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Introduction (I)

Ideals, as fundamental set-theoretic structures, naturally exhibit deep connections

with combinatorics and descriptive set theory.

Collections of subsets I ⊆ P(S) of a given set S that are

closed under union and subsets.

In this talk, we explore particularly rich relationships between Fσ-ideals and their

representations within Banach spaces.

Additionally, we introduce and examine coloring ideals, which are ideals generated

by homogeneous sets arising, in particular, from combinatorial colorings of the

form c : [N]k → r.

This talk is based on joint work with Víctor Olmos (as part of his PhD thesis) and

C. Uzcátegui.
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Structure of the talk

1 Preliminaries

2 Tallness, c0-saturation and summability.

3 Representing non-pathological Fσ-ideals on spaces of continuous functions.

4 Coloring ideals; examples of pathological and non-pathological c-coloring

ideals; universal d-colorings; tall colorings; the block sequence coloring and c0.
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Summable and Fσ-Ideals

The simplest Fσ-ideals are summable ideals,

FIN(µ) := {A ⊆ S : µ(A) <∞},

where µ is a total measure on S.

K. Mazur showed that any Fσ-ideal is structurally similar to summable ideals since

each is representable as

FIN(φ) := {A ⊆ S : φ(A) <∞},

for some total lower semicontinuous submeasure φ. This characterization leads to

three categories:

1 Summable ideals, generated by measures.

2 Non-pathological ideals FIN(φ), generated by supremum of measures,

φ = sup
k
φ

k
, φ

k
measure.

3 Pathological ideals.
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Analytic P-Ideals

P-ideals extend the notion of summable ideals and are defined via a sequential

condition:

for any sequence (An)n ⊆ I , there exists A ∈ I such that An \ A is

finite for each n.

A is a “pseudo-union” of the An’s

S. Solecki showed that every analytic P-ideal can be represented as

Exh(φ) := {A ⊆ X : lim
n→∞

φ(A \ {0, 1, . . . , n}) = 0}

using a lower semicontinuous submeasure φ. This provides a classification parallel

to Fσ-ideals into summable, non-pathological, and pathological types.
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B and C-representation

L. Drewnowski and I. Labuda defined ideals associated with sequences in Banach

spaces:

C(x) = {A ⊆ N :
∑
n∈A

xn is unconditionally convergent},

and studied the conditions under which these ideals are Fσ-ideals.

Drewnowski and Labuda’s result states that a Banach space does not contain c0

exactly when every ideal C(x) is Fσ .

Another important class are B(x) ideals, defined using weak unconditional

convergence, or equivalently, boundedness of partial sums:

B(x) = {A ⊆ N :
∑
n∈A

xn is weakly-unconditionally convergent}

= {A ⊆ N : sup
F⊆A, F finite

∥
∑
n∈F

xn∥ <∞}
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B-representation

Martínez et al. characterized B(x)-ideals as non-pathological Fσ-ideals: Given

I = FIN(φ) with φ a non pathological l.s.c. submeasure φ = sup
k
φ

k
we define

for each n the sequence

xn := (φ
k
({n}))

k
∈ ℓ∞

We assume all ideals contain FIN!

We have then that

∥
∑
n∈F

xn∥∞ =sup
k∈N

(
∑
n∈F

xn)(k) = sup
k∈N

∑
n∈F

xn(k) =

= sup
k∈N

φ
k
(F) = φ(F).

Similarly one sees that for non-pathological analytic P-ideals Exh(φ) = C((xn)n).

However, representations of the ideals B((xn)) and C((xn)) in the universal space

ℓ∞ are not optimal for a descriptive set-theoretic analysis. To overcome this

limitation, we present effective representations of these ideals within the universal

Polish spaces C([0, 1]) and C(2
N).
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Tall Ideals and c0-Saturation

The following is a classical characterization that uses the uniform boundedness

principle.

Proposition

A series

∑
n∈N xn in a Banach space X is weakly unconditionally convergent exactly

when the numerical series

∑
n

x
∗(xn) converge unconditionally for every x

∗ ∈ X
∗

.

Consequently, if the ideal B(x) is tall, then the sequence x is weakly null.

Recall that an ideal of the form C(x) is tall if and only if x is norm-null (i.e.

norm-converging to zero). Moreover, using a classical Bessaga-Pełczyński’s theorem

Theorem (Drewnowski and Labuda)

If c0 does not embed in X , then B(x) = C(x) for every sequence, hence we have the

same characterization of tallness.
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However, using the well-known fact that weakly unconditional bases are precisely

the sequences equivalent to the unit basis of c0, we can show a general

characterization which explicitly takes c0 into account.

