

On extremal nonexpansive mappings

Christian Bargetz

joint work with Michael Dymond and Katriin Pirk

Research supported by the Austrian Science Fund (FWF): P 32523

Universität Innsbruck

Structures in Banach Spaces ESI Vienna, 17-21 March 2025

A mapping $f: C \rightarrow C$ is called nonexpansive if

 $||f(x) - f(y)|| \le ||x - y||$

for all $x, y \in X$. We consider

 $\mathcal{M} = \mathcal{M}(\mathcal{C}) = \{f \colon \mathcal{C} \to \mathcal{C} \colon f \text{ nonexpansive}\}.$

If C is in addition bounded we equip $\mathcal M$ with the metric

$$d_{\infty}(f,g) = \sup_{x \in C} \|f(x) - g(x)\|$$

A mapping $f: C \rightarrow C$ is called **nonexpansive** if

$$\|f(x)-f(y)\|\leq \|x-y\|$$

for all $x, y \in X$. We consider

 $\mathcal{M} = \mathcal{M}(\mathcal{C}) = \{f \colon \mathcal{C} \to \mathcal{C} \colon f \text{ nonexpansive}\}.$

If C is in addition bounded we equip $\mathcal M$ with the metric

$$d_{\infty}(f,g) = \sup_{x \in C} \|f(x) - g(x)\|$$

A mapping $f: C \rightarrow C$ is called **nonexpansive** if

$$\|f(x)-f(y)\|\leq \|x-y\|$$

for all $x, y \in X$. We consider

 $\mathcal{M} = \mathcal{M}(C) = \{f \colon C \to C \colon f \text{ nonexpansive}\}.$

If C is in addition bounded we equip $\mathcal M$ with the metric

$$d_{\infty}(f,g) = \sup_{x \in C} \|f(x) - g(x)\|$$

A mapping $f: C \rightarrow C$ is called **nonexpansive** if

$$\|f(x)-f(y)\|\leq \|x-y\|$$

for all $x, y \in X$. We consider

$$\mathcal{M} = \mathcal{M}(C) = \{f \colon C \to C \colon f \text{ nonexpansive}\}.$$

If ${\it C}$ is in addition bounded we equip ${\cal M}$ with the metric

$$d_{\infty}(f,g) = \sup_{x \in C} \|f(x) - g(x)\|$$

Theorem (Brouwer, 1911)

Let $C \subseteq \mathbb{R}^d$ be nonempty, bounded, closed and convex. Then every continuous mapping

$$f: C \to C$$

has a fixed point.

In infinite dimensions the situation is more complicated.

Theorem (Benyamini–Sternfeld, 1983)

Let X be a infinite dimensional Banach space. Then the unit sphere $S_X = \{x \in X : ||x|| = 1\}$ is a Lipschitz retract of the unit ball $B_X = \{x \in C : ||x|| \le 1\}$. In particular there is always a Lipschitz mapping $f : B_X \to B_X$ without a fixed point.

Theorem (Brouwer, 1911)

Let $C \subseteq \mathbb{R}^d$ be nonempty, bounded, closed and convex. Then every continuous mapping

$$f: C \to C$$

has a fixed point.

In infinite dimensions the situation is more complicated.

Theorem (Benyamini–Sternfeld, 1983)

Let X be a infinite dimensional Banach space. Then the unit sphere $S_X = \{x \in X : ||x|| = 1\}$ is a Lipschitz retract of the unit ball $B_X = \{x \in C : ||x|| \le 1\}$. In particular there is always a Lipschitz mapping $f : B_X \to B_X$ without a fixed point.

Theorem (Browder, Goehde, Kirk, 1965)

Let X be a uniformly convex Banach space and $C \subset X$ a bounded, closed and convex subset. Then every nonexpansive mapping $f: C \to C$ has a fixed point.

This is not true for every Banach space. For example let

 $\mathcal{C} := \{g \in \mathcal{C}[0,1] \colon 0 = g(0) \leq g(t) \leq g(1) = 1 ext{ for } t \in [0,1] \}$

and

$T: C \to C, \quad (Tg)(t) := tg(t)$

Then T is nonexpansive but has no fixed point.

Theorem (Browder, Goehde, Kirk, 1965)

Let X be a uniformly convex Banach space and $C \subset X$ a bounded, closed and convex subset. Then every nonexpansive mapping $f: C \to C$ has a fixed point.

