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Metric Fixed Point Theory: Standard definitions and brief
background

A metric space (M,d) has the FPP if every 1-Lipschitz map
T : M →M (nonexpansive: d(Tx, Ty) ≤ d(x, y)), has a fixed
point.

A. Kirk (1965): If C is a convex weakly compact set of a Banach
space with normal structure, then C has the FPP.

Brodskii-Milman (1948): A c.c.b. set C of a Banach space X has
normal structure if for all convex H ⊂ C, ∃x0 ∈ H with
H ⊂ B(x0, r) and 0 < r < diam(H).

F. Browder (1965): Every closed convex bounded subset of a UC
Banach space has the FPP. In fact, if H is convex and bounded,
H ⊂ B(x0, c · diam(H)) for c = 1− δX(1) < 1 for some x0 ∈ H.
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The failure of the FPP is, of course, possible

Let (c0, ‖ · ‖∞) be the Banach space of all null convergent sequences.
T : Bc0 → Bc0 T (x1, x2, x3, · · · ) = (1, x1, x2, x3, ....)
is an isometry and fixed point free.

Let (c, ‖ · ‖∞) be the Banach space of all convergent sequences.

T : Bc → Bc T (x1, x2, x3, · · · ) = (1,−1, x1, x2, x3, ....)
is an isometry and fixed point free.

Note that: If K = N ∪ {ω}, the one-point compactification of N, then:

c = C(K) c0 = C0(K,ω) = {f ∈ C(K) : f(ω) = 0}.
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The failure of the FPP is, of course, possible

K. Goebel, A. Kirk: Topics in metric fixed point theory.
Cambridge, 1990.

K = [−1, 1] and T : BC(K) → BC(K) given by:

T (f)(t) = min {1,max{−1, f(t) + t}}

T is nonexpansive and fixed point free.

If T (f) = f then f(t) = 1 for t ∈ (0, 1] and f(t) = −1 for t ∈ [−1, 0).

Then T cannot have a fixed point in C(K).
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The closed unit ball of `∞ has the FPP

(`∞, ‖ · ‖∞) contains an isometric copy of every separable Banach
space. Thus, `∞ seems an unsuitable space to seek for the FPP.
Nevertheless.....

P.M. Soardi, Existence of fixed points of nonxpansive mappings in
certain Banach lattices. Proc. Amer. Math. Soc. (1979).

Theorem

Let X be the dual of an AL Banach lattice (‖x+ y‖ = ‖x‖+ ‖y‖,
x, y ≥ 0). Let BX be the closed unit ball of X.
Then, every nonexpansive mapping T : BX → BX has a fixed point.

Consequence: B`∞ , the closed unit ball of `∞, and
BL∞(µ), the closed unit ball of L∞(µ), have the FPP.
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The Ball Fixed Point Property

Definition

Let X be a Banach space. We say that X has the ball-FPP (BFPP) if
its closed unit ball BX has the FPP.

`∞ and L∞(µ) enjoy the BFPP.

c0 fails the BFPP.

c fails the BFPP

J. Borwein, B Sims Nonexpansive mappings on Banach lattices and related
topics. Houston J. of Math, (1984):

Every convex weakly compact of either c0 or c has the FPP (because c and c0
are weakly orthogonal Banach lattices).
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C(K) and BFPP: Does K determine the BFPP for C(K)?

Let K be an infinite compact Hausdorff space.
C(K) = {f : K → R : continuous }; ‖f‖ = sup{|f(x)| : x ∈ K}.

K, L are homeomorphic ⇐⇒ C(K) and C(L) are isometric

K is metrizable ⇐⇒ C(K) is separable

K is extremally disconnected ⇐⇒ C(K) is order-complete

K ?? ⇐⇒ C(K) has the BFPP

Joint work with Antonio Avilés, Gonzálo Mart́ınez (University of Murcia),

and Chris Lennard and Adam Stawski (University of Pittsburgh).
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A sufficient condition for the BFPP: ED compact spaces

Definition

A topological space is extremally disconnected if disjoint open sets
have disjoint closures.

Example: βN is extremally disconnected and `∞ ≡ C(βN).

Theorem

If K is extremally disconnected, then C(K) has the BFPP.
Additionally if X is an injective Banach space, then X has the BFPP.

