Free objects in *p*-Banach lattices

Structures in Banach spaces - Vienna, March 21st, 2025

Alberto Salguero Alarcón Universidad Complutense de Madrid

(joint work with P. Tradacete and N. Trejo Arroyo)

Partially funded by project PID2023-146505 NB-C21, awarded by MICIU/AEI /10.13039/501100011033/ and FEDER "Una manera de hacer Europa"

▲ロト ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

▶ An introduction to free functors

▶ The free *p*-Banach lattice generated by a *p*-Banach space

 \blacktriangleright The free *p*-convex *p*-Banach lattice generated by a natural *p*-Banach space

• Let \mathcal{C} be a category, and \mathcal{D} a subcategory of \mathcal{C} .

- Let \mathcal{C} be a category, and \mathcal{D} a subcategory of \mathcal{C} .
- If we prefer, think of:
 - Ban = Banach spaces and (linear, continuous) operators.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

— $\mathbf{BLat} = \text{Banach lattices and lattice homomorphisms.}$

- Let \mathcal{C} be a category, and \mathcal{D} a subcategory of \mathcal{C} .
- If we prefer, think of:
 - Ban = Banach spaces and (linear, continuous) operators.

・ロト ・四ト ・ヨト ・ヨト

E ∽ar

- $\mathbf{BLat} =$ Banach lattices and lattice homomorphisms.
- There is a **forgetful** functor $\Box : \mathcal{D} \rightsquigarrow \mathcal{C}$.

- Let \mathcal{C} be a category, and \mathcal{D} a subcategory of \mathcal{C} .
- If we prefer, think of:
 - Ban = Banach spaces and (linear, continuous) operators.
 - $\mathbf{BLat} =$ Banach lattices and lattice homomorphisms.
- There is a **forgetful** functor $\Box : \mathcal{D} \rightsquigarrow \mathcal{C}$.
- A free functor is (somewhat informally) a *left-adjoint* functor for \Box , that is, a functor $\mathcal{F} : \mathcal{C} \rightsquigarrow \mathcal{D}$ such that

 $\operatorname{Hom}_{\mathcal{D}}(\mathcal{F}(C), D) \simeq \operatorname{Hom}_{\mathcal{C}}(C, \Box D)$

イロマ 不可 マイビア トロー ろうろ

Free functors

We say that the **free object** over a certain C in C is a pair $(\mathcal{F}(C), \delta)$, where:

Free functors

We say that the **free object** over a certain C in C is a pair $(\mathcal{F}(C), \delta)$, where:

• F(C) is an object in \mathcal{D} .

- F(C) is an object in \mathcal{D} .
- $\delta: C \to F(C)$ is an injection.

- F(C) is an object in \mathcal{D} .
- $\delta: C \to F(C)$ is an injection.
- For every morphism $f: C \to \Box D$ (in C) there is a unique morphism $\hat{f}: \mathcal{F}(C) \to D$ (in \mathcal{D}) such that $\hat{f}\delta = f$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ 車 ○ のへで

- F(C) is an object in \mathcal{D} .
- $\delta: C \to F(C)$ is an injection.
- For every morphism $f: C \to \Box D$ (in C) there is a unique morphism $\hat{f}: \mathcal{F}(C) \to D$ (in \mathcal{D}) such that $\hat{f}\delta = f$.

Examples:

1. The *Stone-Čech* compactification, as the adjoint of **CHaus** \rightsquigarrow **Top**.

- F(C) is an object in \mathcal{D} .
- $\delta: C \to F(C)$ is an injection.
- For every morphism $f: C \to \Box D$ (in C) there is a unique morphism $\hat{f}: \mathcal{F}(C) \to D$ (in \mathcal{D}) such that $\hat{f}\delta = f$.

Examples:

- 1. The *Stone-Čech* compactification, as the adjoint of **CHaus** \rightsquigarrow **Top**.
- 2. The *bidual* of a Banach space X^{**} , as the adjoint of **Ban**^{*} \rightsquigarrow **Ban**.

