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Uniqueness of unconditional basis (UUB)

Let (xn)∞n=1 be an unconditional basis of a Banach (or
quasi-Banach) space. To properly state a uniqueness result we
must take into account the following.

If (λn)∞n=1 are scalars, then (λnxn)∞n=1 is un unconditional
basis.
If (xn)∞n=1 is an unconditional basis and (yn)∞n=1 is a small
perturbation of (xn)∞n=1, then (yn)∞n=1 is an unconditional basis
equivalent to (xn)∞n=1.
If π is a permutation of N, then (xπ(n))∞n=1 is unconditional
basis that could be nonequivalent to (xn)∞n=1 unless (xn)∞n=1 is
symmetric.

So, we must restrict ourselves to normalized (or semi-normalized)
bases, and we must consider uniqueness up to equivalence and
permutation (UTAP).
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Atomic lattices vs unconditional bases

If the unit vectors of an atomic lattice L span the whole space,
they are an unconditional basis of L.
Any unconditional basis of a Banach space X induces on X a
lattice structure.

Proving that a Banach (or quasi-Banach) space has a unique
unconditional basis (UUB for short) consists in proving that the
unit vectors of an atomic lattice L are the unique unconditional
basis of L.

José L. Ansorena. Joint work with F. Albiac



The pioneers

Having a unique unconditional bases is a rare property of Banach
spaces.

Theorem (Pełczyński,1960)

Let p ∈ (1∞), p 6= 2. Since

`p '
( ∞⊕
n=1

`n2

)
`p

`p does not have a UUB.
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Theorem (Köthe and Toeplitz, 1932)

`2 has a UUB.

Theorem (Lindenstrauss and Pełczyński, 1968)

`1 and c0 have a UUB.
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Three general problems

To search for new Banach spaces with a unique unconditional basis,
we must pay attention to the following questions.

Question

Let X and Y be quasi-Banach spaces with a unique unconditional
bases. Does X⊕ Y has a unique unconditional basis?
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Question

Let L be an atomic lattice and X be a quasi-Banach spaces.
Suppose that L and X have a unique unconditional basis. Does

L(X) = {(xn)∞n=1 : xn ∈ Xn, (‖xn‖)∞n=1 ∈ L}

have a unique unconditional basis.

Question

Let Y be a complemented subspace of a quasi-Banach X with a
unique unconditional basis. If Y has an unconditional basis, it is
unique?
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Theorem ( Edelstein and Wojtaszczyk, 1976)

`1 ⊕ `2, c0 ⊕ `2, c0 ⊕ `1, and c0 ⊕ `1 ⊕ `2 have a UUB
unconditional basis.

Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

`1(`2), c0(`2), c0(`1) and `1(c0) have a UUB. Besides, their
complemented subspaces inherit this property.
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Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

Neither `2(`1) nor `2(c0) have a UUB.

Theorem (Bourgain, Casazza, Lindenstrauss, and Tzafriri, 1985)

The 2-convexified Tsirelson space T (2) has a UUB. Besides, its
complemented subspaces with an unconditional basis inherit this
property.

It is hopeless to try to classify Banach spaces with a UUB!
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Further advances

Theorem (Casazza and Kalton, 1998)

Tsirelson space T , and the original Tsirelson space T ∗ has a UUB.

Theorem (Casazza and Kalton, 1998)

Let P = (pn)
∞
n=1 be a nonincreasing sequence with

lim
n

pn = 1.

Then, the variable exponent Lebesgue space `P have a UUB as
long as it is lattice isomorphic to its square.
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Theorem

Let F be an Orlicz function such that

F (t) ∼ t

log(t)
, t → 0+.

There are complemented subspace X of `F and a complemented
subspace Y of X such that X has UUB, and Y has an unconditional
basis that is not unique.

Theorem (Casazza and Kalton, 1999)

Neither c0(T ) not c0(T (2)) have a UUB.
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Recent advances

As far as Banach spaces are concerned, not much else is known.

