Von Neumann-Maharam problem for vector lattices

Eugene Bilokopytov

University of Alberta

March 20, 2025

Let (X, \mathcal{A}, μ) be a measure space. Its *measure* algebra is $\mathcal{A}/ \ker \mu$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Let (X, \mathcal{A}, μ) be a measure space. Its *measure* algebra is $\mathcal{A}/ \ker \mu$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Let (X, \mathcal{A}, μ) be a measure space. Its *measure* algebra is $\mathcal{A}/ \ker \mu$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

Let (X, \mathcal{A}, μ) be a measure space. Its *measure* algebra is $\mathcal{A}/ \ker \mu$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive charge on A and

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive charge on A and A is **weakly** (σ, ∞) -**distributive**, i.e. if $A_n \downarrow 0_A$, then $\bigwedge \{a \in A, \forall n \in \mathbb{N} \exists a_n \in A_n \cap [0_A, a]\} = 0_A$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive charge on A and A is **weakly** (σ, ∞) -**distributive**, i.e. if $A_n \downarrow 0_A$, then $\bigwedge \{a \in A, \forall n \in \mathbb{N} \exists a_n \in A_n \cap [0_A, a]\} = 0_A$.

A *submeasure* is an order preserving $\rho : A \to \mathbb{R}$ with $\rho(0_A) = 0$ and $\rho(a \lor b) \le \rho(a) + \rho(b)$, for any $a, b \in A$.

Von Neumann problem asks to characterize Boolean algebras which appear as measure algebras of finite measure spaces.

Alternatively, if *A* is a Boolean algebra, characterize when is there a countably (disjointly) additive functional $\mu : A \rightarrow [0, 1]$ (i.e. a *measure*) such that ker $\mu = \{0_A\}$ (i.e. *strictly positive*).

A charge on A is a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive charge on A and A is **weakly** (σ, ∞) -**distributive**, i.e. if $A_n \downarrow 0_A$, then $\bigwedge \{a \in A, \forall n \in \mathbb{N} \exists a_n \in A_n \cap [0_A, a]\} = 0_A$.

A *submeasure* is an order preserving $\rho : A \to \mathbb{R}$ with $\rho(0_A) = 0$ and $\rho(a \lor b) \le \rho(a) + \rho(b)$, for any $a, b \in A$.

Note that the last condition can be replaced with disjoint subadditivity, or with $\rho(a \triangle b) \le \rho(a) + \rho(b)$, for any $a, b \in A$.

A vector lattice is a real vector space F with a lattice order such that

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

• Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \geq 0$; Orlicz spaces...

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu), \rho \ge 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \vee -f$.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \geq 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \vee -f$. We call $f, g \in F$ disjoint if $|f| \wedge |g| = 0_F$.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \geq 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \vee -f$. We call $f, g \in F$ disjoint if $|f| \wedge |g| = 0_F$. $G \subset F$ is solid if $|f| \le |g|$ and $g \in G \Rightarrow f \in G$.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \geq 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \lor -f$. We call $f, g \in F$ disjoint if $|f| \land |g| = 0_F$. $G \subset F$ is solid if $|f| \le |g|$ and $g \in G \Rightarrow f \in G$. An ideal is a solid linear subspace. For $e \in F$ let F_e be the ideal generated by e.

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu), \rho \geq 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \lor -f$. We call $f, g \in F$ disjoint if $|f| \land |g| = 0_F$. $G \subset F$ is solid if $|f| \le |g|$ and $g \in G \Rightarrow f \in G$. An ideal is a solid linear subspace. For $e \in F$ let F_e be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \geq 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \lor -f$. We call $f, g \in F$ disjoint if $|f| \land |g| = 0_F$. $G \subset F$ is solid if $|f| \le |g|$ and $g \in G \Rightarrow f \in G$. An *ideal* is a solid linear subspace. For $e \in F$ let F_e be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)

If F is Archimedean, F_e is isomorphic to a dense sublattice of $C(K_e)$, for a compact Hausdorff K_e .

A vector lattice is a real vector space F with a lattice order such that

• if $e \leq f$, then $e + h \leq f + h$ and $\lambda e \leq \lambda f$, for every $h \in F$ and $\lambda \geq 0$.

F is Archimedean if $\bigwedge_{n \in \mathbb{N}} \frac{1}{n} e = 0_F$, for every $e \ge 0_F$.

