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Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem



Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 2/11



Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a Boolean algebra, characterize when is there a
countably (disjointly) additive functional i : A — [0, 1] (i.e. a measure)
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Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a Boolean algebra, characterize when is there a
countably (disjointly) additive functional i : A — [0, 1] (i.e. a measure)
such that ker u = {04} (i.e. strictly positive).

A charge on Ais a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive
charge on A and
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Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a Boolean algebra, characterize when is there a
countably (disjointly) additive functional i : A — [0, 1] (i.e. a measure)
such that ker u = {04} (i.e. strictly positive).

A charge on Ais a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive
charge on A and A is weakly (o, co)-distributive, i.e. if A, | 04, then
N{a€ A VneN3a, € AyN[04, @]} = 04.
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Let (X, A, 1) be a measure space. Its measure algebra is A/ ker p.

Von Neumann problem asks to characterize Boolean algebras which
appear as measure algebras of finite measure spaces.

Alternatively, if A is a Boolean algebra, characterize when is there a
countably (disjointly) additive functional i : A — [0, 1] (i.e. a measure)
such that ker u = {04} (i.e. strictly positive).

A charge on Ais a finitely additive functional.

Theorem 1 (Kantorovich + Vulikh + Pinsker, 1950 & Kelley, 1959)

There is a strictly positive measure on A iff there is a strictly positive
charge on A and A is weakly (o, co)-distributive, i.e. if A, | 04, then
N{ac A Vne N3da, € AyN[04,a]} =0a.

A submeasure is an order preserving p : A — R with p(04) = 0 and
p(avb)<p(a)+p(b),forany a, b c A.

Note that the last condition can be replaced with disjoint subadditivity,
orwithp(aa b) <p(a)+p(b),forany a,b e A.
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Vector lattices

A vector lattice is a real vector space F with a lattice order such that
e ife<f,thene+h<f+hand e <)\, foreveryhe Fand >0
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)
@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: Ly (1), p > 0; Orlicz spaces...
For f € F define |[f| .= fV —f.
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F is Archimedean if \ . 1€ = Of, for every e > Of.

Example 1 (Spaces of functions)

@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: Ly (1), p > 0; Orlicz spaces...

For f € F define |f| := fVv —f. We call f,g € F disjointif |f| A |g| = OFf.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 3/11



Vector lattices
A vector lattice is a real vector space F with a lattice order such that
e ife<f,thene+h<f+hand e <\, forevery he Fand A > 0.
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)

@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: Ly (1), p > 0; Orlicz spaces...

For f € F define |f| := fVv —f. We call f,g € F disjointif |f| A |g| = OFf.
GcC Fissolidif |ff <|glandge G= f € G.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 3/11



Vector lattices
A vector lattice is a real vector space F with a lattice order such that
e ife<f,thene+h<f+hand e <\, forevery he Fand A > 0.
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)
@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: Ly (1), p > 0; Orlicz spaces...

For f € F define |f| := fVv —f. We call f,g € F disjointif |f| A |g| = OFf.

G C Fis solidif |[f| <|g|and g € G= f € G. An ideal is a solid linear
subspace. For e € F let F, be the ideal generated by e.

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 3/11



Vector lattices
A vector lattice is a real vector space F with a lattice order such that

e ife<f,thene+h<f+hand e <\, forevery he Fand A > 0.
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)

@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: Ly (1), p > 0; Orlicz spaces...

For f € F define |f| := fVv —f. We call f,g € F disjointif |f| A |g| = OFf.

G C Fis solidif |[f| <|g|and g € G= f € G. An ideal is a solid linear
subspace. For e € F let F, be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 3/11



Vector lattices
A vector lattice is a real vector space F with a lattice order such that

e ife<f,thene+h<f+hand e <\, forevery he Fand A\ > 0.
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)

@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
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Vector lattices
A vector lattice is a real vector space F with a lattice order such that

e ife<f,thene+h<f+hand e <\, forevery he Fand A\ > 0.
F is Archimedean if \ . 1€ = Of, for every e > Of.
Example 1 (Spaces of functions)

@ Spaces of continuous functions: C (X), Cp (X), Co (X), Lip (X, d).
@ Spaces of measurable functions: L, (1), p > 0; Orlicz spaces...

For f € F define |f| := fVv —f. We call f,g € F disjointif |f| A |g| = OFf.
G C Fis solidif |[f| <|g|and g € G= f € G. An ideal is a solid linear
subspace. For e € F let F, be the ideal generated by e.

Theorem 2 (Kakutani-Krein Representation theorem)

If F is Archimedean, F, is isomorphic to a dense sublattice of C (Ks),
for a compact Hausdorff K.