Proof: We will make use of the uniform normal structure and:
(Nachbin-Kelley): X is injective ⇔ X isometric to C(K) with K extremally
disconnected ⇔ every family of mutually intersection closed balls in C(K) has
a common point.
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Uniform normal structure for admissible sets in a m.s.

Let (M,d) be a metric space. A subset A ⊂M is said to be
admissible if it is a nonempty intersection of closed balls.

A metric space (M,d) has uniform normal structure (UNS) if
there is some 0 < c < 1 such that for all A admissible,

A ⊂ B(x0, c · diam(A)) for some x0 ∈ A

A bounded metric space (M,d) with UNS has the FPP.

Example: If X is injective, then BX has UNS for c = 1
2 .

Consequence: If K is extremally disconnected, BC(K) has the FPP
(and there exist some non-duals C(K) with K ED).
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Hyperconvexity and FPP

N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous
transformations and hyperconvex metric spaces, Pacific J. Math., (1956).

Definition

A metric space (M,d) is hyperconvex if ∀ collection (xα)α∈I and radius
{rα}α∈I ,

⋂
α∈I B(xα, rα) 6= ∅ whenever d(xα, xβ) ≤ rα + rβ for α, β ∈ I.

Given κ a cardinal, (M,d) is said to be κ-hyperconvex if the above holds for
every collection (xα)α∈I ⊂M with card(I) ≤ κ.

Corollary (Baillon, 1988)

Every bounded hyperconvex metric space has the FPP.

Question: If (M,d) is a bounded κ-hyperconvex metric space for some

cardinal κ, does (M,d) have the FPP?
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A necessary condition for the BFPP: F -spaces

Let f : K → R continuos. Cz(f) = {x ∈ K : f(x) 6= 0} (open Fσ).

Definition (L. Gillman, M. Jerison (Rings of Continuous Functions,1960))

K is an F -space if disjoint cozero sets have disjoint closures.

Every extremally disconnected space is an F -space. Every closed
subset of an extremally disconnected space is an F -space.

N∗ = βN \ N is an F -space, which is not extremally disconnected.

TFAE:

K is an F -space
C(K) is countable-order-complete: If A,B ⊂ C(K) countable with
a ≤ b ∀a ∈ A, b ∈ B, ∃f ∈ C(K) with a ≤ f ≤ b, ∀a ∈ A, b ∈ B.
C(K) is ω-hyperconvex.
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A necessary condition for the BFPP

Theorem

If C(K) verifies the BFPP, then K is an F -space.

Proof: U , V cozero sets with U ∩ V = ∅, ⇒ U ∩ V = ∅ ?
WLOG: U = {u > 0}, V = {v > 0}, 0 ≤ u, v ≤ 1.

Define T : BC(K) → BC(K): T (f) = [1− (u+ v)] f + (u− v).

T (f) is continuous verifying: T (f)(t) = (1− u(t))f(t) + u(t) if t ∈ U ;

T (f)(t) = (1− v(t))f(t)− v(t) if t ∈ V ; and T (f)(t) = f(t) otherwise.

T is nonexpansive. Hence ∃f ∈ BC(K) with Tf = f (from the BFPP).

Tf = f ⇒ (u+ v)f = (u− v) ⇒ u(t)f(t) = u(t) t ∈ U ; v(t)f(t) = −v(t) t ∈ V .

⇒ f(t) = 1 for t ∈ U ; f(t) = −1 for all t ∈ V .

⇒ U ⊂ f−1(1), V ⊂ f−1(−1). Consequently U ∩ V = ∅ .
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Examples of non-F spaces and the failure of the BFPP

If K contains a nontrivial convergent sequence, then K is a
non-F -space: Metrizable compact sets are non-F spaces.

K = [0, 1]R, K = βQ, K = βR are non-F -spaces.

Let K1, K2 be infinite and compact: K1 ×K2 is a non-F space.

Corollary

For every metric compact space, C(K) fails the BFPP.

C(βR) or C(βQ) fails the BFPP.

C(K1 ×K2) fails the BFPP: C(βN× βN) fails the BFPP.

Let p, q ∈ βN \ N, X := {f ∈ C(βN) : f(p) = f(q)}.

Then X fails the BFPP since X ≡ C(K) with K a non-F space.
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A necessary condition for the BFPP in C0(K, p): P -points.

p ∈ K, C0(K, p) := {f ∈ C(K) : f(p) = 0}. For instance:

c0 = C0(N ∪ {ω}, ω) fails the BFPP.