Theorem

Let x = (xn)n be a sequence in a Banach space X. The following are equivalent.

1 B(x) is tall.

2 Every subsequence of x has a further subsequence that is either norm-null or

equivalent to the unit basis of c0.

Consequently,

3 if (xn)n does not have subsequences equivalent to the unit basis of c0, then B(x) is

tall exactly when x is a norm-null sequence, and

4 if X is isomorphic to a subspace of c0, then B(x) is tall exactly when x is

weakly-null.
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Summability

R. Filipów and J. Tryba recently proved in [4, Corollary 11.3] that every non-trivial

B-ideal can be extended to a non-trivial summable ideal.

The extension of ideals to summable ones has led to intriguing characterizations,

including connections to Riemann summability. Notably, several classical ideals,

such as the Mazur ideal M and the ideal Z , cannot be extended in this way, and

consequently they are pathological.

Proposition

An ideal is B-representable in a finite dimensional space exactly when it is summable.

It follows from the generalized parallelogram identity the following.

for every sequence (y
k
)n

k=1
in a Hilbert space we have that

E(θ
k
)

k
∈{−1,1}n

(
∥

n∑
k=1

θ
k
y

k
∥2

)
:=

1

2
n

∑
(θ

k
)

k
∈{−1,1}n

∥
n∑

k=1

θ
k
y

k
∥2 =

n∑
k=1

∥y
k
∥2.

Proposition

An ideal can be B-represented in a Hilbert space by an unconditional basic sequence

exactly when it is summable.
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Non-trivial cotype

It is natural to ask for properties similar the generalized parallelogram identity in a

given Banach space. Recall that a Banach space X has cotype 1 ≤ q ≤ ∞ if there is a

constant C such that for every finite sequence (x
k
)n

k=1
one has that

n∑
k=1

∥x
k
∥q ≤ CEθ

(
∥

n∑
k=1

θ
k
x

k
∥q

)
, (1)

where when for q = ∞ the previous inequality has to be interpreted as

maxn

k=1
∥x

k
∥ ≤ CEθ∥

∑
n

k=1
θ

k
x

k
∥. This means, by a simple use of the triangle

inequality, that every space has cotype ∞, and by using constant sequences, that

cotypes q are always at least 2. A Banach space X has non trivial cotype when it has

cotype q for some q <∞. We have the following.

Proposition

For every sequence x = (xn)n in a space X with non-trivial cotype q one has that

Sum((∥xn∥)n) ⊆ B(x) ⊆ Sum((∥xn∥q)n).
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Cotype

A well-known result by B. Maurey and G. Pisier states that a space X has non-trivial

cotype exactly when c0 is not finitely representable, that, in the case of c0, means

that there is no constant C such that every ℓn

∞ has C-isomorphic subspace of X .

Combining this with the Drewnowski-Labuda Theorem we obtain the following.

Corollary

If c0 is not finitely representable in X , then there is some 2 ≤ q <∞ such that

Sum((∥xn∥)n) ⊆ B(x) = C(x) ⊆ Sum((∥xn∥q)n)

for every sequence x = (xn)n in X .
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Representing on C(2
N)

We see how to effectively B-represent an ideal B(φ), φ = sup
k
φ

k
on C(2

N).

For C[0, 1] a small modification

works

For each n, let Ln = {φ
k
({n}) : k ∈ N} which we can assume to be finite.

Consider the following tree:

T := {⟨φ
k
(0), . . . , φ

k
(n)⟩ : k, n ∈ N}.

Since each Ln is finite, T is clearly finitely branching. Notice that each measure φ
k

is a branch of T . Let ρ : T → 2
<ω

be an embedding, that is, ρ(s) ≺ ρ(s
′) iff

s ≺ s
′
, for all s, s

′ ∈ T . Then FIN(φ) = B((gn)) where for each n,

gn :=
∑

s∈T ,|s|=n+1

s(n)1[ρ(s)]. (2)
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Representing on C(α)

We have observed the close relationship between tall B-ideals and the space c0.

Thus, it is natural to expect that ideals represented in separable, c0-saturated C(K)
spaces exhibit distinctive structural properties.

i.e., C(K) with K countable

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K

countable, is necessarily effectively tall.

there is a borel Φ : P(N) → I such that φ(A) ⊆ A for every A ∈ P(N)

From where does the Borel choice function arise? Precisely from c-coloring ideals.