Example 1 (Spaces of functions)

- Spaces of continuous functions: C(X), $C_b(X)$, $C_0(X)$, Lip(X, d).
- Spaces of measurable functions: $L_{\rho}(\mu)$, $\rho \ge 0$; Orlicz spaces...

For $f \in F$ define $|f| := f \lor -f$. We call $f, g \in F$ disjoint if $|f| \land |g| = 0_F$. $G \subset F$ is solid if $|f| \le |g|$ and $g \in G \Rightarrow f \in G$. An *ideal* is a solid linear subspace. For $e \in F$ let F_e be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)

If F is Archimedean, F_e is isomorphic to a dense sublattice of $C(K_e)$, for a compact Hausdorff K_e .

F is weakly (σ, ∞) -distr. iff $\forall e$ meager sets are nowhere dense in K_e .

Eugene Bilokopytov (University of Alberta)

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL).

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

 For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

- For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.
- For BA's, by submeasures.

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

- For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.
- For BA's, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the topology is first countable.

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

- For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.
- For BA's, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the topology is first countable.

Theorem 3 (Kelley, 1959 + Kalton + Roberts, 1983)

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

- For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.
- For BA's, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the topology is first countable.

Theorem 3 (Kelley, 1959 + Kalton + Roberts, 1983)

Let A be a BA. A locally solid topology on A is generated by additive measures iff

P is either a Boolean algebra (BA) or an Archimedean vector lattice (AVL). A topology on *P* is *locally solid* if it has a local base at 0_P consisting of solid sets. For BA solid = downward closed.

Proposition 1

Locally solid topologies are generated by

- For AVL's, by Riesz pseudo-norms, i.e. subadditive functionals whose balls are solid.
- For BA's, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the topology is first countable.

Theorem 3 (Kelley, 1959 + Kalton + Roberts, 1983)

Let A be a BA. A locally solid topology on A is generated by additive measures iff it is uniformly exhaustive, i.e. for every neighborhood U of 0_A there is $n \in \mathbb{N}$ such that there are no disjoint n-tuples in $A \setminus U$.

Order convergence

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem

Order convergence

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{\circ} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_0} p$).

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{\circ} p$.

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{o} p$.

Proposition 2

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{o} p$.

Proposition 2

If P is a BA then $p_{\alpha} \xrightarrow{o} 0_{P}$ iff $\bigvee \{q \in P, q \perp p_{\alpha} \text{ eventually}\} = 1_{P}$.

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{\circ} p$.

Proposition 2

If P is a BA then $p_{\alpha} \xrightarrow{o} 0_{P}$ iff $\bigvee \{q \in P, q \perp p_{\alpha} \text{ eventually}\} = 1_{P}$.

If for some α_0 all extrema exist in $p = \bigvee_{\alpha \ge \alpha_0} \bigwedge_{\beta \ge \alpha} p_{\beta} = \bigwedge_{\alpha \ge \alpha_0} \bigvee_{\beta \ge \alpha} p_{\beta}$, then

 $p_{\alpha} \xrightarrow{\mathrm{o}} p.$

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{o} p$.

Proposition 2

If P is a BA then $p_{\alpha} \xrightarrow{o} 0_{P}$ iff $\bigvee \{q \in P, q \perp p_{\alpha} \text{ eventually}\} = 1_{P}$.

If for some α_0 all extrema exist in $p = \bigvee_{\alpha \ge \alpha_0} \bigwedge_{\beta \ge \alpha} p_{\beta} = \bigwedge_{\alpha \ge \alpha_0} \bigvee_{\beta \ge \alpha} p_{\beta}$, then

 $p_{\alpha} \xrightarrow{o} p$. The converse holds if *P* is Dedekind complete.

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{o} p$.

Proposition 2

If P is a BA then $p_{\alpha} \xrightarrow{o} 0_{P}$ iff $\bigvee \{q \in P, q \perp p_{\alpha} \text{ eventually}\} = 1_{P}$.

If for some α_0 all extrema exist in $p = \bigvee_{\alpha \ge \alpha_0} \bigwedge_{\beta \ge \alpha} p_{\beta} = \bigwedge_{\alpha \ge \alpha_0} \bigvee_{\beta \ge \alpha} p_{\beta}$, then

 $p_{\alpha} \xrightarrow{o} p$. The converse holds if *P* is Dedekind complete.