- F(C) is an object in \mathcal{D} .
- $\delta: C \to F(C)$ is an injection.
- For every morphism $f: C \to \Box D$ (in C) there is a unique morphism $\hat{f}: \mathcal{F}(C) \to D$ (in \mathcal{D}) such that $\hat{f}\delta = f$.

Examples:

- 1. The *Stone-Čech* compactification, as the adjoint of **CHaus** \rightsquigarrow **Top**.
- 2. The *bidual* of a Banach space X^{**} , as the adjoint of **Ban**^{*} \rightarrow **Ban**.
- 3. The Lipschitz free space, as the adjoint of **Ban** \rightsquigarrow (Met_{•}, Lip) (Godefroy, Kalton).

3

イロト 不聞下 不同下 不同下

• δ is an into isometry.

イロマ 不可 マイビア トロー ろうろ

- δ is an into isometry.
- Every operator $T: E \to X$ uniquely *extends* to a lattice homomorphism $\hat{T}: FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$.

- δ is an into isometry.
- Every operator $T: E \to X$ uniquely *extends* to a lattice homomorphism $\hat{T}: FBL[E] \to X$ with $\|\hat{T}\| = \|T\|$.

Question: what about the *non-locally convex* setting?

Quasi-norms and *p*-norms

• A quasi-norm on a vector space E is a map $\|\cdot\|: E \to \mathbb{R}$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

- (1) $||x|| = 0 \iff x = 0.$ (2) $||\lambda x|| = |\lambda| \cdot ||x||.$
- $(2) \quad \|\lambda x\| = |\lambda| \cdot \|x\|.$
- (3) $||x+y|| \le C(||x||+||y||).$

Quasi-norms and *p*-norms

• A quasi-norm on a vector space E is a map $\|\cdot\|: E \to \mathbb{R}$ such that

$$(1) ||x|| = 0 \iff x = 0.$$

(2)
$$\|\lambda x\| = |\lambda| \cdot \|x\|.$$

- (3) $||x+y|| \le C(||x||+||y||).$
- $\|\cdot\|$ quasi-norm + complete = quasi-Banach space.

- A quasi-norm on a vector space E is a map $\|\cdot\|: E \to \mathbb{R}$ such that
 - (1) $||x|| = 0 \iff x = 0.$
 - (2) $\|\lambda x\| = |\lambda| \cdot \|x\|.$
 - (3) $||x+y|| \le C(||x||+||y||).$
 - $\|\cdot\|$ quasi-norm + complete = quasi-Banach space.
 - X vector lattice + $\|\cdot\|$ complete quasi-norm + compatibility = quasi-Banach lattice.

- A quasi-norm on a vector space E is a map $\|\cdot\|: E \to \mathbb{R}$ such that
 - (1) $||x|| = 0 \iff x = 0.$
 - (2) $\|\lambda x\| = |\lambda| \cdot \|x\|.$
 - (3) $||x+y|| \le C(||x||+||y||).$
 - $\|\cdot\|$ quasi-norm + complete = quasi-Banach space.
 - X vector lattice + $\|\cdot\|$ complete quasi-norm + compatibility = quasi-Banach lattice.
- Given $p \in (0, 1]$, a *p*-norm $\|\cdot\| : E \to \mathbb{R}$ satisfies (1), (2) and (3') $\|x + y\|^p \le \|x\|^p + \|y\|^p$.
- (Aoki-Rolewicz) Every quasi-norm is equivalent to some *p*-norm.

Free *p*-Banach lattices

Our categories are now:

• $\mathbf{pBan} = p$ -Banach spaces and (linear, continuous) operators.

・ロト ・四ト ・ヨト ・ヨト

3

• **pBLat** = *p*-Banach lattices and lattice homomorphisms.

Our categories are now:

- **pBan** = *p*-Banach spaces and (linear, continuous) operators.
- **pBLat** = *p*-Banach lattices and lattice homomorphisms.