Fix n ∈ N. C0(βN, n) has the BFPP (isometric to C(βN)).

Fix some p ∈ βN \ N: Does C0(βN, p) have the BFPP?

Definition

A point p ∈ K is said to be a P -point if every Gδ set containing p is a
neighbourhood of p. Otherwise, p ∈ K is said to be a non-P -point.

p is a P -point ⇔ every f ∈ C(K) is constant on a neighbourhood of p.
p is a non-P -point ⇔ p ∈ Cz(f) for some f ∈ C0(K, p).
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If K = N ∪ {ω}, ω is a non-P -point (every sequence limit).

Every p ∈ βN \ N is a non-P -point.

Every infinite compact set K contains some non-P -point.

Theorem

If C0(K, p) has the BFPP, then p is a P -point of K.

Proof: Let u ∈ C(K). Is u constant on a neigh. of p?

WLOG: u(p) = 0, that is, u ∈ C0(K, p) and 0 ≤ u ≤ 1.

Define Tf = (1− u)f + u for f ∈ BC0(K,p). Since T is nonexpansive,
∃f ∈ C0(K, p) Tf = f ⇒ uf = u. Then u = 0 in f−1(−1, 1), a neigh of p.

Some consequence:

c0 = C(N ∪ {ω}, w) fails the BFPP.

For p ∈ βN \ N, C0(βN, p) fails the BFPP.

For every infinite compact space K there are points p ∈ K such that
C0(K, p) fails the BFPP.

IMUS

15 / 26



The necessary conditions are not sufficient

Let X0 := {f ∈ `∞([0, ω1)) : with countable support}.

X0 fails the BFPP

Define T : BX0
→ BX0

in the following way.

Tf(0) = 1

For successor ordinals, Tf(α+ 1) = f(α).

If β is a limit ordinal Tf(β) = infα<β supγ>α f(γ).

T is well defined and isometry. Assume that Tf = f :

Set A := {α < ω1 : f(α) < 1} 6= ∅ since f ∈ X0.

Set µ := min(A). This µ is limit ordinal. Indeed:
if µ = α+ 1, f(α) = Tf(α+ 1) = f(α+ 1) = f(µ) < 1⇒ α ∈ A.
Then f(γ) = 1 for all γ < µ, so f(µ) = Tf(µ) = infα<β supγ>α f(γ) = 1,
which contradicts the fact that µ ∈ A.
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The necessary conditions are not sufficient

X = {f ∈ `∞([0, ω1)) : f is constant out a countable subset of [0, ω1)}.

X fails the BFPP

Define T : BX → BX in the following way: Tf(0) = 1, Tf(1) = −1.

For double successor ordinals, Tf(α+ 2) = f(α).

If β is a limit ordinal: Tf(β) = infα<β supγ>α f(γ),
Tf(β + 1) = supα<β infγ>α f(γ).

T is an isometry. Assume that Tf = f .
A := {β < ω1 limit ordinal : (f(β), f(β + 1)) 6= (1,−1)}. Set µ := min(A).

For all limit ordinals β < µ: f(β) = 1 and f(β + 1) = −1.
By f(α+ 2) = Tf(α+ 2) = f(α), f takes value 1 on all even ordinals below µ
and value −1 on all odd ordinals below µ. Then:
f(µ) = Tf(µ) = infα<µ supγ>α f(γ) = 1,
f(µ+ 1) = Tf(µ+ 1) = supα<µ infγ>α f(γ) = −1. This means that µ 6∈ A.
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Boolean algebras and the Stone theorem.

Let (A,+, ·,−, 0, 1) be a Boolean algebra (x ≤ y if x+ y = y).

A filter in A is a subset p of A verifying 0 /∈ p, 1 ∈ p; if x ∈ p, y ∈ A and
x ≤ y then y ∈ p; if x, y ∈ p then x · y ∈ p.

A filter p in a Boolean algebra A is an ultrafilter if there is not filter in A
strictly containing p.

Denote UltA := {p : p is an ultrafilter in A}. For every A ∈ A, define

Â := {p : p is ultrafilter in A with A ∈ p}.