P has the countable supremum property (CSP) if for all $Q \subset P$ and $q \in P$ with $q = \bigvee Q$ there is a countable $Q' \subset Q$ such that $q = \bigvee Q'$.

A net $(p_{\alpha}) \subset P$ order converges to $p \in P$ (denoted by $p_{\alpha} \xrightarrow{o} p$) if there is $Q \subset P$ with $\bigwedge Q = 0_P$ such that for every $q \in Q$ there is α_q such that $|p_{\alpha} - p| \leq q$, for $\alpha \geq \alpha_q$.

If *Q* was countable, we talk about σ -order convergence ($p_{\alpha} \xrightarrow{\sigma_{0}} p$). Clearly, $p_{\alpha} \xrightarrow{\sigma_{0}} p \Rightarrow p_{\alpha} \xrightarrow{o} p$.

Proposition 2

If P is a BA then $p_{\alpha} \xrightarrow{o} 0_{P}$ iff $\bigvee \{q \in P, q \perp p_{\alpha} \text{ eventually}\} = 1_{P}$.

If for some α_0 all extrema exist in $p = \bigvee_{\alpha \ge \alpha_0} \bigwedge_{\beta \ge \alpha} p_{\beta} = \bigwedge_{\alpha \ge \alpha_0} \bigvee_{\beta \ge \alpha} p_{\beta}$, then

 $p_{\alpha} \xrightarrow{o} p$. The converse holds if *P* is Dedekind complete.

P has the countable supremum property (CSP) if for all $Q \subset P$ and $q \in P$ with $q = \bigvee Q$ there is a countable $Q' \subset Q$ such that $q = \bigvee Q'$.

If *F* is an AVL, then $F_{csp} := \{e \in F, F_e \text{ has the CSP}\}$ is the largest ideal in *F* with the CSP. Note that F_e has the CSP iff K_e has the CCC.

• P has the CSP;

• P has the CSP;

• $o = \sigma o;$

• P has the CSP;

•
$$o = \sigma o;$$

• (If P is a BA:) P contains no uncountable disjoint sets (CCC);

P has the CSP;

•
$$o = \sigma o;$$

- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

- *P* has the CSP; $o = \sigma o$;
- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

Let *F* be an AVL. A net $(f_{\alpha}) \subset F$ unbounded order (uo) converges to $f \in F$ ($f_{\alpha} \xrightarrow{uo} f$) if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

- *P* has the CSP; $o = \sigma o$;
- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

Let *F* be an AVL. A net $(f_{\alpha}) \subset F$ unbounded order (uo) converges to $f \in F$ $(f_{\alpha} \xrightarrow{uo} f)$ if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

Equivalently, $|f_{\alpha} - f| \wedge h \xrightarrow{o} 0_{F}$, for all $h \geq 0_{F}$.

- *P* has the CSP; $o = \sigma o$;
- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

Let *F* be an AVL. A net $(f_{\alpha}) \subset F$ unbounded order (uo) converges to $f \in F$ $(f_{\alpha} \xrightarrow{uo} f)$ if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

Equivalently, $|f_{\alpha} - f| \wedge h \xrightarrow{o} 0_{F}$, for all $h \geq 0_{F}$.

Note that in $L_{\rho}(\mu)$ uo convergence of sequences = a.e. convergence.

- *P* has the CSP; $o = \sigma o$;
- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

Let *F* be an AVL. A net $(f_{\alpha}) \subset F$ unbounded order (uo) converges to $f \in F$ $(f_{\alpha} \xrightarrow{uo} f)$ if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

Equivalently, $|f_{\alpha} - f| \wedge h \xrightarrow{o} 0_{F}$, for all $h \geq 0_{F}$.

Note that in $L_{\rho}(\mu)$ uo convergence of sequences = a.e. convergence.

Theorem 4 (B., 2023)

If *F* is an AVL, then $0_F \leq f_{\alpha} \xrightarrow{u_0} 0_F$ iff for every $h > 0_F$ there is $e \in (0_F, h]$ and α_0 such that $(f_{\alpha} - h)^+ \perp e$, for all $\alpha \geq \alpha_0$.

- *P* has the CSP; $o = \sigma o$;
- (If P is a BA:) P contains no uncountable disjoint sets (CCC);
- (If P is an AVL:) P contains no uncountable order bounded disjoint sets.