This is not true for every Banach space. For example let

$$\mathcal{C} := \{g \in \mathcal{C}[0,1] \colon 0 = g(0) \leq g(t) \leq g(1) = 1 ext{ for } t \in [0,1] \}$$

and

$$T: C \to C, \quad (Tg)(t) := tg(t)$$

Then T is nonexpansive but has no fixed point.

Let X be a Banach space and $C \subset X$ be a bounded, closed and convex set. Then \mathcal{M} is a complete metric space, so Baire's theorem holds for \mathcal{M} .

We call a property (P) of nonexpansive mappings typical if the set

 $\mathcal{A} = \{ f \in \mathcal{M} \colon f \text{ enjoys } (P) \}$

contains a dense G_{δ} -set.

Theorem (de Blasi–Myjak, 1976)

The typical element of *M* has a unique fixed point.

Question

Let X be a Banach space and $C \subset X$ be a bounded, closed and convex set. Then \mathcal{M} is a complete metric space, so Baire's theorem holds for \mathcal{M} .

We call a property (P) of nonexpansive mappings typical if the set

 $\mathcal{A} = \{ f \in \mathcal{M} \colon f \text{ enjoys } (P) \}$

contains a dense G_{δ} -set.

Theorem (de Blasi–Myjak, 1976)

The typical element of *M* has a unique fixed point.

Question

Let X be a Banach space and $C \subset X$ be a bounded, closed and convex set. Then \mathcal{M} is a complete metric space, so Baire's theorem holds for \mathcal{M} .

We call a property (P) of nonexpansive mappings typical if the set

$$\mathcal{A} = \{f \in \mathcal{M} \colon f ext{ enjoys } (P)\}$$

contains a dense G_{δ} -set.

Theorem (de Blasi–Myjak, 1976)

The typical element of *M* has a unique fixed point.

Question

Let X be a Banach space and $C \subset X$ be a bounded, closed and convex set. Then \mathcal{M} is a complete metric space, so Baire's theorem holds for \mathcal{M} .

We call a property (P) of nonexpansive mappings typical if the set

$$\mathcal{A} = \{f \in \mathcal{M} \colon f ext{ enjoys } (P)\}$$

contains a dense G_{δ} -set.

Theorem (de Blasi–Myjak, 1976)

The typical element of \mathcal{M} has a unique fixed point.

Question

Let X be a Banach space and $C \subset X$ be a bounded, closed and convex set. Then \mathcal{M} is a complete metric space, so Baire's theorem holds for \mathcal{M} .

We call a property (P) of nonexpansive mappings typical if the set

$$\mathcal{A} = \{f \in \mathcal{M} \colon f ext{ enjoys } (P)\}$$

contains a dense G_{δ} -set.

Theorem (de Blasi–Myjak, 1976)

The typical element of \mathcal{M} has a unique fixed point.

Question

Is the typical element of \mathcal{M} a strict contraction, i.e. does it satisfy $||f(x) - f(y)|| \le L||x - y||$ for some $L \in (0, 1)$?

We denote by

Lip
$$f = \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

the Lipschitz constant of f.

The typical nonexpansive mapping f on C satisfies Lip f = 1 if

- X is a Hilbert space (de Blasi–Myjak, 1976)
- X is a Banach space (B.–Dymond, 2016)

■ X is a "suitably nice" metric space (B.–Dymond–Reich, 2017)

Is the typical element of \mathcal{M} a strict contraction, i.e. does it satisfy $||f(x) - f(y)|| \le L||x - y||$ for some $L \in (0, 1)$?

We denote by

Lip
$$f = \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

the Lipschitz constant of f.

The typical nonexpansive mapping f on C satisfies Lip f = 1 if

- X is a Hilbert space (de Blasi–Myjak, 1976)
- X is a Banach space (B.–Dymond, 2016)

■ X is a "suitably nice" metric space (B.–Dymond–Reich, 2017)

Is the typical element of \mathcal{M} a strict contraction, i.e. does it satisfy $||f(x) - f(y)|| \le L||x - y||$ for some $L \in (0, 1)$?

We denote by

Lip
$$f = \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

the Lipschitz constant of f.

The typical nonexpansive mapping f on C satisfies Lip f = 1 if

- X is a Hilbert space (de Blasi–Myjak, 1976)
- X is a Banach space (B.–Dymond, 2016)

• X is a "suitably nice" metric space (B.–Dymond–Reich, 2017)

Is the typical element of \mathcal{M} a strict contraction, i.e. does it satisfy $||f(x) - f(y)|| \le L||x - y||$ for some $L \in (0, 1)$?

We denote by

Lip
$$f = \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

the Lipschitz constant of f.