The free p-Banach lattice over a p-Banach space E:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

Our categories are now:

- **pBan** = *p*-Banach spaces and (linear, continuous) operators.
- **pBLat** = *p*-Banach lattices and lattice homomorphisms.

The free p-Banach lattice over a p-Banach space E:

• δ is an into isometry.

Our categories are now:

- $\mathbf{pBan} = p$ -Banach spaces and (linear, continuous) operators.
- **pBLat** = *p*-Banach lattices and lattice homomorphisms.

The **free** p-Banach lattice over a p-Banach space E:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ 車 ○ のへで

• δ is an into isometry.

• Every operator $T: E \to X$ uniquely extends to a lattice homomorphism $\widehat{T}: \operatorname{FpBL}[E] \to X$ with $\|\widehat{T}\| = \|T\|$.

The free p-Banach lattice over a p-Banach space E exists.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - の久で

The free p-Banach lattice over a p-Banach space E exists.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

Sketch of the proof.

• Let E be a p-Banach space.

The free p-Banach lattice over a p-Banach space E exists.

Sketch of the proof.

- Let E be a p-Banach space.
- We appeal to the *free vector lattice* over E:

The free p-Banach lattice over a p-Banach space E exists.

Sketch of the proof.

- Let E be a p-Banach space.
- We appeal to the *free vector lattice* over E:

— FVL[E] can be realized as the vector sublattice of $\{\delta_e : e \in E\}$ inside $\mathbb{R}^{E^{\sharp}}$.

The free p-Banach lattice over a p-Banach space E exists.

Sketch of the proof.

- Let E be a p-Banach space.
- We appeal to the *free vector lattice* over E:

- FVL[E] can be realized as the vector sublattice of $\{\delta_e : e \in E\}$ inside $\mathbb{R}^{E^{\sharp}}$.
- Every linear map $T: E \to X$ has a unique extension to a lattice-linear map $\widehat{T}: \operatorname{FVL}[E] \to X.$

$$||f||_{\mathrm{FpBL}} = \sup\{||\widehat{T}f||_X : T \in B_{\mathcal{L}(E,X)}\}$$

$$||f||_{\mathrm{FpBL}} = \sup\{||\widehat{T}f||_X : T \in B_{\mathcal{L}(E,X)}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

• Since E can be embedded isometrically as a subspace of a p-Banach lattice, $\delta: E \to \text{FVL}[E]$ is an into isometry.

$$||f||_{\mathrm{FpBL}} = \sup\{||\widehat{T}f||_X : T \in B_{\mathcal{L}(E,X)}\}$$

- Since E can be embedded isometrically as a subspace of a p-Banach lattice, $\delta: E \to \text{FVL}[E]$ is an into isometry.
- We ensure $\|\cdot\|_{\text{FpBL}}$ is a lattice *p*-norm by considering the quotient

$$\frac{(\mathrm{FVL}[E], \|\cdot\|_{\mathrm{FpBL}})}{\{\|f\|_{\mathrm{FpBL}} = 0\}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 - のへで

$$||f||_{\mathrm{FpBL}} = \sup\{||\widehat{T}f||_X : T \in B_{\mathcal{L}(E,X)}\}$$

- Since E can be embedded isometrically as a subspace of a p-Banach lattice, $\delta: E \to \text{FVL}[E]$ is an into isometry.
- We ensure $\|\cdot\|_{\text{FpBL}}$ is a lattice *p*-norm by considering the quotient

$$\frac{(\mathrm{FVL}[E], \|\cdot\|_{\mathrm{FpBL}})}{\{\|f\|_{\mathrm{FpBL}} = 0\}}$$

We define $\operatorname{FpBL}[E]$ as the completion of such space.

Application to projectivity in pBan

A *p*-Banach lattice P is *projective* if given any lattice quotient $\pi: Z \to X$, any homomorphism $\tau: P \to X$ admits a lifting homomorphism $T: P \to Z$.