F is weakly (o, co)-distr. iff Ve meager sets are nowhere dense in K.
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Locally solid topologies

P is either a Boolean algebra (BA) or an Archimedean vector lattice
(AVL).
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Locally solid topologies

P is either a Boolean algebra (BA) or an Archimedean vector lattice
(AVL). A topology on P is locally solid if it has a local base at 0p
consisting of solid sets. For BA solid = downward closed.
Proposition 1

Locally solid topologies are generated by

@ For AVLs, by Riesz pseudo-norms, i.e. subadditive functionals
whose balls are solid.

@ For BA’s, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the
topology is first countable.
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Let A be a BA. A locally solid topology on A is generated by additive
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Locally solid topologies

P is either a Boolean algebra (BA) or an Archimedean vector lattice
(AVL). A topology on P is locally solid if it has a local base at 0p
consisting of solid sets. For BA solid = downward closed.
Proposition 1

Locally solid topologies are generated by

@ For AVLs, by Riesz pseudo-norms, i.e. subadditive functionals
whose balls are solid.

@ For BA’s, by submeasures.

Moreover, a single Riesz pseudo-norm / submeasure is enough if the
topology is first countable.

Theorem 3 (Kelley, 1959 + Kalton + Roberts, 1983)

Let A be a BA. A locally solid topology on A is generated by additive
measures iff it is uniformly exhaustive, i.e. for every neighborhood U of
04 there is n € N such that there are no disjoint n-tuples in A\U.
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Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q c P with A\ Q = 0p such that

Eugene Bilokopytov (University of Alberta) Von Neumann-Maharam problem March 20, 2025 5/11



Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q C P with A\ Q= 0p such that for every g € Q there is aq such that
[P — P| < g, for a > ag.
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Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there

is Q C P with A\ Q= 0p such that for every g € Q there is aq such that
b — p| < g, for a > aq.

If Q was countable, we talk about o-order convergence (p. = p).
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Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q c Pwith A Q = 0p such that for every q € Q there is aq such that
b — p| < g, for a > aq.

If Q was countable, we talk about o-order convergence (p. = p).
Clearly, po =% p = pa — p.

Proposition 2

If P is a BA then p, > 0p iff\/ {qg € P, qLp, eventually} = 1p. J
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A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q c Pwith A Q = 0p such that for every q € Q there is aq such that
b — p| < g, for a > aq.

If Q was countable, we talk about o-order convergence (p. = p).
Clearly, po =% p = pa — p.

Proposition 2
If P is a BA then p, > 0p iff\/ {qg € P, qLp, eventually} = 1p. J

If for some «p all extrema existinp= \/ A pg= A V ps,then
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Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q c Pwith A Q = 0p such that for every q € Q there is aq such that
b — p| < g, for a > aq.

If Q was countable, we talk about o-order convergence (p. = p).
Clearly, po =% p = pa — p.

Proposition 2
If P is a BA then p, > 0p iff\/ {qg € P, qLp, eventually} = 1p.

If for some «p all extrema existinp= \/ A pg= A V ps,then
azag f2a azag fZa

Po — p. The converse holds if P is Dedekind complete.

P has the countable supremum property (CSP) if for all Q C P and
g € Pwith g =\/ Qthereis a countable @ C Qsuchthatg=\ Q.
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Order convergence

A net (p,) C P order converges to p € P (denoted by p, = p) if there
is Q c Pwith A Q = 0p such that for every q € Q there is aq such that
b — p| < g, for a > aq.

If Q was countable, we talk about o-order convergence (p. = p).
Clearly, po =% p = pa — p.

Proposition 2
If P is a BA then p, > 0p iff\/ {qg € P, qLp, eventually} = 1p.

If for some «p all extrema existinp= \/ A pg= A V ps,then
azag f2a azag fZa

Po — p. The converse holds if P is Dedekind complete.

P has the countable supremum property (CSP) if for all Q C P and
g € Pwith g =\/ Qthereis a countable @ C Qsuchthatg=\ Q.

If Fis an AVL, then Fcsp := {€ € F, F¢ has the CSP} is the largest
ideal in F with the CSP. Note that F, has the CSP iff K, has the CCC.
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Proposition 3 (TFAE:)
@ P has the CSP; 0 =00;
@ (If P is a BA:) P contains no uncountable disjoint sets (CCC);
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Proposition 3 (TFAE:)
@ P has the CSP; 0 =00,
@ (If P is a BA:) P contains no uncountable disjoint sets (CCC);

@ (If P is an AVL:) P contains no uncountable order bounded disjoint
sets.
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@ (If P is an AVL:) P contains no uncountable order bounded disjoint
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Let F be an AVL. A net (f,) C F unbounded order (uo) converges to
feF(f, >fifevf,Ah>eVfAh,foreverye< h.
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Note that in L, (1) uo convergence of sequences = a.e. convergence.
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Proposition 3 (TFAE:)
@ P has the CSP; 0 =00,
@ (If P is a BA:) P contains no uncountable disjoint sets (CCC);

@ (If P is an AVL:) P contains no uncountable order bounded disjoint
sets.

Let F be an AVL. A net (f,) C F unbounded order (uo) converges to
feF(f, >fifevf,Ah>eVfAh,foreverye< h.