The typical nonexpansive mapping f on C satisfies Lip f = 1 if

- X is a Hilbert space (de Blasi–Myjak, 1976)
- X is a Banach space (B.–Dymond, 2016)

■ X is a "suitably nice" metric space (B.–Dymond–Reich, 2017)

Is the typical element of \mathcal{M} a strict contraction, i.e. does it satisfy $||f(x) - f(y)|| \le L||x - y||$ for some $L \in (0, 1)$?

We denote by

Lip
$$f = \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$

the Lipschitz constant of f.

The typical nonexpansive mapping f on C satisfies Lip f = 1 if

- X is a Hilbert space (de Blasi–Myjak, 1976)
- X is a Banach space (B.–Dymond, 2016)
- X is a "suitably nice" metric space (B.–Dymond–Reich, 2017)

We call a mapping $f \in \mathcal{M}$ extremal if

$$\lambda g + (1 - \lambda)h \neq f$$

for every $\lambda \in (0, 1)$ and every $g, h \in \mathcal{M} \setminus \{f\}$. Given $\mathcal{F} \subset \mathcal{M}$ we say that $f \in \mathcal{F}$ is extremal among mappings from \mathcal{F} if

 $\lambda g + (1 - \lambda)h \neq f$

for every $\lambda \in (0,1)$ and $g, h \in \mathcal{F} \setminus \{f\}$.

Observation

If f is not extremal, then there are $g, h \in \mathcal{M}$ and $\lambda \in (0, 1)$ with

 $f = \lambda g + (1 - \lambda)h,$

i.e. f is the sum of two strict contractions.

Christian Bargetz (Universität Innsbruck)

We call a mapping $f \in \mathcal{M}$ extremal if

$$\lambda g + (1 - \lambda)h
eq f$$

for every $\lambda \in (0, 1)$ and every $g, h \in \mathcal{M} \setminus \{f\}$. Given $\mathcal{F} \subset \mathcal{M}$ we say that $f \in \mathcal{F}$ is extremal among mappings from \mathcal{F} if

$$\lambda g + (1 - \lambda)h \neq f$$

for every $\lambda \in (0,1)$ and $g, h \in \mathcal{F} \setminus \{f\}$.

Observation

If f is not extremal, then there are $g,h\in\mathcal{M}$ and $\lambda\in(0,1)$ with

$$f = \lambda g + (1 - \lambda)h,$$

i.e. f is the sum of two strict contractions.

Christian Bargetz (Universität Innsbruck)

We call a mapping $f \in \mathcal{M}$ extremal if

$$\lambda g + (1 - \lambda)h
eq f$$

for every $\lambda \in (0, 1)$ and every $g, h \in \mathcal{M} \setminus \{f\}$. Given $\mathcal{F} \subset \mathcal{M}$ we say that $f \in \mathcal{F}$ is extremal among mappings from \mathcal{F} if

$$\lambda g + (1 - \lambda)h \neq f$$

for every $\lambda \in (0,1)$ and $g, h \in \mathcal{F} \setminus \{f\}$.

Observation

If f is not extremal, then there are $g, h \in \mathcal{M}$ and $\lambda \in (0, 1)$ with

$$f = \lambda g + (1 - \lambda)h,$$

i.e. f is the sum of two strict contractions.

Our goal is to shed some light on the following two questions:

- 1 Which nonexpansive mappings are extremal?
- Is being extremal a typical property?

Our goal is to shed some light on the following two questions:

- 1 Which nonexpansive mappings are extremal?
- Is being extremal a typical property?

Our goal is to shed some light on the following two questions:

- 1 Which nonexpansive mappings are extremal?
- 2 Is being extremal a typical property?

The linear case: extreme contractions

Let X be a Banach space and L(X) be the space of bounded linear operators on X.

 $T \in L(X)$ is called a extreme contraction if T is an extreme point of the unit ball of $B_{L(X)}$, i.e. $||T|| \leq 1$ and

 $\Gamma \neq \lambda S + (1 - \lambda)R$

for all $S, R \in L(X)$ with $||S||, ||R|| \leq 1$ and all $\lambda \in (0, 1)$.

Theorem (Blumenthal–Lindenstrauss–Phelps, 1965)

Let K_1 , K_2 compact Hausdorff spaces, K_1 metrisable. $T: C(K_1) \rightarrow C(K_2)$ with ||T|| = 1 is an extreme contraction iff there are continuous functions $\varphi: K_2 \rightarrow K_1$ and $\psi: K_2 \rightarrow \mathbb{T}$ with

 $(Tf)(x) = \psi(x)f(\varphi(x))$

for $x \in K_1$.