Application to projectivity in pBan

A *p*-Banach lattice *P* is *projective* if given any lattice quotient $\pi : Z \to X$, any homomorphism $\tau : P \to X$ admits a lifting homomorphism $T : P \to Z$.

• Since $\ell_p(\Gamma)$ is a projective *p*-Banach space, $\operatorname{FpBL}[\ell_p(\Gamma)]$ is a projective *p*-Banach *lattice*.

Just let $\tau = \hat{\tau}\delta$.

An application to projectivity in pBan

• Every complemented sublattice of a projective *p*-Banach lattice is a projective *p*-Banach lattice.

- As a consequence, one can show that ℓ_p is a projective *p*-Banach lattice.
- What about $\ell_p(\Gamma)$ for Γ uncountable?

In order to improve the representation for FpBL[E], we consider a better behaved class of p-Banach spaces.

In order to improve the representation for FpBL[E], we consider a better behaved class of p-Banach spaces.

Definition

Let $p \in (0, 1)$. A quasi-Banach lattice X is *p*-convex if there is C > 0 such that

$$\left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \le C\left(\sum_{k=1}^{n} ||x_k||^p\right)^{\frac{1}{p}}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

We write $M^{(p)}(X)$ for the least of those constants C.

In order to improve the representation for FpBL[E], we consider a better behaved class of p-Banach spaces.

Definition

Let $p \in (0, 1)$. A quasi-Banach lattice X is *p*-convex if there is C > 0 such that

$$\left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \le C\left(\sum_{k=1}^{n} ||x_k||^p\right)^{\frac{1}{p}}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

We write $M^{(p)}(X)$ for the least of those constants C.

• A *p*-convex quasi-Banach lattice is *p*-normed.

In order to improve the representation for $\mathrm{FpBL}[E],$ we consider a better behaved class of $p\text{-}\mathrm{Banach}$ spaces.

Definition

Let $p \in (0, 1)$. A quasi-Banach lattice X is *p*-convex if there is C > 0 such that

$$\left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \le C\left(\sum_{k=1}^{n} ||x_k||^p\right)^{\frac{1}{p}}$$

We write $M^{(p)}(X)$ for the least of those constants C.

- A *p*-convex quasi-Banach lattice is *p*-normed.
- We say a quasi-Banach space is *natural* if it is embeddable in a *p*-convex quasi-Banach lattice for some $p \in (0, 1)$.

• $\operatorname{FpBL}^{(p)}[E]$ is a *p*-convex quasi-Banach lattice with *p*-convexity constant $M^{(p)} = 1$.

• $\operatorname{FpBL}^{(p)}[E]$ is a *p*-convex quasi-Banach lattice with *p*-convexity constant $M^{(p)} = 1$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

• $\delta: E \to \text{FpBL}^{(p)}[E]$ is an into isometry.

- $\operatorname{FpBL}^{(p)}[E]$ is a *p*-convex quasi-Banach lattice with *p*-convexity constant $M^{(p)} = 1$.
- $\delta: E \to \text{FpBL}^{(p)}[E]$ is an into isometry.
- Every operator $T: E \to X$ to a <u>*p*-convex</u> quasi-Banach lattice uniquely extends to a lattice homomorphism $\widehat{T}: \operatorname{FpBL}^{(p)}[E] \to X$ with $\|\widehat{T}\| \leq M^{(p)}(X) \|T\|$.

Construction of $\operatorname{FpBL}^{(p)}[E]$

Theorem

Let E be a p-natural quasi-Banach space. Then $\operatorname{FpBL}^{(p)}[E]$ exists.

Let E be a p-natural quasi-Banach space. Then $\operatorname{FpBL}^{(p)}[E]$ exists.

Sketch of the proof.

- For simplicity, suppose E is separable.
- Since E is p-natural, E embeds in some $\ell_{\infty}(\mathbb{N}, L_p(\mu_n))$, where $L_p(\mu_n) = \ell_p \oplus_p L_p[0, 1]$ for every $n \in \mathbb{N}$.