Theorem (Albiac and A, 2021)

Any direct sum constructed from `1, c0, T , T ∗, `2 and T (2),

`2 ⊕ T (2)

in particular, has a UUB.

As far as we know, the general question about finite direct sums is
open.
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Open questions

Question

Does `1(T ), `1(T (2)) or `2(T (2)) have a UUB?

Question

Does c0(`1(`2)) have a UUB?

Question

Let P = (pn)
∞
n=1 be a sequence with limn pn = 2. Asume that the

variable exponent Lebesgue space `P is lattice isomorphic to its
square. Does `P have a UUB?
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Quasi-Banach spaces

If we widen the scope and also consider non-locally convex spaces
the list of quasi-Banach spaces with a UUB remarkably grows.

Theorem (Kalton,1977)

Let F be a concave Orlicz function. Then `F has UUB. In
particular `p, 0 < p < 1 has a UUB.

Theorem (Kalton, Leranoz, Wojtaszczyk, 1990)

`p(`q), p, q ∈ (0, 1).

Theorem (Wojtaszczyk, 1997)

Hardy spaces Hp(D), 0 < p < 1, have a UUB.
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Quasi-Banach spaces close to Banach spaces

All the above non-locally convex lattices are L-convex, that is, are
q-convex for some q > 0.
Also, they are strongly absolute. This means that are
semi-normalized and that for every ε > 0 there is a constant
C (ε) ∈ (0,∞) such that

‖f ‖1 ≤ max {C (ε) ‖f ‖∞ , ε ‖f ‖L} , f ∈ L.
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Quasi-Banach spaces with a Banach component

Theorem (Albiac, Kalton, Leranoz, Wojtaszczyk 1992–2004)

`p(`2), c0(`p), `p(c0), `1(`p) and `p(`1), 0 < p < 1, have a UUB.

Question

Does `2(`p), 0 < p < 1, has a UUB?
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A tool for managing subbases

Aside that of Hp(D), the subbases-structure of (the canonical
basis) of all the above non-locally spaces lattices is simple. The
following result allows us to manage spaces whose
subbases-structure is not totally understood.

Theorem (Albiac, A, 2022)

Let X and Y be unconditional bases. Suppose that Xm is
equivalent a subbasis of Ym for some m ∈ N. Then X is equivalent
a subbasis of Y.
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Some applications

Theorem (Albiac, A, 2022)

Let L be an L-convex strongly absolute lattice. Then L(T ), L(T ∗),
L(`1) and L(c0) have a UUB. In particular `p(T ∗), 0 < p < 1, has
a UUB.

The Banach envelope of all the above non-locally convex spaces
with a UUB has a UUB.
Note that the Banach envelope `p(T ∗) is `1(T ∗), which does not
have a UUB.
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Sufficiently Euclidean spaces

Theorem (Albiac, A, 2024)

Hp(`2), Hp(T (2)) and `p(T (2)) have a UUB. More generally, if L is
an L-convex strongly absolute lattice, then L(`2) and L(T (2)) have
a UUB.

Aside from `p(`2), all the above non-locally convex spaces X with a
UUB are anti-Euclidean. The opposite condition, being sufficiently
Euclidean, means that `2 is finitely complementably representable
in X.
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The role of the squares

All the above spaces with a UUB are isomorphic to their squares.

Theorem (Albiac, A, 2025)

Let G be the Gowers space with an unconditional basis. Then G
has a UUB.
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The role the optimal convexity

Given an L-convex lattice L we set

σ(L) = sup {p ∈ (0,∞] : L is lattice p-convex} .

All the above lattices L with a UUB satisfy σ(L) ∈ (0, 1] ∪ {2,∞}.

Theorem (Albiac, A, 2025)

Let G be the Gowers space with an unconditional basis and let
p ≥ 1. Then the p-convexified Gowers space G(p) has a UUB.
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