Let X be a Banach space and L(X) be the space of bounded linear operators on X.

 $T \in L(X)$ is called a extreme contraction if T is an extreme point of the unit ball of $B_{L(X)}$, i.e. $||T|| \le 1$ and

$$T
eq \lambda S + (1 - \lambda)R$$

for all $S, R \in L(X)$ with $||S||, ||R|| \leq 1$ and all $\lambda \in (0, 1)$.

Theorem (Blumenthal–Lindenstrauss–Phelps, 1965)

Let K_1 , K_2 compact Hausdorff spaces, K_1 metrisable. $T: C(K_1) \rightarrow C(K_2)$ with ||T|| = 1 is an extreme contraction iff there are continuous functions $\varphi: K_2 \rightarrow K_1$ and $\psi: K_2 \rightarrow \mathbb{T}$ with

 $(Tf)(x) = \psi(x)f(\varphi(x))$

for $x \in K_1$.

Let X be a Banach space and L(X) be the space of bounded linear operators on X.

 $T \in L(X)$ is called a extreme contraction if T is an extreme point of the unit ball of $B_{L(X)}$, i.e. $||T|| \le 1$ and

$$T
eq \lambda S + (1 - \lambda)R$$

for all $S, R \in L(X)$ with $\|S\|, \|R\| \le 1$ and all $\lambda \in (0, 1)$.

Theorem (Blumenthal-Lindenstrauss-Phelps, 1965)

Let K_1 , K_2 compact Hausdorff spaces, K_1 metrisable. $T: C(K_1) \rightarrow C(K_2)$ with ||T|| = 1 is an extreme contraction iff there are continuous functions $\varphi: K_2 \rightarrow K_1$ and $\psi: K_2 \rightarrow \mathbb{T}$ with

$$(Tf)(x) = \psi(x)f(\varphi(x))$$

for $x \in K_1$.

- Characterisation of extreme contractions on L₁(Ω, Σ, μ) for σ-finite μ: Iwanik, 1978
- Characterisation of extreme contractions on ℓ_{∞} : Kim, 1976
- Characterisation of extreme contractions between L_p-spaces: Kan, 1986
- A number of recent results on finite dimensional spaces: Sain, 2019, Sain–Paul–Mal, 2021, ...

- Characterisation of extreme contractions on L₁(Ω, Σ, μ) for σ-finite μ: Iwanik, 1978
- \blacksquare Characterisation of extreme contractions on $\ell_\infty:$ Kim, 1976
- Characterisation of extreme contractions between L_p-spaces: Kan, 1986
- A number of recent results on finite dimensional spaces: Sain, 2019, Sain–Paul–Mal, 2021, ...

- Characterisation of extreme contractions on L₁(Ω, Σ, μ) for σ-finite μ: Iwanik, 1978
- \blacksquare Characterisation of extreme contractions on $\ell_\infty:$ Kim, 1976
- Characterisation of extreme contractions between L_p-spaces: Kan, 1986
- A number of recent results on finite dimensional spaces: Sain, 2019, Sain–Paul–Mal, 2021, ...

- Characterisation of extreme contractions on L₁(Ω, Σ, μ) for σ-finite μ: Iwanik, 1978
- \blacksquare Characterisation of extreme contractions on $\ell_\infty:$ Kim, 1976
- Characterisation of extreme contractions between L_p-spaces: Kan, 1986
- A number of recent results on finite dimensional spaces: Sain, 2019, Sain–Paul–Mal, 2021, ...

Let X be a Banach space and $C = B_X$ its unit ball. For $T \in L(X)$ with $||T|| \le 1$ the mapping $T|_{B_X}$ defines an element of \mathcal{M} .

- If T is not an extreme contraction, $T|_{B_X}$ cannot be extremal in \mathcal{M} .
- The mapping

 $T: c_0 \rightarrow c_0, \qquad (x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$

is an extreme contraction but

$$T|_{B_{c_0}} = \frac{1}{2}f + \frac{1}{2}g$$

with $f(x) = (1, x_1, x_2, ...)$ and $g(x) = (-1, x_1, x_2, ...)$, so $T|_{B_{co}}$ is not extremal in \mathcal{M} .

Let X be a Banach space and $C = B_X$ its unit ball. For $T \in L(X)$ with $||T|| \le 1$ the mapping $T|_{B_X}$ defines an element of \mathcal{M} .