Representation on spaces of continuous functions Ideals//ESI 14 / 30
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Coloring ideals

Given a Borel coloring c : [N]∞ → r, the ideal Hom(c) generated by

homogeneous sets is always tall.

Galvin–Prikry theorem

Every tall coloring ideal I is of this form Hom(c), c := 1I .

Proposition

Every tall Fσ ideal is an open coloring ideal.

a 2-coloring where one of the two colors is open

Moreover, if the coloring c is continuous,

all colors are open

a result by J. Grebík and C. Uzcátegui

shows that Hom(c) is effectively tall.

A continuous coloring is completely determined by a coloring of a front F on N, a

Sperner family that is unavoidable.

every M ⊆ N infinite has a unique initial part in F

c-coloring ideals Ideals//ESI 15 / 30
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c-coloring ideals

Definition

An ideal is a continuous coloring ideal (c-coloring ideal in short) when it is of the

form ⟨Hom(c)⟩ for some continuous coloring c : [N]ω → r ∈ N or, equivalently,

of the form ⟨hom(c)⟩ for some c : F → r defined on a front F .

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable

contains a c-coloring ideal of a coloring c : F → r

The Cantor-Bendixson rank of the closure of F is closely related to that of K

(Observe that a front F ⊆ FIN is precompact.)

its closure consists of finite sets

In particular, when K has finite

C-B-rank we have

Corollary

An ideal that admits a B-representation in c0 is tall if and only if it contains a

c-coloring ideal induced by a coloring c : [N]2 → 2.
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The Cantor-Bendixson rank of the closure of F is closely related to that of K

(Observe that a front F ⊆ FIN is precompact.)

its closure consists of finite sets

In particular, when K has finite

C-B-rank we have

Corollary

An ideal that admits a B-representation in c0 is tall if and only if it contains a

c-coloring ideal induced by a coloring c : [N]2 → 2.
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Are c-coloring ideals non-pathological?

Question

Is a c-coloring ideal non-pathological,

i.e. a B-ideal?

Theorem

Every tall ideal I that admits a B-representation in a space C(K), with K countable

contains a non-pathological c-coloring ideal.
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Are c-coloring ideals non-pathological?

A coloring c : F → r on a family F of subsets of X induces r hypergraphs Hi(c)
over X , where each Hi consists of the sets in F colored with i. When F ⊆ [X ]d,

these hypergraphs are d-uniform. If F = [N]d and r = 2, then H0 and H1 are

complements.

Question

Is the Random ideal non-pathological? Are the d-Random ideals non-pathological?

The c-coloring ideal ⟨hom(c)⟩ for a 2-coloring coincides with the ideal generated

by cliques and anticliques of the hyperedges. More generally, for an r-coloring, it is

the ideal of complete sub-hypergraphs of each Hi.
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non-pathological c-colorings

We do not know the full answer to this question, but we have some partial ones,

for some colorings c : [N]2 → 2 so that c({m, n}<) = i induces a partial ordering

on N. To analyze these partial orders we will use Dilworth’s theorem.

For a partially ordered set P , the supremum of the cardinalities of its an-

tichains, when finite, equals the minimum number of chains needed to cover

P . The dual of Dilworth theorem, called Mirsky’s theorem is also true.

Theorem

Fix a coloring c : [N]2 → 2 such that m < n and c(m, n) = i defines a partial

ordering on N. The corresponding c-coloring ideal hom(c) is non-pathological when

homi(c) ⊆ FIN or when hom1−i(c) ⊆ FIN.
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Of particular interest are c-colorings c : [N]2 → r where both colors define a

partial ordering. We call them Sierpinski colorings.
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universal 2-colorings

A Q-coloring is a Sierpinski coloring θ̂ : [N]2 → 2 associated to some enumeration

θ : N → Q, that is, θ̂({m, n}<) := 1 exactly when θ(m) < θ(n). The Sierpinski

ideal associated to θ, ⟨hom(θ̂)⟩, will be called a Q-coloring ideal.

Theorem (Universality)

Suppose that θ : N → Q is an enumeration. Then for every coloring c : [N]2 → l

there is some M ⊆ N such that θ(M) is order-isomorphic to Q and such that

hom(θ̂) ↾M ⊆ hom(c).

The proof uses crucially the following Galvin’s Theorem

Theorem

For every coloring c : [Q]2 −→ l, there is X ⊆ Q order-isomorphic to Q such that

|c[X ]2| ≤ 2.
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universal d-colorings

This can be extended to any dimension d using the concept of Devlin types.

