Uniqueness of unconditional basis in Banach spaces: overview and recent advances

José L. Ansorena. Joint work with F. Albiac

Structures in Banach Spaces Erwin Schrödinger Institute, Vienna, March 16-22, 2025

Uniqueness of unconditional basis (UUB)

Let $(x_n)_{n=1}^{\infty}$ be an unconditional basis of a Banach (or quasi-Banach) space. To properly state a uniqueness result we must take into account the following.

- If $(\lambda_n)_{n=1}^{\infty}$ are scalars, then $(\lambda_n \mathbf{x}_n)_{n=1}^{\infty}$ is un unconditional basis.
- If $(\mathbf{x}_n)_{n=1}^{\infty}$ is an unconditional basis and $(\mathbf{y}_n)_{n=1}^{\infty}$ is a small perturbation of $(\mathbf{x}_n)_{n=1}^{\infty}$, then $(\mathbf{y}_n)_{n=1}^{\infty}$ is an unconditional basis equivalent to $(\mathbf{x}_n)_{n=1}^{\infty}$.
- If π is a permutation of \mathbb{N} , then $(\mathbf{x}_{\pi(n)})_{n=1}^{\infty}$ is unconditional basis that could be nonequivalent to $(\mathbf{x}_n)_{n=1}^{\infty}$ unless $(\mathbf{x}_n)_{n=1}^{\infty}$ is symmetric.

So, we must restrict ourselves to normalized (or semi-normalized) bases, and we must consider uniqueness up to equivalence and permutation (UTAP).

Atomic lattices vs unconditional bases

- If the unit vectors of an atomic lattice L span the whole space, they are an unconditional basis of L.
- lacksquare Any unconditional basis of a Banach space $\mathbb X$ induces on $\mathbb X$ a lattice structure.

Proving that a Banach (or quasi-Banach) space has a unique unconditional basis (UUB for short) consists in proving that the unit vectors of an atomic lattice \boldsymbol{L} are the unique unconditional basis of \boldsymbol{L} .

The pioneers

Having a unique unconditional bases is a rare property of Banach spaces.

Theorem (Pełczyński,1960)

Let $p \in (1\infty)$, $p \neq 2$. Since

$$\ell_p \simeq \left(\bigoplus_{n=1}^{\infty} \ell_2^n\right)_{\ell_p}$$

 ℓ_p does not have a UUB.

Theorem (Köthe and Toeplitz, 1932)

 ℓ_2 has a UUB.

Theorem (Lindenstrauss and Pełczyński, 1968)

 ℓ_1 and c_0 have a UUB.

Three general problems

To search for new Banach spaces with a unique unconditional basis, we must pay attention to the following questions.

Question

Let $\mathbb X$ and $\mathbb Y$ be quasi-Banach spaces with a unique unconditional bases. Does $\mathbb X\oplus\mathbb Y$ has a unique unconditional basis?

Question

Let ${\bf L}$ be an atomic lattice and ${\mathbb X}$ be a quasi-Banach spaces. Suppose that ${\bf L}$ and ${\mathbb X}$ have a unique unconditional basis. Does

$$L(X) = \{(x_n)_{n=1}^{\infty} : x_n \in X_n, (\|x_n\|)_{n=1}^{\infty} \in L\}$$

have a unique unconditional basis.

Question

Let $\mathbb Y$ be a complemented subspace of a quasi-Banach $\mathbb X$ with a unique unconditional basis. If $\mathbb Y$ has an unconditional basis, it is unique?

Theorem (Edelstein and Wojtaszczyk, 1976)

 $\ell_1 \oplus \ell_2$, $c_0 \oplus \ell_2$, $c_0 \oplus \ell_1$, and $c_0 \oplus \ell_1 \oplus \ell_2$ have a UUB unconditional basis.

Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

 $\ell_1(\ell_2)$, $c_0(\ell_2)$, $c_0(\ell_1)$ and $\ell_1(c_0)$ have a UUB. Besides, their complemented subspaces inherit this property.

Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

Neither $\ell_2(\ell_1)$ nor $\ell_2(c_0)$ have a UUB.

Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

The 2-convexified Tsirelson space $\mathcal{T}^{(2)}$ has a UUB. Besides, its complemented subspaces with an unconditional basis inherit this property.

It is hopeless to try to classify Banach spaces with a UUB!

Further advances

Theorem (Casazza and Kalton, 1998)

Tsirelson space \mathcal{T} , and the original Tsirelson space \mathcal{T}^* has a UUB.

Theorem (Casazza and Kalton, 1998)

Let $\mathbf{P} = (p_n)_{n=1}^{\infty}$ be a nonincreasing sequence with

$$\lim_{n} p_n = 1.$$

Then, the variable exponent Lebesgue space ℓ_{P} have a UUB as long as it is lattice isomorphic to its square.

Theorem

Let F be an Orlicz function such that

$$F(t) \sim \frac{t}{\log(t)}, \quad t \to 0^+.$$

There are complemented subspace X of ℓ_F and a complemented subspace Y of X such that X has UUB, and Y has an unconditional basis that is not unique.

Theorem (Casazza and Kalton, 1999)

Neither $c_0(\mathcal{T})$ not $c_0(\mathcal{T}^{(2)})$ have a UUB.

Recent advances

As far as Banach spaces are concerned, not much else is known.