Let *F* be an AVL. A net $(f_{\alpha}) \subset F$ unbounded order (uo) converges to $f \in F$ $(f_{\alpha} \xrightarrow{uo} f)$ if $e \vee f_{\alpha} \wedge h \xrightarrow{o} e \vee f \wedge h$, for every $e \leq h$.

Equivalently, $|f_{\alpha} - f| \wedge h \xrightarrow{o} 0_{F}$, for all $h \geq 0_{F}$.

Note that in $L_{\rho}(\mu)$ uo convergence of sequences = a.e. convergence.

Theorem 4 (B., 2023)

If *F* is an AVL, then $0_F \leq f_{\alpha} \xrightarrow{u_0} 0_F$ iff for every $h > 0_F$ there is $e \in (0_F, h]$ and α_0 such that $(f_{\alpha} - h)^+ \perp e$, for all $\alpha \geq \alpha_0$.

The *topological modification* $t\eta$ of a convergence η is the "cotopology" formed by the η -closed sets.

Eugene Bilokopytov (University of Alberta)

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

Order continuous topologies on Boolean algebras Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s) If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A. Order continuous topologies on Boolean algebras Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s) If A is a BA, there is at most one Hausdorff **order continuous** (i.e.

weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

Order continuous topologies on Boolean algebras Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s) If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly (σ, ∞) -distributive.

Order continuous topologies on Boolean algebras Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s) If A is a BA, there is at most one Hausdorff **order continuous** (i.e.

weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly (σ, ∞) -distributive.

• A has the CCC iff τ_A is metrizable.

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly (σ, ∞) -distributive.

• A has the CCC iff τ_A is metrizable. In this case $\tau_A = t\sigma_0 = to$ is generated by an order continuous submeasure.

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly
$$(\sigma, \infty)$$
-distributive.

• A has the CCC iff τ_A is metrizable. In this case $\tau_A = t\sigma_0 = to$ is generated by an order continuous submeasure.

Question 1

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly (σ, ∞) -distributive.

• A has the CCC iff τ_A is metrizable. In this case $\tau_A = t\sigma_0 = to$ is generated by an order continuous submeasure.

Question 1

• (Kind of answered:) Characterize those A's for which τ_A exists.

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly (σ, ∞) -distributive.

• A has the CCC iff τ_A is metrizable. In this case $\tau_A = t\sigma o = to$ is generated by an order continuous submeasure.

Question 1

 (Kind of answered:) Characterize those A's for which τ_A exists. Alternatively, characterize **Maharam algebras**, i.e. those for which a strictly positive order continuous submeasure exists.

Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff **order continuous** (i.e. weaker than order convergence) locally solid topology on A.

If exists, this topology τ_A is complete iff A is Dedekind complete.

Theorem 6 (Maharam, 1947)

If τ_A exists, then:

• A is weakly
$$(\sigma, \infty)$$
-distributive.

• A has the CCC iff τ_A is metrizable. In this case $\tau_A = t\sigma o = to$ is generated by an order continuous submeasure.

Question 1

- (Kind of answered:) Characterize those A's for which τ_A exists. Alternatively, characterize **Maharam algebras**, i.e. those for which a strictly positive order continuous submeasure exists.
- (Open since 70s:) Is it always true that $\tau_A = \text{to}$?

For a complete Boolean algebra A TFAE:

For a complete Boolean algebra A TFAE:

• A is a Maharam algebra;

For a complete Boolean algebra A TFAE:

• A is a Maharam algebra;

• tσo is regular;

For a complete Boolean algebra A TFAE:

• A is a Maharam algebra;

- tσo is regular;
- B has the CCC and $to = t\sigma o$ is Hausdorff;

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;

• \vee *is* too-continuous at $(0_A, 0_A)$;

For a complete Boolean algebra A TFAE:

A is a Maharam algebra;

- tσo is regular;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;
- A is weakly (σ,∞)-distr. and A = ⋃_{n∈ℕ} A_n, where A_n's do not contain infinite disjoint sets;

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;
- A is weakly (σ,∞)-distr. and A = ⋃_{n∈ℕ} A_n, where A_n's do not contain infinite disjoint sets;
- CCC and **some** stronger version of weak distributivity.

tσo is regular;

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;
- A is weakly (σ,∞)-distr. and A = ⋃_{n∈ℕ} A_n, where A_n's do not contain infinite disjoint sets;
- CCC and **some** stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity \Rightarrow Maharam depends on axioms of set theory.

