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Let (X ,A, µ) be a measure space. Its measure algebra is A/ ker µ.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a Boolean algebra, characterize when is there a
countably (disjointly) additive functional µ : A→ [0,1] (i.e. a measure)
such that ker µ = {0A} (i.e. strictly positive).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)
There is a strictly positive measure on A iff there is a strictly positive
charge on A and A is weakly (σ,∞)-distributive, i.e. if An ↓ 0A, then∧
{a ∈ A, ∀n ∈ N ∃an ∈ An ∩ [0A,a]} = 0A.

A submeasure is an order preserving ρ : A→ R with ρ (0A) = 0 and
ρ (a ∨ b) ≤ ρ (a) + ρ (b), for any a,b ∈ A.

Note that the last condition can be replaced with disjoint subadditivity,
or with ρ (a M b) ≤ ρ (a) + ρ (b), for any a,b ∈ A.
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Vector lattices

A vector lattice is a real vector space F with a lattice order such that

if e ≤ f , then e+h ≤ f +h and λe ≤ λf , for every h ∈ F and λ ≥ 0.

F is Archimedean if
∧

n∈N
1
n e = 0F , for every e ≥ 0F .

Example 1 (Spaces of functions)
Spaces of continuous functions: C (X ), Cb (X ), C0 (X ), Lip (X ,d).
Spaces of measurable functions: Lp (µ), p ≥ 0; Orlicz spaces...

For f ∈ F define |f | := f ∨ −f . We call f ,g ∈ F disjoint if |f | ∧ |g| = 0F .

G ⊂ F is solid if |f | ≤ |g| and g ∈ G⇒ f ∈ G. An ideal is a solid linear
subspace. For e ∈ F let Fe be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)
If F is Archimedean, Fe is isomorphic to a dense sublattice of C (Ke),
for a compact Hausdorff Ke.

F is weakly (σ,∞)-distr. iff ∀e meager sets are nowhere dense in Ke.
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Locally solid topologies

P is either a Boolean algebra (BA) or an Archimedean vector lattice
(AVL). A topology on P is locally solid if it has a local base at 0P
consisting of solid sets. For BA solid = downward closed.

Proposition 1
Locally solid topologies are generated by

For AVL’s, by Riesz pseudo-norms, i.e. subadditive functionals
whose balls are solid.
For BA’s, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the
topology is first countable.

Theorem 3 (Kelley, 1959 + Kalton + Roberts, 1983)
Let A be a BA. A locally solid topology on A is generated by additive
measures iff it is uniformly exhaustive, i.e. for every neighborhood U of
0A there is n ∈ N such that there are no disjoint n-tuples in A\U.
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Order convergence

A net (pα) ⊂ P order converges to p ∈ P (denoted by pα
o−→ p) if there

is Q ⊂ P with
∧

Q = 0P such that for every q ∈ Q there is αq such that
|pα − p| ≤ q, for α ≥ αq.

If Q was countable, we talk about σ-order convergence (pα
σo−→ p).

Clearly, pα
σo−→ p ⇒ pα

o−→ p.

Proposition 2

If P is a BA then pα
o−→ 0P iff

∨
{q ∈ P, q⊥pα eventually} = 1P .

If for some α0 all extrema exist in p =
∨

α≥α0

∧
β≥α

pβ =
∧

α≥α0

∨
β≥α

pβ, then

pα
o−→ p. The converse holds if P is Dedekind complete.

P has the countable supremum property (CSP) if for all Q ⊂ P and
q ∈ P with q =

∨
Q there is a countable Q′ ⊂ Q such that q =

∨
Q′.

If F is an AVL, then Fcsp := {e ∈ F , Fe has the CSP} is the largest
ideal in F with the CSP. Note that Fe has the CSP iff Ke has the CCC.
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Proposition 3 (TFAE:)
P has the CSP; • o = σo;
(If P is a BA:) P contains no uncountable disjoint sets (CCC);
(If P is an AVL:) P contains no uncountable order bounded disjoint
sets.

Let F be an AVL. A net (fα) ⊂ F unbounded order (uo) converges to
f ∈ F (fα

uo−→ f ) if e ∨ fα ∧ h o−→ e ∨ f ∧ h, for every e ≤ h.

Equivalently, |fα − f | ∧ h o−→ 0F , for all h ≥ 0F .

Note that in Lp (µ) uo convergence of sequences = a.e. convergence.

Theorem 4 (B., 2023)

If F is an AVL, then 0F ≤ fα
uo−→ 0F iff for every h > 0F there is

e ∈ (0F ,h] and α0 such that (fα − h)+⊥e, for all α ≥ α0.

The topological modification tη of a convergence η is the “cotopology”
formed by the η-closed sets.
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Order continuous topologies on Boolean algebras

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then:

• A is weakly (σ,∞)-distributive.
A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable.

In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1

(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.

Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.

(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Order continuous topologies on Boolean algebras
Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)
If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology τA is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)
If τA exists, then: • A is weakly (σ,∞)-distributive.

A has the CCC iff τA is metrizable. In this case τA = tσo = to is
generated by an order continuous submeasure.

Question 1
(Kind of answered:) Characterize those A’s for which τA exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.
(Open since 70s:) Is it always true that τA = to?

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 7 / 11



Theorem 7 (Balcar, Fremlin, Główczyński, Jech, Pazák,
Talagrand, Todorčević)

For a complete Boolean algebra A TFAE:
A is a Maharam algebra; • tσo is regular;
B has the CCC and to = tσo is Hausdorff;
∨ is tσo-continuous at (0A,0A);
A is weakly (σ,∞)-distr. and {0A} is a Gδ set with respect to tσo;
A is weakly (σ,∞)-distr. and A =

⋃
n∈N

An, where An’s do not

contain infinite disjoint sets;
CCC and some stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity⇒ Maharam
depends on axioms of set theory.

Maharam does NOT imply existence of a strictly positive measure.

In particular, there is a complete CCC BA such that τA exists, but is not
uniformly exhaustive.
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Talagrand, Todorčević)
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Order continuous topologies on vector lattices

Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology.

Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF .

If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)

τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;

There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;

F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Order continuous topologies on vector lattices
Unlike BA, there can be multiple order continuous locally solid
topologies on AVL’s. For example, ‖ · ‖p on L∞. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)
A Hausdorff LS topology τ is weaker than uo iff τ is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If F is an AVL, denote this topology by τF . If F = Lp then τF is the
topology of local convergence in measure.

Proposition 4 (TFAE:)
τF exists;
There is an order continuous Hausdorff locally solid topology on F;
F embeds regularly (i.e. order continuously) into L0 (A), for some
complete Boolean algebra A for which τA exists.

In this case τF is complete iff F = L0 (A), for some A, and τF is
metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 9 / 11



Theorem 9 (Deng + de Jeu, 2024 + B., 2025)
If τF exists and F has the CSP, then τF = tuo. In fact, (fn)n∈N is τF -null
iff every subsequences has a uo-null sub-subsequence. Conversely,
this implies CSP, if F is atomless, under CH (false under MA + ¬CH).

Note that if τF exists, then Fcsp is order dense in F , i.e. for every
f > 0F there is e ∈ (0F , f ] ∩ Fcsp.

Question 2
Is it always true that τF = tuo?
Find a version of Theorem 6 for AVL’s.

Theorem 10 (Preliminary)
If τF exists, TFAE:

F embeds regularly into L0 (A), for some measure algebra A;
τF is uniformly exhaustive;
τF |[0F ,f ] is locally convex, for every f ≥ 0F ;
For all e ∈ F there is a non-zero order continuous functional on Fe.
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