Theorem (Albiac and A, 2021)

Any direct sum constructed from ℓ_1 , c_0 , \mathcal{T} , \mathcal{T}^* , ℓ_2 and $\mathcal{T}^{(2)}$,

$$\ell_2 \oplus \mathcal{T}^{(2)}$$

in particular, has a UUB.

As far as we know, the general question about finite direct sums is open.

Open questions

Question

Does $\ell_1(\mathcal{T})$, $\ell_1(\mathcal{T}^{(2)})$ or $\ell_2(\mathcal{T}^{(2)})$ have a UUB?

Question

Does $c_0(\ell_1(\ell_2))$ have a UUB?

Question

Let $P = (p_n)_{n=1}^{\infty}$ be a sequence with $\lim_n p_n = 2$. Assume that the variable exponent Lebesgue space ℓ_P is lattice isomorphic to its square. Does ℓ_P have a UUB?

Quasi-Banach spaces

If we widen the scope and also consider non-locally convex spaces the list of quasi-Banach spaces with a UUB remarkably grows.

Theorem (Kalton, 1977)

Let F be a concave Orlicz function. Then ℓ_F has UUB. In particular ℓ_p , 0 has a UUB.

Theorem (Kalton, Leranoz, Wojtaszczyk, 1990)

$$\ell_p(\ell_q)$$
, p , $q \in (0,1)$.

Theorem (Wojtaszczyk, 1997)

Hardy spaces $H_p(\mathbb{D})$, 0 , have a UUB.

Quasi-Banach spaces close to Banach spaces

All the above non-locally convex lattices are L-convex, that is, are q-convex for some q > 0.

Also, they are strongly absolute. This means that are semi-normalized and that for every $\varepsilon>0$ there is a constant $C(\varepsilon)\in(0,\infty)$ such that

$$\left\|f\right\|_{1} \leq \max\left\{C(\varepsilon)\left\|f\right\|_{\infty}, \varepsilon\left\|f\right\|_{\boldsymbol{L}}\right\}, \quad f \in \boldsymbol{L}.$$

Quasi-Banach spaces with a Banach component

Theorem (Albiac, Kalton, Leranoz, Wojtaszczyk 1992–2004)

$$\ell_p(\ell_2), \ c_0(\ell_p), \ \ell_p(c_0), \ \ell_1(\ell_p) \ and \ \ell_p(\ell_1), \ 0$$

Question

Does $\ell_2(\ell_p)$, 0 , has a UUB?

A tool for managing subbases

Aside that of $H_p(\mathbb{D})$, the subbases-structure of (the canonical basis) of all the above non-locally spaces lattices is simple. The following result allows us to manage spaces whose subbases-structure is not totally understood.

Theorem (Albiac, A, 2022)

Let $\mathcal X$ and $\mathcal Y$ be unconditional bases. Suppose that $\mathcal X^m$ is equivalent a subbasis of $\mathcal Y^m$ for some $m \in \mathbb N$. Then $\mathcal X$ is equivalent a subbasis of $\mathcal Y$.

Some applications

Theorem (Albiac, A, 2022)

Let **L** be an L-convex strongly absolute lattice. Then $\mathbf{L}(\mathcal{T})$, $\mathbf{L}(\mathcal{T}^*)$, $\mathbf{L}(\ell_1)$ and $\mathbf{L}(c_0)$ have a UUB. In particular $\ell_p(\mathcal{T}^*)$, 0 , has a UUB.

The Banach envelope of all the above non-locally convex spaces with a UUB has a UUB.

Note that the Banach envelope $\ell_p(\mathcal{T}^*)$ is $\ell_1(\mathcal{T}^*)$, which does not have a UUB.

Sufficiently Euclidean spaces

Theorem (Albiac, A, 2024)

 $H_p(\ell_2)$, $H_p(\mathcal{T}^{(2)})$ and $\ell_p(\mathcal{T}^{(2)})$ have a UUB. More generally, if \boldsymbol{L} is an L-convex strongly absolute lattice, then $\boldsymbol{L}(\ell_2)$ and $\boldsymbol{L}(\mathcal{T}^{(2)})$ have a UUB.

Aside from $\ell_p(\ell_2)$, all the above non-locally convex spaces $\mathbb X$ with a UUB are anti-Euclidean. The opposite condition, being sufficiently Euclidean, means that ℓ_2 is finitely complementably representable in $\mathbb X$.

The role of the squares

All the above spaces with a UUB are isomorphic to their squares.

Theorem (Albiac, A, 2025)

Let $\mathbb G$ be the Gowers space with an unconditional basis. Then $\mathbb G$ has a UUB.

The role the optimal convexity

Given an L-convex lattice L we set

$$\sigma(\mathbf{L}) = \sup \{ p \in (0, \infty] : \mathbf{L} \text{ is lattice } p\text{-convex} \}.$$

All the above lattices \boldsymbol{L} with a UUB satisfy $\sigma(\boldsymbol{L}) \in (0,1] \cup \{2,\infty\}$.

Theorem (Albiac, A, 2025)

Let \mathbb{G} be the Gowers space with an unconditional basis and let $p \geq 1$. Then the p-convexified Gowers space $\mathbb{G}^{(p)}$ has a UUB.

Acknowledgements

Thank you for your attention.

Danke für Ihre Aufmerksamkeit.

