Some applications of Boolean algebras and the Stone representation theorem to fixed point theory

Maria A. Japón

Institute of Mathematics of the University of Sevilla (IMUS), Spain

Structures in Banach Spaces

17-21, March 2025 Erwin Schrödinger Institute, Vienna, Austria

1/26

Metric Fixed Point Theory: Standard definitions and brief background

- A metric space (M, d) has the FPP if every 1-Lipschitz map $T: M \to M$ (nonexpansive: $d(Tx, Ty) \leq d(x, y)$), has a fixed point.
- A. Kirk (1965): If C is a convex weakly compact set of a Banach space with normal structure, then C has the FPP.

Brodskii-Milman (1948): A c.c.b. set C of a Banach space X has normal structure if for all convex $H \subset C$, $\exists x_0 \in H$ with $H \subset B(x_0, r)$ and $0 < r < \operatorname{diam}(H)$.

• F. Browder (1965): Every closed convex bounded subset of a UC Banach space has the FPP. In fact, if H is convex and bounded, $H \subset B(x_0, c \cdot diam(H))$ for $c = 1 - \delta_X(1) < 1$ for some $x_0 \in H$.

The failure of the FPP is, of course, possible

Let $(c_0, \|\cdot\|_{\infty})$ be the Banach space of all null convergent sequences. $T: B_{c_0} \to B_{c_0} \qquad T(x_1, x_2, x_3, \cdots) = (1, x_1, x_2, x_3, \ldots)$ is an isometry and fixed point free.

Let $(c, \|\cdot\|_{\infty})$ be the Banach space of all convergent sequences. $T: B_c \to B_c$ $T(x_1, x_2, x_3, \cdots) = (1, -1, x_1, x_2, x_3, \ldots)$ is an isometry and fixed point free.

Note that: If $K = \mathbb{N} \cup \{\omega\}$, the one-point compactification of \mathbb{N} , then:

$$c = C(K)$$
 $c_0 = C_0(K, \omega) = \{ f \in C(K) : f(\omega) = 0 \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The failure of the FPP is, of course, possible

K. Goebel, A. Kirk: Topics in metric fixed point theory. Cambridge, 1990.

$$K = [-1, 1]$$
 and $T : B_{C(K)} \to B_{C(K)}$ given by:

$$T(f)(t) = \min\{1, \max\{-1, f(t) + t\}\}\$$

 ${\cal T}$ is nonexpansive and fixed point free.

If T(f) = f then f(t) = 1 for $t \in (0, 1]$ and f(t) = -1 for $t \in [-1, 0)$.

Then T cannot have a fixed point in C(K).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The closed unit ball of ℓ_∞ has the FPP

 $(\ell_{\infty}, \|\cdot\|_{\infty})$ contains an isometric copy of every separable Banach space. Thus, ℓ_{∞} seems an unsuitable space to seek for the FPP. Nevertheless....

P.M. Soardi, Existence of fixed points of nonxpansive mappings in certain Banach lattices. Proc. Amer. Math. Soc. (1979).

Theorem

Let X be the dual of an AL Banach lattice $(||x + y|| = ||x|| + ||y||, x, y \ge 0)$. Let B_X be the closed unit ball of X. Then, every nonexpansive mapping $T : B_X \to B_X$ has a fixed point.

Consequence: $B_{\ell_{\infty}}$, the closed unit ball of ℓ_{∞} , and $B_{L_{\infty}(\mu)}$, the closed unit ball of $L_{\infty}(\mu)$, have the FPP.

The Ball Fixed Point Property

Definition

Let X be a Banach space. We say that X has the ball-FPP (BFPP) if its closed unit ball B_X has the FPP.

- ℓ_{∞} and $L_{\infty}(\mu)$ enjoy the BFPP.
- c_0 fails the BFPP.
- c fails the BFPP

Solution J. Borwein, B Sims Nonexpansive mappings on Banach lattices and related topics. Houston J. of Math, (1984): Every convex weakly compact of either c_0 or c has the FPP (because c and c_0 are weakly orthogonal Banach lattices).

C(K) and BFPP: Does K determine the BFPP for C(K)?

