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In this talk | will present some results contained in the recent paper:

e D. Azagra, M. Garcia-Bravo, M. Jiménez-Sevilla, Approximate

Morse-Sard type results for non-separable Banach spaces, J. Funct.
Anal. 287, no. 4 (2024).

The structure of the talk is as follows:

@ Introduction to the Morse-Sard theorem in infinite dimensions.
@ Approximate Morse-Sard results in the nonseparable case.
© Main ideas and tools behind the proofs.

We begin with

@ Introduction to the Morse-Sard theorem in infinite dimensions.
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Critical point

Definition (Critical point)

If we have a function f : E — F' between Banach spaces which is
(Fréchet) differentiable at some point 2 we will say that z is a critical
point if Df(z) € L(E, F) is not a surjective operator.

o Cy = set of critical points.

e f(Cy) = set of critical values.

Recall that the (Fréchet) derivative Df(x) of f at x is defined as the
unique linear continuous operator such that
i W@+ h) = fl2) = DfE@)MI _

1
no0 4]

[ Question: Can we make f(Cy) small in some sense? ]
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Motivation: Classical Morse-Sard theorem

The Morse-Sard theorem deals with the study of the set of critical points
of differentiable functions f : R" — R™.

Example (Striking Whitney example (1935))

Relying on his extension result from 1934, Whitney built a function
f:R? = R of class C! so that L(f(Cy)) > 0, where

Cy={z eR?: Vf(z) =0}

Indeed, the function f being nonconstant on a (nonrectifiable) curve
[ C R? where Df(x) =0 for all z € . Precisely f(I') = [0, 1].

Observation: Dealing with a rectifible curve T', by the Fundamental
Theorem of Calculus we would have f constant on T'.

[ Why such a "weird” example is possible? ]
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Classical Morse-Sard theorem

Theorem (Morse 1939, Sard 1942)

Let f : R™ — R™ be a C* function with k > max {n —m +1,1}. Then
the set of critical values, f(CY), is of Lebesgue measure zero in R™

(£™(f(Cy)) =0).

Note that here

Cr={xzeR": rank Df(xz) < min{n,m}}.

o This result has been shown to be sharp in the class of functions C7
thanks to the famous counterexample of Whitney in 1935.

e This theorem has been generalized to other function spaces such as
Holder spaces C*~1:1, Sobolev spaces W* with p > n or to the space
of functions of bounded variation BV,,.
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Infinite dimension: dim(FE) = oo, dim(F)

Even though there were some tries to find a "good” version of Morse-Sard
in infinite dimensions (Smale, 1965)...

Kupka’s counterexample (1965): There exist C* functions f :
¢5 — R so that their sets of critical values f(Ct) contain intervals.

Example (Bates and Moreira, 2001)
Let f: 5 — R be defined as

f Zmnen 22(3-27%;2%—23:%)

n>1 n>1

e fis C* (a polynomial of degree three).
o Oy = {Zn21xnen : x, €{0,273 }
o f(Cy)=1[0,1].
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Infinite dimension: dim(FE) = oo, dim(F)

Conclusion: We cannot expect to have a good version of the
Morse-Sard theorem for infinite dimensions !!

However around 20 years ago the following two results appeared, which
can be considered as approximate Morse-Sard results.

Theorem
@ For every continuous functions f : 5 — R and ¢ : {5 — (0, 00)

o (Eells, McAlpin 1968) , there exists a C*° function g : {2 — R for
which | f(z) — g(x)| < e(z) for all z € E and L(g(Cy)) = 0.

o (Azagra, Cepedello 2004) , there exists a C*° function g : {2 — R
for which |f(z) — g(z)| < e(x) for all z € E and Cy = (.

@ (Azagra, Jiménez-Sevilla 2007) Let E be an infinite dimensional
Banach space with separable dual. Then for every continuous
functions f : E — R and ¢ : E — (0, 0), there exists a C* function
g: E = R for which | f(z) — g(z)| < e(z) for all z € E and C,; = 0.
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Approximate Morse-Sard for dim(E) = dim(F) = oo

Theorem (Azagra, Dobrowolski, G-B (2019))

Let E be one of the classical Banach spaces cy, £, or LP, 1 < p < oo and

let F' a (non zero) quotient of E (so there exists a bounded linear

surjective operator from E onto F).

Then for every continuous mapping f : E — F and every continuous

function e : E — (0,00) there exists a C* mapping g : E — F such that
Q ||f(x) — g(z)|| < e(x) for every x € E, and

@ Dgy(zx): E — F is a surjective linear operator for every x € E.

Here k denotes the order of smoothness of the norm of the space E.

Warning: The previous results do not hold in finite dimensions.
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Related topic: Failure of Rolle's theorem

[ Warning: The previous results do not hold in finite dimensions. ]

Example

Let f: R — R be f(x) = |z| and let ¢ = 1. Clearly, any C* function
g : R — R so that |g(x) — f(z)| < ¢, according to the Rolle's Theorem,
must satisfy that there exists zp € R with ¢'(z() = 0.

iRolle’s Theorem fails in infinite dimensions!