- If T is not an extreme contraction, $T|_{B_X}$ cannot be extremal in \mathcal{M} .
- The mapping

 $T: c_0 \rightarrow c_0, \qquad (x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$

is an extreme contraction but

$$T|_{B_{c_0}} = \frac{1}{2}f + \frac{1}{2}g$$

with $f(x) = (1, x_1, x_2, ...)$ and $g(x) = (-1, x_1, x_2, ...)$, so $T|_{B_{co}}$ is not extremal in \mathcal{M} .

Let X be a Banach space and $C = B_X$ its unit ball. For $T \in L(X)$ with $||T|| \le 1$ the mapping $T|_{B_X}$ defines an element of \mathcal{M} .

- If T is not an extreme contraction, $T|_{B_X}$ cannot be extremal in \mathcal{M} .
- The mapping

$$T: c_0 \rightarrow c_0, \qquad (x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$$

is an extreme contraction but

$$T|_{B_{c_0}} = \frac{1}{2}f + \frac{1}{2}g$$

with $f(x) = (1, x_1, x_2, ...)$ and $g(x) = (-1, x_1, x_2, ...)$, so $T|_{B_{c_1}}$ is not extremal in \mathcal{M} .

Let X be a Banach space. $C \subset X$ is called a convex body if it is a closed convex set with nonempty interior.

We look at surjective isometries on a convex body C, i.e. surjective $f: C \to C$ with ||f(x) - f(y)|| = ||x - y|| for all $x, y \in C$.

Theorem (Mankiewicz, 1972)

Let X and Y be a Banach spaces and $C \subset X$ and $D \subset Y$ be convex bodies and $f: C \rightarrow D$ a surjective isometry, then there is an affine isometry $T: X \rightarrow Y$ with $T|_C = f$.

If $C = D = B_X$, then the extension T is even a linear isometry.

Let X be a Banach space. $C \subset X$ is called a convex body if it is a closed convex set with nonempty interior. We look at surjective isometries on a convex body C, i.e. surjective $f: C \to C$ with ||f(x) - f(y)|| = ||x - y|| for all $x, y \in C$.

Theorem (Mankiewicz, 1972)

Let X and Y be a Banach spaces and $C \subset X$ and $D \subset Y$ be convex bodies and $f: C \to D$ a surjective isometry, then there is an affine isometry $T: X \to Y$ with $T|_C = f$.

If $C = D = B_X$, then the extension T is even a linear isometry.

Let X be a Banach space. $C \subset X$ is called a convex body if it is a closed convex set with nonempty interior.

We look at surjective isometries on a convex body C, i.e. surjective $f: C \to C$ with ||f(x) - f(y)|| = ||x - y|| for all $x, y \in C$.

Theorem (Mankiewicz, 1972)

Let X and Y be a Banach spaces and $C \subset X$ and $D \subset Y$ be convex bodies and $f: C \to D$ a surjective isometry, then there is an affine isometry $T: X \to Y$ with $T|_C = f$.

If $C = D = B_X$, then the extension T is even a linear isometry.

Let X be a Banach space. $C \subset X$ is called a convex body if it is a closed convex set with nonempty interior.

We look at surjective isometries on a convex body C, i.e. surjective $f: C \to C$ with ||f(x) - f(y)|| = ||x - y|| for all $x, y \in C$.

Theorem (Mankiewicz, 1972)

Let X and Y be a Banach spaces and $C \subset X$ and $D \subset Y$ be convex bodies and $f: C \to D$ a surjective isometry, then there is an affine isometry $T: X \to Y$ with $T|_C = f$.

If $C = D = B_X$, then the extension T is even a linear isometry.

Let X be a Banach space and $C \subset X$ a convex body. Then every surjective isometry $C \to C$ is extremal in \mathcal{M} if and only if the identity id: $C \to C$ is extremal in \mathcal{M} .

Proof

Suppose that id $\in \mathcal{M}$ is extremal, let $f \in \mathcal{M}$ be a surjective isometry. Assume there are $\lambda \in (0, 1)$ and $g, h \in \mathcal{M}$ such that

$$f = (1 - \lambda)g + \lambda h.$$

By Mankiewicz's theorem f and f^{-1} are the restriction of an affine isometry $X \to X$. Hence,

$$\mathsf{id} = (1 - \lambda)f^{-1} \circ g + \lambda f^{-1} \circ h$$

Let X be a Banach space and $C \subset X$ a convex body. Then every surjective isometry $C \to C$ is extremal in \mathcal{M} if and only if the identity id: $C \to C$ is extremal in \mathcal{M} .

Proof.