Let K be an infinite compact Hausdorff space. $C(K) = \{f : K \to \mathbb{R} : \text{ continuous } \}; \|f\| = \sup\{|f(x)| : x \in K\}.$

K, L are homeomorphic $\iff C(K)$ and C(L) are isometric

K is metrizable $\iff C(K)$ is separable

K is extremally disconnected $\iff C(K)$ is order-complete

C(K) and BFPP: Does K determine the BFPP for C(K)?

Let K be an infinite compact Hausdorff space. $C(K) = \{f : K \to \mathbb{R} : \text{ continuous } \}; \|f\| = \sup\{|f(x)| : x \in K\}.$

K, L are homeomorphic $\iff C(K)$ and C(L) are isometric

K is metrizable $\iff C(K)$ is separable

K is extremally disconnected $\iff C(K)$ is order-complete

 $K ?? \iff C(K)$ has the BFPP

Solution work with Antonio Avilés, Gonzálo Martínez (University of Murcia), and Chris Lennard and Adam Stawski (University of Pittsburgh).

A sufficient condition for the BFPP: ED compact spaces

Definition

A topological space is extremally disconnected if disjoint open sets have disjoint closures.

Example: $\beta \mathbb{N}$ is extremally disconnected and $\ell_{\infty} \equiv C(\beta \mathbb{N})$.

Theorem

If K is extremally disconnected, then C(K) has the BFPP. Additionally if X is an injective Banach space, then X has the BFPP.

Proof: We will make use of the *uniform normal structure* and: (Nachbin-Kelley): X is injective \Leftrightarrow X isometric to C(K) with K extremally disconnected \Leftrightarrow every family of mutually intersection closed balls in C(K) has a common point.

Uniform normal structure for admissible sets in a m.s.

- Let (M, d) be a metric space. A subset $A \subset M$ is said to be admissible if it is a nonempty intersection of closed balls.
- A metric space (M, d) has uniform normal structure (UNS) if there is some 0 < c < 1 such that for all A admissible,

 $A \subset B(x_0, c \cdot diam(A))$ for some $x_0 \in A$

• A bounded metric space (M, d) with UNS has the FPP. **Example:** If X is injective, then B_X has UNS for $c = \frac{1}{2}$. **Consequence:** If K is extremally disconnected, $B_{C(K)}$ has the FPP (and there exist some non-duals C(K) with K ED).

うして ふゆ く 山 マ ふ し マ う く し マ

Hyperconvexity and FPP

N. Aronszajn, P. Panitchpakdi, *Extensions of uniformly continuous* transformations and hyperconvex metric spaces, Pacific J. Math., (1956).

Definition

A metric space (M, d) is hyperconvex if \forall collection $(x_{\alpha})_{\alpha \in I}$ and radius $\{r_{\alpha}\}_{\alpha \in I}, \bigcap_{\alpha \in I} B(x_{\alpha}, r_{\alpha}) \neq \emptyset$ whenever $d(x_{\alpha}, x_{\beta}) \leq r_{\alpha} + r_{\beta}$ for $\alpha, \beta \in I$.

Given κ a cardinal, (M, d) is said to be κ -hyperconvex if the above holds for every collection $(x_{\alpha})_{\alpha \in I} \subset M$ with $card(I) \leq \kappa$.

Corollary (Baillon, 1988)

Every bounded hyperconvex metric space has the FPP.

Question: If (M, d) is a bounded κ -hyperconvex metric space for some cardinal κ , does (M, d) have the FPP?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A necessary condition for the BFPP: F-spaces

Let $f: K \to \mathbb{R}$ continuos. $Cz(f) = \{x \in K : f(x) \neq 0\}$ (open F_{σ}).

Definition (L. Gillman, M. Jerison (Rings of Continuous Functions, 1960)) K is an F-space if disjoint cozero sets have disjoint closures.

- Every extremally disconnected space is an *F*-space. Every closed subset of an extremally disconnected space is an *F*-space.
- $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$ is an *F*-space, which is not extremally disconnected.
- TFAE:
 - K is an F-space
 - C(K) is countable-order-complete: If $A, B \subset C(K)$ countable with $a \leq b \ \forall a \in A, b \in B, \ \exists f \in C(K) \ \text{with} \ a \leq f \leq b, \ \forall a \in A, b \in B.$
 - C(K) is ω -hyperconvex.