Theorem

For every d ∈ N there is a number t
d
∈ N satisfying:

1 If c : [Q]d → r is an arbitrary (finite) coloring, then there is some

order-isomorphic copy X of Q such that c uses at most t
d

colors on [X ]d.

2 There exists a coloring c
d
: [Q]d → t

d
such that if X ⊆ Q is order-isomorphic to

Q, then c
d

uses all colors on [X ]d.

The number t
d

represents the count of canonical patterns of arbitrary d points on

the binary tree 2
<N

. It is interesting to note that the sequence (t
d
)

d
is a well known

sequence of numbers known as the odd tangent numbers, because t
d
= T

2d−1
,

where tan(z) =
∑∞

n=0
(Tn/n!)z

n.

A Q
d

-coloring is some θ̂d := c
d
◦ θn : [N]d → t

d
, {nj}j<d

7→ c
d
({θ(nj)}j<d

) for

a bijection θ : N → Q.

Theorem

Suppose that θ : N → Q is an enumeration. Then for every coloring c : [N]d → l

there is some M ⊆ N such that θ(M) is order-isomorphic to Q and such that

hom(θ̂d) ↾M ⊆ hom(c).
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Pathological c-colorings

Recall that, in this context, a submeasure on X is called non-pathological when

φ = sup{µ : µ is a measure on X such that µ ≤ φ}.

When φ is lower semicontinuous, these measures can be chosen to be σ-additive.

Every Fσ-ideal I can be written as I = Fin(φ) for some lower semicontinuous

submeasure φ. It is called non-pathological if φ can be chosen to be

non-pathological.

Equivalently, I is pathological if it cannot be B-represented in any Banach space.

The first known example of a pathological ideal is Mazur’s ideal, which we now

proceed to describe.
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Mazur-like ideals

From now on X is a finite set.

We proceed to list the key facts of these ideals:

Suppose that S is a covering of X .

1 One can define the submeasure covering ψS associated to S for A ⊆ X by

ψS(A) = min{#T : A ⊆
⋃

T , T ⊆ S}.

2 Kelley’s covering number: One defines

δ(X ,S) := 1

#S
min
x∈X

#{S ∈ S : x ∈ S}.

If µ is an arbitrary measure on X , then there is S ∈ S such that

µ(S) ≥ δ(X ,S)µ(X). (3)

3 Certain submeasure coverings exhibit extreme violations of (3).

c-coloring ideals Pathological c-colorings Ideals//ESI 23 / 30



Mazur-like ideals

From now on X is a finite set.We proceed to list the key facts of these ideals:

Suppose that S is a covering of X .

1 One can define the submeasure covering ψS associated to S for A ⊆ X by

ψS(A) = min{#T : A ⊆
⋃

T , T ⊆ S}.

2 Kelley’s covering number: One defines

δ(X ,S) := 1

#S
min
x∈X

#{S ∈ S : x ∈ S}.

If µ is an arbitrary measure on X , then there is S ∈ S such that

µ(S) ≥ δ(X ,S)µ(X). (3)

3 Certain submeasure coverings exhibit extreme violations of (3).

c-coloring ideals Pathological c-colorings Ideals//ESI 23 / 30



Mazur-like ideals

From now on X is a finite set.We proceed to list the key facts of these ideals:

Suppose that S is a covering of X .

1 One can define the submeasure covering ψS associated to S for A ⊆ X by

ψS(A) = min{#T : A ⊆
⋃

T , T ⊆ S}.

2 Kelley’s covering number: One defines

δ(X ,S) := 1

#S
min
x∈X

#{S ∈ S : x ∈ S}.

If µ is an arbitrary measure on X , then there is S ∈ S such that

µ(S) ≥ δ(X ,S)µ(X). (3)

3 Certain submeasure coverings exhibit extreme violations of (3).

c-coloring ideals Pathological c-colorings Ideals//ESI 23 / 30



Mazur-like ideals

From now on X is a finite set.We proceed to list the key facts of these ideals:

Suppose that S is a covering of X .

1 One can define the submeasure covering ψS associated to S for A ⊆ X by

ψS(A) = min{#T : A ⊆
⋃

T , T ⊆ S}.

2 Kelley’s covering number: One defines

δ(X ,S) := 1

#S
min
x∈X

#{S ∈ S : x ∈ S}.

If µ is an arbitrary measure on X , then there is S ∈ S such that

µ(S) ≥ δ(X ,S)µ(X). (3)

3 Certain submeasure coverings exhibit extreme violations of (3).

c-coloring ideals Pathological c-colorings Ideals//ESI 23 / 30



Mazur-like ideals

From now on X is a finite set.We proceed to list the key facts of these ideals:

Suppose that S is a covering of X .