Suppose that id $\in M$ is extremal, let $f \in M$ be a surjective isometry. Assume there are $\lambda \in (0, 1)$ and $g, h \in M$ such that

$$f = (1 - \lambda)g + \lambda h.$$

By Mankiewicz's theorem f and f^{-1} are the restriction of an affine isometry $X \to X$. Hence,

$\mathsf{id} = (1 - \lambda)f^{-1} \circ g + \lambda f^{-1} \circ h$

Let X be a Banach space and $C \subset X$ a convex body. Then every surjective isometry $C \to C$ is extremal in \mathcal{M} if and only if the identity id: $C \to C$ is extremal in \mathcal{M} .

Proof.

Suppose that id $\in M$ is extremal, let $f \in M$ be a surjective isometry. Assume there are $\lambda \in (0, 1)$ and $g, h \in M$ such that

$$f = (1 - \lambda)g + \lambda h.$$

By Mankiewicz's theorem f and f^{-1} are the restriction of an affine isometry $X \rightarrow X$. Hence

$\mathsf{id} = (1 - \lambda)f^{-1} \circ g + \lambda f^{-1} \circ h$

Let X be a Banach space and $C \subset X$ a convex body. Then every surjective isometry $C \to C$ is extremal in \mathcal{M} if and only if the identity id: $C \to C$ is extremal in \mathcal{M} .

Proof.

Suppose that id $\in M$ is extremal, let $f \in M$ be a surjective isometry. Assume there are $\lambda \in (0, 1)$ and $g, h \in M$ such that

$$f = (1 - \lambda)g + \lambda h.$$

By Mankiewicz's theorem f and f^{-1} are the restriction of an affine isometry $X \rightarrow X$. Hence,

$$\mathsf{id} = (1 - \lambda)f^{-1} \circ g + \lambda f^{-1} \circ h$$

Let X be a Banach space and $C \subset X$ a convex body. Then every surjective isometry $C \to C$ is extremal in \mathcal{M} if and only if the identity id: $C \to C$ is extremal in \mathcal{M} .

Proof.

Suppose that id $\in M$ is extremal, let $f \in M$ be a surjective isometry. Assume there are $\lambda \in (0, 1)$ and $g, h \in M$ such that

$$f = (1 - \lambda)g + \lambda h.$$

By Mankiewicz's theorem f and f^{-1} are the restriction of an affine isometry $X \rightarrow X$. Hence,

$$\mathsf{id} = (1 - \lambda)f^{-1} \circ g + \lambda f^{-1} \circ h$$

Let X be a Banach space and $C \subset X$ a closed and convex set. A point $x \in C$ is called exposed if there is a hyperplane H supporting C in x with $C \cap H = \{x\}$.

A point $x \in C$ is called almost exposed if the intersection of all hyperplanes supporting C in x is the singleton x.

- Exposed points of C are almost exposed.
- If C is smooth almost exposed points are exposed.

Let X be a Banach space and $C \subset X$ a closed and convex set. A point $x \in C$ is called exposed if there is a hyperplane H supporting C in x with $C \cap H = \{x\}$. A point $x \in C$ is called almost exposed if the intersection of all hyperplanes supporting C in x is the singleton x.

Exposed points of C are almost exposed.

■ If C is smooth almost exposed points are exposed.

Let X be a Banach space and $C \subset X$ a closed and convex set. A point $x \in C$ is called exposed if there is a hyperplane H supporting C in x with $C \cap H = \{x\}$. A point $x \in C$ is called almost exposed if the intersection of all

hyperplanes supporting C in x is the singleton x.

• Exposed points of *C* are almost exposed.

■ If C is smooth almost exposed points are exposed.

Let X be a Banach space and $C \subset X$ a closed and convex set. A point $x \in C$ is called exposed if there is a hyperplane H supporting C in x with $C \cap H = \{x\}$.

A point $x \in C$ is called almost exposed if the intersection of all hyperplanes supporting C in x is the singleton x.

- Exposed points of *C* are almost exposed.
- If C is smooth almost exposed points are exposed.

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that g(x + te) = g(x) + te for all $t \in (0, 1 - ||x||), x \in B_X$ and $e \in E$ (using that e is almost exposed). By induction g(z) = z + g(0) for $z \in \overline{\text{conv}}(E) = B_X$. Hence g = id.

If X has the Radon-Nikodym property, it satisfies the assumptions of the above theorem.

Christian Bargetz (Universität Innsbruck)

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that

g(x + te) = g(x) + te for all $t \in (0, 1 - ||x||), x \in B_X$ and $e \in E$ (using that e is almost exposed). By induction g(z) = z + g(0) for $z \in \overline{\operatorname{conv}}(E) = B_X$. Hence $g = \operatorname{id}$.