A necessary condition for the BFPP

Theorem

If C(K) verifies the BFPP, then K is an F-space.

Proof: U, V cozero sets with $U \cap V = \emptyset$, $\Rightarrow \overline{U} \cap \overline{V} = \emptyset$? WLOG: $U = \{u > 0\}, V = \{v > 0\}, 0 < u, v < 1.$ Define $T: B_{C(K)} \to B_{C(K)}: T(f) = [1 - (u + v)] f + (u - v).$ T(f) is continuous verifying: T(f)(t) = (1 - u(t))f(t) + u(t) if $t \in U$; T(f)(t) = (1 - v(t))f(t) - v(t) if $t \in V$; and T(f)(t) = f(t) otherwise. T is nonexpansive. Hence $\exists f \in B_{C(K)}$ with Tf = f (from the BFPP). $Tf = f \Rightarrow (u+v)f = (u-v) \Rightarrow u(t)f(t) = u(t) \ t \in U; \ v(t)f(t) = -v(t) \ t \in V.$ $\Rightarrow f(t) = 1$ for $t \in U$; f(t) = -1 for all $t \in V$. $\Rightarrow \overline{U} \subset f^{-1}(1), \ \overline{V} \subset f^{-1}(-1). \ \text{Consequently} \ \overline{U} \cap \overline{V} = \emptyset = \emptyset = 0$

Examples of non-F spaces and the failure of the BFPP

- If K contains a nontrivial convergent sequence, then K is a non-F-space: Metrizable compact sets are non-F spaces.
- $K = [0, 1]^{\mathbb{R}}, K = \beta \mathbb{Q}, K = \beta \mathbb{R}$ are non-*F*-spaces.
- Let K_1 , K_2 be infinite and compact: $K_1 \times K_2$ is a non-F space.

Corollary

- For every metric compact space, C(K) fails the BFPP.
- $C(\beta \mathbb{R})$ or $C(\beta \mathbb{Q})$ fails the BFPP.
- $C(K_1 \times K_2)$ fails the BFPP: $C(\beta \mathbb{N} \times \beta \mathbb{N})$ fails the BFPP.
- Let $p, q \in \beta \mathbb{N} \setminus \mathbb{N}$, $X := \{ f \in C(\beta \mathbb{N}) : f(p) = f(q) \}.$

Then X fails the BFPP since $X \equiv C(K)$ with K a non-F space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A necessary condition for the BFPP in $C_0(K, p)$: *P*-points.

 $p \in K, C_0(K, p) := \{ f \in C(K) : f(p) = 0 \}.$ For instance:

- $c_0 = C_0(\mathbb{N} \cup \{\omega\}, \omega)$ fails the BFPP.
- Fix $n \in \mathbb{N}$. $C_0(\beta \mathbb{N}, n)$ has the BFPP (isometric to $C(\beta \mathbb{N})$).
- Fix some $p \in \beta \mathbb{N} \setminus \mathbb{N}$: Does $C_0(\beta \mathbb{N}, p)$ have the BFPP?

Definition

A point $p \in K$ is said to be a *P*-point if every G_{δ} set containing *p* is a neighbourhood of *p*. Otherwise, $p \in K$ is said to be a non-*P*-point.

p is a P-point \Leftrightarrow every $f \in C(K)$ is constant on a neighbourhood of p. p is a non-P-point $\Leftrightarrow p \in \overline{Cz(f)}$ for some $f \in C_0(K, p)$.

- If $K = \mathbb{N} \cup \{\omega\}$, ω is a non-*P*-point (every sequence limit).
- Every $p \in \beta \mathbb{N} \setminus \mathbb{N}$ is a non-*P*-point.
- Every infinite compact set K contains some non-P-point.

Theorem

If $C_0(K, p)$ has the BFPP, then p is a P-point of K.