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;
- A is weakly (σ,∞)-distr. and A = ⋃_{n∈ℕ} A_n, where A_n's do not contain infinite disjoint sets;
- CCC and **some** stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity \Rightarrow Maharam depends on axioms of set theory.

Maharam does NOT imply existence of a strictly positive measure.

For a complete Boolean algebra A TFAE:

- A is a Maharam algebra;
- B has the CCC and $to = t\sigma o$ is Hausdorff;
- \vee is too-continuous at $(0_A, 0_A)$;
- A is weakly (σ, ∞) -distr. and $\{0_A\}$ is a G_{δ} set with respect to $t\sigma o$;
- A is weakly (σ,∞)-distr. and A = ⋃_{n∈ℕ} A_n, where A_n's do not contain infinite disjoint sets;
- CCC and **some** stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity \Rightarrow Maharam depends on axioms of set theory.

Maharam does NOT imply existence of a strictly positive measure.

In particular, there is a complete CCC BA such that τ_A exists, but is not uniformly exhaustive.

Eugene Bilokopytov (University of Alberta)

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_{p}$ on L_{∞} . However:

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_{p}$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..) A Hausdorff LS topology τ is weaker than up iff τ is the weakest Hausdorff order continuous LS topology.

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F .

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Proposition 4 (TFAE:)

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Proposition 4 (TFAE:)

τ_F exists;

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Proposition 4 (TFAE:)

- τ_F exists;
- There is an order continuous Hausdorff locally solid topology on F;

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Proposition 4 (TFAE:)

- *τ_F* exists;
- There is an order continuous Hausdorff locally solid topology on F;
- F embeds regularly (i.e. order continuously) into L₀ (A), for some complete Boolean algebra A for which τ_A exists.

Unlike BA, there can be multiple order continuous locally solid topologies on AVL's. For example, $\|\cdot\|_p$ on L_{∞} . However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology τ is weaker than uo iff τ is the weakest Hausdorff order continuous LS topology. Hence, it is unique if exists.

If *F* is an AVL, denote this topology by τ_F . If $F = L_p$ then τ_F is the topology of local convergence in measure.

Proposition 4 (TFAE:)

- *τ_F* exists;
- There is an order continuous Hausdorff locally solid topology on F;
- F embeds regularly (i.e. order continuously) into L₀ (A), for some complete Boolean algebra A for which τ_A exists.

In this case τ_F is complete iff $F = L_0(A)$, for some A, and τ_F is metrizable iff F has the CCC.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem

If τ_F exists and F has the CSP, then τ_F = tuo.

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence.

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

• Is it always true that $\tau_F = tuo?$

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

Theorem 10 (Preliminary)

If τ_F exists, TFAE:

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

Theorem 10 (Preliminary)

If τ_F exists, TFAE:

• F embeds regularly into L₀(A), for some measure algebra A;

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

Theorem 10 (Preliminary)

If τ_F exists, TFAE:

- F embeds regularly into L₀(A), for some measure algebra A;
- τ_F is uniformly exhaustive;

If τ_F exists and F has the CSP, then $\tau_F = \text{tuo. In fact, } (f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

Theorem 10 (Preliminary)

If τ_F exists, TFAE:

- F embeds regularly into L₀(A), for some measure algebra A;
- τ_F is uniformly exhaustive;
- $\tau_F|_{[0_F,f]}$ is locally convex, for every $f \ge 0_F$;

If τ_F exists and F has the CSP, then τ_F = tuo. In fact, $(f_n)_{n \in \mathbb{N}}$ is τ_F -null iff every subsequences has a uo-null sub-subsequence. Conversely, this implies CSP, if F is atomless, under CH (false under MA + \neg CH).

Note that if τ_F exists, then F_{csp} is order dense in F, i.e. for every $f > 0_F$ there is $e \in (0_F, f] \cap F_{csp}$.

Question 2

- Is it always true that $\tau_F = tuo?$
- Find a version of Theorem 6 for AVL's.

Theorem 10 (Preliminary)

If τ_F exists, TFAE:

- F embeds regularly into L₀(A), for some measure algebra A;
- τ_F is uniformly exhaustive;
- $\tau_F|_{[0_F,f]}$ is locally convex, for every $f \ge 0_F$;
- For all $e \in F$ there is a non-zero order continuous functional on F_e .

Eugene Bilokopytov (University of Alberta)

Von Neumann-Maharam problem

THANK YOU!