The sets {Â : A ∈ A} form a base of neighbourhoods for a topology τA on

UltA. Moreover, for every A ∈ A, UltA \ Â = −̂A, which implies that every

basic set Â is closed and open (clopen). Actually:

(UltA, τA) is Hausdorff, compact, has a basis of clopen sets.
(UltA, τA) is called the Stone topological space of A.
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The necessary conditions are not sufficient

Γ := [0, ω1).
Ac := {A ⊂ Γ : either A or its complementary Γ \A is countable}.
Ac is a countable complete Boolean algebra.
Then K := UltAc is basically disconnected, that is, the closure of every Fσ
open set is open. In particular K is an F -space.

Theorem

The following holds:

X, the space of all bounded functions defined on [0, ω1) that are constant
out of a countable set, is isometric to C(UltAc).

Additionally, X0 is isometric to C0(UltAc, p), where

p = {A ∈ Ac : A is uncountable}

p is an ultrafilter in Ac which is P -point of UltAc.
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Some consequences and extensions

Corollary

K being a compact F -space (or even being basically disconnected) is not
enough for the BFPP in C(K).

Likewise, the condition of being a P -point is not enough for BFPP for
C0(K, p).

Being ω-hyperconvex is not enough for the FPP.

Theorem

For all infinite cardinal κ, ∃ a compact topological space K such that

C(K) is κ-order complete (if A ⊂ C(K) bounded from above with
card(A) ≤ κ, then sup(A) ∈ C(K))

BC(K) is κ-hyperconvex.

and yet, BC(K) fails the FPP.
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Summarizing:

Being an F -space is a necessary condition for the BFPP (but not sufficient),
since we have shown a compact F -space for which the BFPP fails.

But what about N∗ = βN \ N? Does C(N∗) have the BFPP?

N∗ is an F -space (closed subspace of βN).

N∗ is not extremally disconnected: Take (An) infinite pair-disjoint sets in

N and consider A∗n = An
βN \ N is open (and closed) in N∗, but

⋃
nA
∗
n

N∗

is not open in N∗.

C(N∗) ≡ (`∞/c0, ‖ · ‖∼) isometrically.

I.E. Leonard, J. Whitfield, A classic Banach space `∞/c0. Rocky
Mountain J. Math, 1983.

IMUS

21 / 26



Does C(N∗) have the BFPP?

Definition

Let K, L be compact spaces: L is a continuous retract of K is there exist
e : L→ K and r : K → L continuous such that r ◦ e = IdL.

Every continuous function φ : K1 → K2 induces a nonexpansive linear
operator φ0 : C(K2)→ C(K1) acting by composition φ0(f) = f ◦ φ.

Lemma

If L is a continuous retract of K and C(K) has the BFPP, then so does C(L).

Indeed, let T : BC(L) → BC(L) be nonexpansive.

Define T̃ = r0 ◦ T ◦ e0 : BC(K) → BC(K) and let T̃ (g) = g with g ∈ C(K).

Define f := g ◦ e. Then Tf = T (g ◦ e) = (T ◦ e0)(g) = (T ◦ e0)(g) ◦ r ◦ e =
(e0 ◦ r0 ◦ T ◦ e0)(g) = e0(Tg) = e0(g) = f.
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Under CH, C(N∗) fails the BFPP

J. V. Mill. An introduction to βω. Chapter 11. Handbook of
set-theoretical topology. North Holland, 1984.

Theorem (Theorem 1.4.4. and Theorem 1.8.1)

Under (CH), every compact F -space K of weight ω1 is a continuous
retract of N∗.

Remember the Boolean algebra:
Ac := {A ⊂ [0, ω1) : either A or its complementary is countable},
K = (UltAc, τAc), compact F -space with a basis of open sets:
{Â : A ∈ Ac}.

In particular, under (CH), the weight of UltAc is ω1.
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Under CH, C(N∗) fails the BFPP

Corollary

Under (CH), UltAc is a continuous retract of N∗.

Corollary

Under (CH), C(N∗) fails the BFPP.

Questions:

Is it possible to construct an explicit example of a fixed point free
nonexpansive mapping on the unit ball of C(N∗), or equivalently
on the unit ball of `∞/c0?

Is there a non-trivial case where C0(K, p) has the BFPP?
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The question:

K, L are homeomorphic ⇐⇒ C(K) and C(L) are isometric

K is metrizable ⇐⇒ C(K) is separable

K is extremally disconnected ⇐⇒ C(K) is order-complete

K ?? ⇐⇒ C(K) has the BFPP

Conjecture:

K extremally disconnected ⇐⇒ C(K) has the BFPP ??
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Thank you very much for your attention
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