } X_n \not\subseteq \bigcup_{j=1}^d A_j, \text{ for every } n \\ 0 & \text{otherwise.} \end{cases}$

Why hom $(c_X) \neq \mathcal{P}(X)$???

Observe that homogeneous of color zero must be finite because if $\{A_j\}_{j\in\mathbb{N}}$ is an infinite subset of X there must be $A_{j_1}, \dots A_{j_d}$ belonging each of them to different X_n 's so $c(\{A_{j_k}\}_{k=1}^n) = 1$.

Observe that homogeneous of color zero must be finite because if $\{A_j\}_{j\in\mathbb{N}}$ is an infinite subset of X there must be $A_{j_1}, \dots A_{j_d}$ belonging each of them to different X_n 's so $c(\{A_{j_k}\}_{k=1}^n) = 1$. So the problem may come from homogeneous sets of color 1, meaning,

Observe that homogeneous of color zero must be finite because if $\{A_j\}_{j\in\mathbb{N}}$ is an infinite subset of X there must be $A_{j_1}, \dots A_{j_d}$ belonging each of them to different X_n 's so $c(\{A_{j_k}\}_{k=1}^n) = 1$. So the problem may come from homogeneous sets of color 1, meaning,

Question

Is it possible that X is a union of r-many 1-homogeneous subsets?

Observe that homogeneous of color zero must be finite because if $\{A_j\}_{j\in\mathbb{N}}$ is an infinite subset of X there must be $A_{j_1}, \dots A_{j_d}$ belonging each of them to different X_n 's so $\mathcal{C}(\{A_{j_k}\}_{k=1}^n) = 1$. So the problem may come from homogeneous sets of color 1, meaning,

Question

Is it possible that X is a union of r-many 1-homogeneous subsets?

For each *n*, we have a *d*-uniform hypergraph $\mathcal{H}_n := (E_n, e_n^{-1}(0))$, and if the previous question has a positive answer then the chromatic number of \mathcal{H}_n is at most *r*.

Theorem

For every $d \ge 3$, $0 < \beta < 1$, and $r \in \mathbb{N}$, there exists some $N = N(d, \beta, r) \in \mathbb{N}$ such that for every $n \ge N$,

$$\chi(\mathcal{H}_n)>r.$$

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

Corollary

For every $d, r \ge 1$ there exists a multiple $\tilde{n} = \tilde{n}(d, r)$ of d such that any r-coloring of $[\tilde{n}]^{\tilde{n}/d}$ contains a monochromatic set of cardinality d + r that covers \tilde{n} .

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

Corollary

For every $d, r \ge 1$ there exists a multiple $\tilde{n} = \tilde{n}(d, r)$ of d such that any r-coloring of $[\tilde{n}]^{\tilde{n}/d}$ contains a monochromatic set of cardinality d + r that covers \tilde{n} .

and the following

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

Corollary

For every $d, r \ge 1$ there exists a multiple $\tilde{n} = \tilde{n}(d, r)$ of d such that any r-coloring of $[\tilde{n}]^{\tilde{n}/d}$ contains a monochromatic set of cardinality d + r that covers \tilde{n} .

and the following

Corollary

For every $d \ge 3$, there exists an integer n(d) such that the ideal generated by the Random d-uniform hypergraph is super-pathological.

The proof relies heavily on concentration of measure, applied to almost-centered families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

Corollary

For every $d, r \ge 1$ there exists a multiple $\tilde{n} = \tilde{n}(d, r)$ of d such that any r-coloring of $[\tilde{n}]^{\tilde{n}/d}$ contains a monochromatic set of cardinality d + r that covers \tilde{n} .

and the following

Corollary

For every $d \ge 3$, there exists an integer n(d) such that the ideal generated by the Random d-uniform hypergraph is super-pathological.

Question

Is the ideal generated by the Random graph non-pathological?

Thanks!

Bibliography

- P. Borodulin-Nadzieja, B. Farkas, and G. Plebanek. Representations of ideals in Polish groups and in Banach spaces. *The Journal of Symbolic Logic*, 80(4):1268–1289, 2015.
- [2] L. Drewnowski and I. Labuda. Ideals of subseries convergence and copies of c₀ in Banach spaces. In *Vector measures, integration and related topics*, volume 201 of *Oper. Theory Adv. Appl.*, pages 199–204. Birkhäuser Verlag, Basel, 2010.
- [3] V. Ferenczi, J. López-Abad, B. Mbombo, and S. Todorcevic. Amalgamation and Ramsey properties of L_p spaces. Advances in Mathematics, 369:107190, 2020.
- [4] R. Filipów and J. Tryba. Path of pathology. arXiv:2501.00503, 2024.
- [5] J. Grebík and C. Uzcátegui. Bases and Borel selectors for tall families. *The Journal of Symbolic Logic*, 84(1):359–375, 2019.
- [6] M. Hrušák. Combinatorics of filters and ideals. In Set Theory and Its Applications, volume 533 of Contemp. Math., pages 29–69. Amer. Math. Soc., Providence, RI, 2011.
- [7] J. Lopez-Abad, V. Olmos-Prieto, and C. Uzcátegui-Aylwin, "F_σ-ideals, colorings, and representation in Banach spaces", *arXiv preprint*, arXiv:2501.15643, 2025. Available at: https://arxiv.org/abs/2501.15643.
- [8] J. Martínez, D. Meza-Alcántara and C. Uzcátegui. Pathology of submeasures and F_σ-ideals. Archive for Mathematical Logic, 63:941–967, 2024.
- [9] K. Mazur. F_{σ} -ideals and $\omega_1 \omega_1^*$ -gaps. Fundamenta Mathematicae, 138(2):103–111, 1991.
- [10] P. Pudlák and V. Rödl. Partition theorems for systems of finite subsets of integers. *Discrete Mathematics*, 39(1):67–73, 1982.
- [11] S. Solecki. Analytic ideals and their applications. Annals of Pure and Applied Logic, 99(1-3):51-72, 1999.
- [12] S. Todorčević. Introduction to Ramsey spaces. Annals of Mathematical Studies, number 174. Princeton University Press, 2010.

c-coloring ideals