This was first noticed by Shkarin in 1992 for superreflexive spaces and
non-reflexive spaces with smooth norms.

Theorem (Azagra, Jiménez-Sevilla (2001))

For every infinite-dimensional Banach space E with a C' smooth bump
there exists another C* smooth bump b : E — R so that b/'(z) # 0 for
every © € int(supp(b)).
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Non separable approximate Morse-Sard

We continue now with

© Approximate Morse-Sard results in the nonseparable case.

Question: Can the previous results be extended to the case of
nonseparable Banach spaces?

Theorem (Azagra, G-B, Jiménez-Sevilla (2024))

Let T' be an arbitrary infinite set, let E = cy(I'),¢,(I"), 1 < p < co and
let F' any (non zero) quotient of E. Then for every continuous mapping
f: E — F and every continuous function ¢ : E — (0, 00) there exists a
C* mapping g : E — F such that

Q | f(x) —g(x)| < e(x) for every x € E, and

@ Dgy(x): E — F is a surjective linear operator for every x € E.
Here k denotes the order of smoothness of the norm of the space E.
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Non separable approximate Morse-Sard Technical versions

Definitions:
co(T) = {(4)yer CR" : Ve > 0theset {y €T : |z,| > e} is finite}
£,(T) = {(z+)yer C R : Z |z, |P < 0o}

yel’

Other different versions:
Theorem (Azagra, G-B, Jiménez-Sevilla (2024))

Let E be a Banach space with C partitions of unity. Assume moreover
that E contains an infinite-dimensional separable complemented subspace
Y. Then for every continuous mapping f : E — R™ and every
continuous function ¢ : E — (0, 00) there exists a C' mapping

g: E— R™ such that

Q ||f(z) —g(z)|| <e(z) for every x € E, and
@ Dg(z): E — R™ is a surjective linear operator for every x € E.

o’

Remark: For this last theorem, in the case that Y cannot be taken to be
reflexive, we need to perform an adequate renorming of the space Y.
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Main tools of the proofs

We finally move to

© Main ideas and tools behind the proofs.

We will distinguish between different cases:
© Case of ¢o(T).
@ Case of £,(I'), 1 < p < o0.
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Case ¢o(I)

The approximating function g has the form

Z"r/)a f(@a) + T(7 — 4))

a€cA

Q {¥al}aca is a C* smooth partition of unity subordinate to some
open covering {Uy, }aca with 2, € U, that has locally the form

x = Pa(x) = cpa(eiky1 (),..., efm (2)).

© T :co(I") — Fis a continuous surjective operator such that T'|.,(r,,)
is surjective and

P={JTw TinT;=0Vi#j #(Tn) = #().

neN
For all 2 € ¢o(T") we have || f(z) — g(x)|| < e(z) and

Dg(x) =T+ L, Lespan{e}:vel} = Dg(x)is surjective.
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Case £,(I)
We first define, in a similar way as before,

=3 Val(@)(f(wa) + T(w — 2a))-

a€cA

Here {1} is a smooth parition of unity locally of the form

z = Ya(2) = @a(lz]”, €5, (), ..., €], (2)).

The previous comes from the existence of certain homeomorphic
embeddings from £,,(T") into co(I') (for some infinite set I'') whose
coordinate functions are C* smooth, given by Toruiczyk in 1973.

In this case C, # 0, but we solve this situation by building a C*
diffeomorphism h : E — E \ C, which "does not move too much the
points’. This way the final approximating function is

g=poh

Observe that
Dg(z) = Dp(h(z)) o Dh(z) : E — F is a surjective operator.
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Diffeomorphic extractions of closed sets in Banach spaces

Problem: Given a Banach space E and a closed subset X C E,
we look for diffeomorphisms between E and E \ X7

Theorem (Negligibility theory)
Pioneering results:

© (Bessaga, 1966) There exists a C*> diffeomorphism
h:ly — U5\ {0} so that h = id outside the unit ball.

Q (West, 1969) For every compact set K C {5 there exists a C*™
diffeomorphism h : {5 — {5 \ K so that h is "as close to the identity
as we want”.

For the case ¢,(T"), in our work we need:

@ For every close set C' C £,(T') which is locally contained in a
complemented subspace of infinite codimension subspace, there exists
a C* diffeomorphism h : £,(T') — £,(T') \ C, so that h "is very close to
the identity”. (Again k denotes the order of smoothness of the £,,(T")
norm).
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Main final goal

The best possible result that one can aim for, but seems diifucult to
handle (using our techniques) is:

Open question: Let F be a Banach space with C'* smooth parti-
tions of unity. Then for every conitnuous functions f : £ — R and
e: E — (0,00) there exists g : E — R of class C! so that

|f(x) —g(z)| <e(x) VezeFE

and ¢'(z) # 0 for all z € E. [Solved for separable case |
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THANK YOU FOR YOUR
ATTENTION !l




	Introduction to the Morse-Sard theorem
	Definition of critical point
	History of the theorem

	Approximated Morse-Sard result
	Statement
	Nonseparable case
	Main tools of the proofs