Equivalently, |f, — f| A h = Of, for all h > Of.

Note that in L, (1) uo convergence of sequences = a.e. convergence.

Theorem 4 (B., 2023)

If F is an AVL, then O < f, — Of iff for every h > Of there is
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Proposition 3 (TFAE:)
@ P has the CSP; 0 =00,
@ (If P is a BA:) P contains no uncountable disjoint sets (CCC);

@ (If P is an AVL:) P contains no uncountable order bounded disjoint
sets.

Let F be an AVL. A net (f,) C F unbounded order (uo) converges to
feF(f, >fifevf,Ah>eVfAh,foreverye< h.

Equivalently, |f, — f| A h = Of, for all h > Of.

Note that in L, (1) uo convergence of sequences = a.e. convergence.

Theorem 4 (B., 2023)

If F is an AVL, then O < f, — Of iff for every h > Of there is
e € (Of, h] and o such that (f, — h)™ Le, forall o« > oy.

The topological modification tn of a convergence 7 is the “cotopology”
formed by the n-closed sets.
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Theorem 5 (Sarymsakov + Rubinstein + Chilin & Weber, 70s)

If A is a BA, there is at most one Hausdorff order continuous (i.e.
weaker than order convergence) locally solid topology on A.

If exists, this topology 74 is complete iff Ais Dedekind complete.
Theorem 6 (Maharam, 1947)

If T4 exists, then: e A is weakly (o, c0)-distributive.

@ A has the CCC iff T4 is metrizable. In this case 74 = tco = to is
generated by an order continuous submeasure.

Question 1

@ (Kind of answered:) Characterize those A’s for which 7, exists.
Alternatively, characterize Maharam algebras, i.e. those for which
a strictly positive order continuous submeasure exists.

@ (Open since 70s:) Is it always true that 74 = to?
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neN
contain infinite disjoint sets;

@ CCC and some stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity = Maharam
depends on axioms of set theory.
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Theorem 7 (Balcar, Fremlin, Gtéwczynski, Jech, Pazak,
Talagrand, Todorcevi¢)
For a complete Boolean algebra A TFAE:
@ A is a Maharam algebra; e too IS regular;
@ B has the CCC and to = too is Hausdorff;
@ V istoo-continuous at (04,04);
@ Ais weakly (o, 00)-distr. and {04} is a G; set with respect to too;

@ Ais weakly (o,00)-distr. and A= |J An, where An’s do not
neN
contain infinite disjoint sets;

@ CCC and some stronger version of weak distributivity.

Whether completeness + CCC + weak distributivity = Maharam
depends on axioms of set theory.

Maharam does NOT imply existence of a strictly positive measure.

In particular, there is a complete CCC BA such that 74 exists, but is not
uniformly exhaustive.
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Order continuous topologies on vector lattices

Unlike BA, there can be multiple order continuous locally solid
topologies on AVLs. For example, | - || on L. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology T is weaker than vo iff T is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If Fis an AVL, denote this topology by 7¢. If F = Ly then 7¢ is the
topology of local convergence in measure.
Proposition 4 (TFAE:)

@ TF exists;

@ There is an order continuous Hausdorff locally solid topology on F;

@ F embeds regularly (i.e. order continuously) into Ly (A), for some
complete Boolean algebra A for which T, exists.
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Unlike BA, there can be multiple order continuous locally solid
topologies on AVLs. For example, | - || on L. However:

Theorem 8 (Aliprantish, Burkinshaw, Conradie, Fremlin, Taylor,..)

A Hausdorff LS topology T is weaker than vo iff T is the weakest
Hausdorff order continuous LS topology. Hence, it is unique if exists.

If Fis an AVL, denote this topology by 7¢. If F = L, then 7¢ is the
topology of local convergence in measure.
Proposition 4 (TFAE:)
@ TF exists;
@ There is an order continuous Hausdorff locally solid topology on F;
@ F embeds regularly (i.e. order continuously) into Ly (A), for some
complete Boolean algebra A for which T, exists.

In this case 7¢ is complete iff F = Ly (A), for some A, and 7F is
metrizable iff F has the CCC.
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If T exists and F has the CSF, then 7 = tuo. In fact, (fn) ey IS TF-null
iff every subsequences has a vo-null sub-subsequence. Conversely,
this implies CSP, if F is atomless, under CH (false under MA + —CH).

Note that if 77 exists, then Fcsp is order dense in F, i.e. for every
f > Of there is e € (Of, f] N Fesp.
Question 2

@ /s it always true that Tr = tuo?

@ Find a version of Theorem 6 for AVLs.

Theorem 10 (Preliminary)

If ¢ exists, TFAE:
@ F embeds regularly into Ly (A), for some measure algebra A;
@ 7¢ Is uniformly exhaustive;
° TF|[0F,f] is locally convex, for every f > Of;

@ For all e € F there is a non-zero order continuous functional on F.
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