Let E be a p-natural quasi-Banach space. Then $\operatorname{FpBL}^{(p)}[E]$ exists.

Sketch of the proof.

- For simplicity, suppose E is separable.
- Since E is p-natural, E embeds in some $\ell_{\infty}(\mathbb{N}, L_p(\mu_n))$, where $L_p(\mu_n) = \ell_p \oplus_p L_p[0, 1]$ for every $n \in \mathbb{N}$.
- An appropriate ambient space is

$$\widehat{E} = \{ f : S_{\mathcal{L}(E,\ell_p \oplus_p L_p)} \to \ell_p \oplus L_p \text{ bounded } \}$$

— There is $\delta: E \to \widehat{E}$ given by $\delta(e)(f) = f(e)$.

Let E be a p-natural quasi-Banach space. Then $\operatorname{FpBL}^{(p)}[E]$ exists.

Sketch of the proof.

- For simplicity, suppose E is separable.
- Since E is p-natural, E embeds in some $\ell_{\infty}(\mathbb{N}, L_p(\mu_n))$, where $L_p(\mu_n) = \ell_p \oplus_p L_p[0, 1]$ for every $n \in \mathbb{N}$.
- An appropriate ambient space is

$$\widehat{E} = \{ f : S_{\mathcal{L}(E,\ell_p \oplus_p L_p)} \to \ell_p \oplus L_p \text{ bounded } \}$$

— There is $\delta: E \to \widehat{E}$ given by $\delta(e)(f) = f(e)$.

— Furthermore, for every $T: E \to \ell_p \oplus_p L_p$ with ||T|| = 1, there is an extension

$$\widehat{T}:\widehat{E}\to \ell_p\oplus_p L_p,\quad \widehat{T}(f)=f(T).$$

• Now, place a suitable "maximal *p*-norm" on \widehat{E} :

$$||f||_{\operatorname{FpBL}^{(p)}} = \sup\{||f(T)||_{\ell_p \oplus_p L_p} \colon T \in S_{\mathcal{L}(E,\ell_p \oplus_p L_p)}\}.$$

• Now, place a suitable "maximal *p*-norm" on \widehat{E} :

$$||f||_{\mathrm{FpBL}^{(p)}} = \sup\{||f(T)||_{\ell_p \oplus_p L_p} \colon T \in S_{\mathcal{L}(E,\ell_p \oplus_p L_p)}\}.$$

• Define $\operatorname{FpBL}^{(p)}[E]$ as the closed lattice-linear span of $\{\delta_e : e \in E\}$ inside \widehat{E} .

• Now, place a suitable "maximal *p*-norm" on \widehat{E} :

$$||f||_{\operatorname{FpBL}^{(p)}} = \sup\{||f(T)||_{\ell_p \oplus_p L_p} \colon T \in S_{\mathcal{L}(E,\ell_p \oplus_p L_p)}\}.$$

- Define $\operatorname{FpBL}^{(p)}[E]$ as the closed lattice-linear span of $\{\delta_e : e \in E\}$ inside \widehat{E} .
- Show that, for any *p*-convex lattice X with $M^{(p)}(X)$ and $T: E \to X$ with ||T|| = 1, there is a unique norm-preserving extension $\hat{T}: \operatorname{FpBL}^{(p)}[E] \to X$.

Present and future plans

Main objectives:

Main objectives:

(1) Functional representation of FpBL.

<ロト <回ト < 三ト < 三ト = 三

Main objectives:

(1) Functional representation of FpBL.

(2) Projectivity in **pBLat**

Main objectives:

- (1) Functional representation of FpBL.
- (2) Projectivity in **pBLat**
- (3) Properties of E vs. lattice properties of FpBL[E] and $\text{FpBL}^{(p)}[E]$.

THANK YOU VERY MUCH!