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that

 $g(x + te) = g(x) + te \text{ for all } t \in (0, 1 - ||x||), x \in B_X \text{ and } e \in E$ (using that *e* is almost exposed). By induction g(z) = z + g(0) for $z \in \overline{\text{conv}}(E) = B_X$. Hence g = id.

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that g(x + te) = g(x) + te for all $t \in (0, 1 - ||x||), x \in B_X$ and $e \in E$ (using that e is almost exposed).

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that g(x + te) = g(x) + te for all $t \in (0, 1 - ||x||), x \in B_X$ and $e \in E$ (using that e is almost exposed). By induction g(z) = z + g(0) for $z \in \overline{\text{conv}}(E) = B_X$. Hence g = id.

If X has the Radon-Nikodym property, it satisfies the assumptions of the above theorem.

Christian Bargetz (Universität Innsbruck)

Let X be a Banach space with the property that its unit ball B_X is the closed convex hull of its almost exposed points. Then surjective isometries are extremal in the space of nonexpansive self-mappings of the unit ball.

Sketch of the proof.

Enough to show that id is extremal in \mathcal{M} . Let $id = (1 - \lambda)g + \lambda h$. Let E be the set of almost exposed points of B_X . Show that g(x + te) = g(x) + te for all $t \in (0, 1 - ||x||), x \in B_X$ and $e \in E$ (using that e is almost exposed). By induction g(z) = z + g(0) for $z \in \overline{\text{conv}}(E) = B_X$. Hence g = id.

Let K be a compact Hausdorff topological space. Surjective isometries on $B_{C(K)}$ are extremal in the space \mathcal{M} of nonexpansive mappings $B_{C(K)} \rightarrow B_{C(K)}$.

Proof sketch

Again, it is enough to show that the identity is extremal.

- We show id $= \lambda F + (1 \lambda)G$ implies that $F(f)(x) = G(f)(x) = \pm 1$ whenever $f(x) = \pm 1$
- We show that a nonexpansive mapping with the above property is already the identity.

Let K be a compact Hausdorff topological space. Surjective isometries on $B_{C(K)}$ are extremal in the space \mathcal{M} of nonexpansive mappings $B_{C(K)} \rightarrow B_{C(K)}$.

Proof sketch.

Again, it is enough to show that the identity is extremal.

1 We show id = $\lambda F + (1 - \lambda)G$ implies that

 $F(f)(x) = G(f)(x) = \pm 1$ whenever $f(x) = \pm 1$.

We show that a nonexpansive mapping with the above property is already the identity.

Let K be a compact Hausdorff topological space. Surjective isometries on $B_{C(K)}$ are extremal in the space \mathcal{M} of nonexpansive mappings $B_{C(K)} \rightarrow B_{C(K)}$.

Proof sketch.

Again, it is enough to show that the identity is extremal.

We show id $= \lambda F + (1 - \lambda)G$ implies that $F(f)(x) = G(f)(x) = \pm 1$ whenever $f(x) = \pm 1$.

We show that a nonexpansive mapping with the above property is already the identity.

Let K be a compact Hausdorff topological space. Surjective isometries on $B_{C(K)}$ are extremal in the space \mathcal{M} of nonexpansive mappings $B_{C(K)} \rightarrow B_{C(K)}$.

Proof sketch.

Again, it is enough to show that the identity is extremal.

- We show id $= \lambda F + (1 \lambda)G$ implies that $F(f)(x) = G(f)(x) = \pm 1$ whenever $f(x) = \pm 1$.
- 2 We show that a nonexpansive mapping with the above property is already the identity.

 $P_f = \{g \in \mathcal{M} \colon \exists \lambda \in [0,1] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}.$

Then f is extremal iff $P_f = \{f\}$. Properties of P_f : P_f is F_{σ} :

There is an affine subspace A_{Γ} of the space of continuous mappings $C \rightarrow X$ with $P_{\Gamma} = A_{\Gamma} \cap M$.