1 One can define the submeasure covering ψS associated to S for A ⊆ X by

ψS(A) = min{#T : A ⊆
⋃

T , T ⊆ S}.

2 Kelley’s covering number: One defines

δ(X ,S) := 1

#S
min
x∈X

#{S ∈ S : x ∈ S}.

If µ is an arbitrary measure on X , then there is S ∈ S such that

µ(S) ≥ δ(X ,S)µ(X). (3)

3 Certain submeasure coverings exhibit extreme violations of (3).

c-coloring ideals Pathological c-colorings Ideals//ESI 23 / 30



Mazur-like ideals

4 By amalgamating these covering submeasures, Mazur constructs a submeasure

ψ on a countable set E, yielding the Fσ-ideal Fin(ψ). This ideal is

super-pathological, meaning that it is not contained in any non-pathological

Fσ-ideal.

5 The index set X is a collection of subsets of a fixed finite set E not containing E.

The family

S := {̂eX : e ∈ E}
is a covering of X , where

êX := {A ∈ X : e /∈ A}.

6 We fix some 0 ≤ β < 1, a disjoint sequence (En)n of arbitrarily large finite sets

and Xn := [En]
≤β#En

. Then each covering submeasure ψn associated to the

covering Sn guarantees that Kelley’s fact fails badly, so that one can amalgamate

the ψn’s to obtain ψ on

⊔
n

Xn, defined by ψ(A) := sup
n
ψn(A ∩ Xn), to

obtain a super pathological Fσ ideal.
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Mazur-like ideals⇝Mazur-coloring ideals

Observe that Mazur’s ideal is generated by sets of the form

⊔
n
(ên)Xn

for some

sequence (en)n ∈
∏

n
En because each ψ(̂eX ) = 1, so ψ(

⊔
n
(ên)Xn

) = 1.

We want

to produce c-coloring ideals associated to some coloring c and so that

FIN(ψ) ⊆ hom(c), and in this way, since FIN(ψ) is superpathological, we would

have that hom(c) is also this way.

For example, fix d ∈ N, recall that Xn = [En]
≤β#En

. We define cn : [Xn]
d → 2 for

{Aj}d

j=1
, Aj ∈ [En]

≤β#En
, by

cX ({Aj}d

j=1
) :=

{
1 if ψn({Aj}d

j=1
) = 1,

0 otherwise.

In other words, cn({Aj}j) = 1 exactly when {Aj}j is not a covering of En.
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Mazur-like ideals⇝Mazur-coloring ideals

We freely amalgamate them: We define for the family X :=
⊔

n
Xn of subsets of⊔

n
En the Mazur coloring cX : [X ]d → 2 for {Aj}d

j=1
⊆ A by

cX ({Aj}j) :=

{
1 if Xn ̸⊆

⋃
d

j=1
Aj , for every n

0 otherwise.

We know that FIN(ψ) ⊆ hom(cX ) so this c-coloring ideal is superpathological as

well.

Not so fast!Why hom(cX ) ̸= P(X)???
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Chromatic numbers

Observe that homogeneous of color zero must be finite because if {Aj}j∈N is an

infinite subset of X there must be Aj1
, · · ·Aj

d
belonging each of them to different

Xn’s so c({Aj
k
}n

k=1
) = 1.

So the problem may come from homogeneous sets of

color 1, meaning,

Question

Is it possible that X is a union of r-many 1-homogeneous subsets?

For each n, we have a d-uniform hypergraph Hn := (En,c
−1

n
(0)), and if the

previous question has a positive answer then the chromatic number of Hn is at

most r.

Theorem

For every d ≥ 3, 0 < β < 1, and r ∈ N, there exists some N = N (d, β, r) ∈ N
such that for every n ≥ N ,

χ(Hn) > r.
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Chromatic numbers

The proof relies heavily on concentration of measure, applied to almost-centered

families of finite sets.

As a consequence, we obtain the following Ramsey-like result:

Corollary

For every d, r ≥ 1 there exists a multiple ñ = ñ(d, r) of d such that any r-coloring of

[ñ]ñ/d
contains a monochromatic set of cardinality d + r that covers ñ.

and the following

Corollary

For every d ≥ 3, there exists an integer n(d) such that the ideal generated by the

Random d-uniform hypergraph is super-pathological.

Question

Is the ideal generated by the Random graph non-pathological?
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Thanks!
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