 $P_f = \{g \in \mathcal{M} \colon \exists \lambda \in [0,1] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}.$

Then f is extremal iff $P_f = \{f\}$. Properties of P_f :

1 P_f is F_{σ} : $P_f = \{f\} \cup \bigcup_{q \in (0,1/2)} P_{f,q}$

 $P_{f,q} = \{g \in \mathcal{M} : \exists \lambda \in [q, 1-q] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}$

2 $\mathcal{M} \setminus P_f$ is convex

There is an affine subspace A_f of the space of continuous mappings $C \to X$ with $P_f = A_f \cap \mathcal{M}$.

$$\mathcal{P}_f = \{g \in \mathcal{M} \colon \exists \lambda \in [0,1] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}.$$

Then f is extremal iff $P_f = \{f\}$. Properties of P_f :

1
$$P_f$$
 is F_{σ} : $P_f = \{f\} \cup \bigcup_{q \in (0,1/2)} P_{f,q}$

 $P_{f,q} = \{g \in \mathcal{M} \colon \exists \lambda \in [q, 1-q] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}$

2 $\mathcal{M} \setminus P_f$ is convex

There is an affine subspace A_f of the space of continuous mappings $C \to X$ with $P_f = A_f \cap \mathcal{M}$.

$$\mathcal{P}_f = \{g \in \mathcal{M} \colon \exists \lambda \in [0,1] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}.$$

Then f is extremal iff $P_f = \{f\}$. Properties of P_f :

$$P_f \text{ is } F_{\sigma}: P_f = \{f\} \cup \bigcup_{q \in (0,1/2)} P_{f,q}$$

 $P_{f,q} = \{g \in \mathcal{M} \colon \exists \lambda \in [q, 1-q] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}$

2 $\mathcal{M} \setminus P_f$ is convex

There is an affine subspace A_f of the space of continuous mappings $C \to X$ with $P_f = A_f \cap \mathcal{M}$.

$$\mathcal{P}_f = \{g \in \mathcal{M} \colon \exists \lambda \in [0,1] \exists h \in \mathcal{M} ext{ s.t. } f = (1-\lambda)g + \lambda h\}.$$

Then f is extremal iff $P_f = \{f\}$. Properties of P_f :

$$P_f \text{ is } F_{\sigma}: P_f = \{f\} \cup \bigcup_{q \in (0,1/2)} P_{f,q}$$

 $P_{f,q} = \{g \in \mathcal{M} \colon \exists \lambda \in [q, 1-q] \exists h \in \mathcal{M} \text{ s.t. } f = (1-\lambda)g + \lambda h\}$

- **2** $\mathcal{M} \setminus P_f$ is convex
- **3** There is an affine subspace A_f of the space of continuous mappings $C \to X$ with $P_f = A_f \cap \mathcal{M}$.

Let (M, ρ) be a complete metric space without isolated points. We consider a set $A \subset M$ to be large if it contains a dense G_{δ} -set.

So a set is small if it is a meagre set, i.e. a countable union of nowhere dense set.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called upper porous at $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called **upper porous at** $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called upper porous at $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called upper porous at $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called upper porous at $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Recall that $A \subset M$ is nowhere dense if for every $q \in A$ and every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ and a $\delta > 0$ with $B_M(q', \delta) \cap A = \emptyset$. A set $A \subset M$ is called upper porous at $q \in A$ if there is an $\alpha > 0$ such that for every $\varepsilon > 0$ there is a $q' \in B_M(q, \varepsilon)$ with $B_M(q', \alpha d(q, q')) \cap A = \emptyset$.

A set $A \subset M$ is called upper porous if it is upper porous at all its points.

Let $f \in \mathcal{M}$ with Lip f = 1. Then the set P_f is σ -upper porous. More precisely, it is a countable union of closed upper porous subsets of \mathcal{M} .

Since the typical element $f\in \mathcal{M}$ satisfies Lip f=1 we obtain the following.

Corollary

For the typical $f \in \mathcal{M}$ the set P_f is σ -upper porous.

Let $f \in \mathcal{M}$ with Lip f = 1. Then the set P_f is σ -upper porous. More precisely, it is a countable union of closed upper porous subsets of \mathcal{M} .

Since the typical element $f \in \mathcal{M}$ satisfies Lip f = 1 we obtain the following.

Corollary

For the typical $f \in \mathcal{M}$ the set P_f is σ -upper porous.

Thank you for your attention!

Christian Bargetz (Universität Innsbruck)

- C. Bargetz, M. Dymond, and K. Pirk, On extremal nonexpansive mappings, Preprint (to appear in Z. Anal. Anwendungen), 2024
- P. Mankiewicz. On extension of isometries in normed linear spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20:367–371, 1972.
- C. Bargetz and M. Dymond. σ-porosity of the set of strict contractions in a space of non-expansive mappings. Israel J. Math. 214:235–244, 2016.
- E. Medjic. On successive approximations for compact-valued nonexpansive mappings. Set-Valued Var. Anal. 31(3): Paper No. 24, 21, 2023.