Proof: Let $u \in C(K)$. Is u constant on a neigh. of p? WLOG: u(p) = 0, that is, $u \in C_0(K, p)$ and $0 \le u \le 1$. Define Tf = (1 - u)f + u for $f \in B_{C_0(K,p)}$. Since T is nonexpansive, $\exists f \in C_0(K,p) \ Tf = f \Rightarrow uf = u$. Then u = 0 in $f^{-1}(-1,1)$, a neigh of p.

Some consequence:

- $c_0 = C(\mathbb{N} \cup \{\omega\}, w)$ fails the BFPP.
- For $p \in \beta \mathbb{N} \setminus \mathbb{N}$, $C_0(\beta \mathbb{N}, p)$ fails the BFPP.
- For every infinite compact space K there are points $p \in K$ such that $C_0(K, p)$ fails the BFPP.

The necessary conditions are not sufficient

Let $X_0 := \{ f \in \ell_{\infty}([0, \omega_1)) : \text{ with countable support} \}.$

X_0 fails the BFPP

Define $T: B_{X_0} \to B_{X_0}$ in the following way.

•
$$Tf(0) = 1$$

- For successor ordinals, $Tf(\alpha + 1) = f(\alpha)$.
- If β is a limit ordinal $Tf(\beta) = \inf_{\alpha < \beta} \sup_{\gamma > \alpha} f(\gamma)$.

T is well defined and isometry. Assume that Tf = f:

Set
$$A := \{ \alpha < \omega_1 : f(\alpha) < 1 \} \neq \emptyset$$
 since $f \in X_0$.

Set $\mu := \min(A)$. This μ is limit ordinal. Indeed: if $\mu = \alpha + 1$, $f(\alpha) = Tf(\alpha + 1) = f(\alpha + 1) = f(\mu) < 1 \Rightarrow \alpha \in A$. Then $f(\gamma) = 1$ for all $\gamma < \mu$, so $f(\mu) = Tf(\mu) = \inf_{\alpha < \beta} \sup_{\gamma > \alpha} f(\gamma) = 1$, which contradicts the fact that $\mu \in A$.

The necessary conditions are not sufficient

 $X = \{ f \in \ell_{\infty}([0, \omega_1)) : f \text{ is constant out a countable subset of } [0, \omega_1) \}.$

\boldsymbol{X} fails the BFPP

Define $T: B_X \to B_X$ in the following way: Tf(0) = 1, Tf(1) = -1.

- For double successor ordinals, $Tf(\alpha + 2) = f(\alpha)$.
- If β is a limit ordinal: $Tf(\beta) = \inf_{\alpha < \beta} \sup_{\gamma > \alpha} f(\gamma),$ $Tf(\beta + 1) = \sup_{\alpha < \beta} \inf_{\gamma > \alpha} f(\gamma).$

T is an isometry. Assume that Tf = f. $A := \{\beta < \omega_1 \text{ limit ordinal} : (f(\beta), f(\beta + 1)) \neq (1, -1)\}$. Set $\mu := \min(A)$.

For all limit ordinals $\beta < \mu$: $f(\beta) = 1$ and $f(\beta + 1) = -1$. By $f(\alpha + 2) = Tf(\alpha + 2) = f(\alpha)$, f takes value 1 on all even ordinals below μ and value -1 on all odd ordinals below μ . Then: $f(\mu) = Tf(\mu) = \inf_{\alpha < \mu} \sup_{\gamma > \alpha} f(\gamma) = 1$, $f(\mu + 1) = Tf(\mu + 1) = \sup_{\alpha < \mu} \inf_{\gamma > \alpha} f(\gamma) = -1$. This means that $\mu \notin A$.

Boolean algebras and the Stone theorem.

Let $(\mathcal{A}, +, \cdot, -, 0, 1)$ be a Boolean algebra $(x \leq y \text{ if } x + y = y)$.

- A filter in \mathcal{A} is a subset p of \mathcal{A} verifying $0 \notin p, 1 \in p$; if $x \in p, y \in \mathcal{A}$ and $x \leq y$ then $y \in p$; if $x, y \in p$ then $x \cdot y \in p$.
- A filter p in a Boolean algebra \mathcal{A} is an ultrafilter if there is not filter in \mathcal{A} strictly containing p.

Denote $Ult \mathcal{A} := \{p : p \text{ is an ultrafilter in } \mathcal{A}\}$. For every $A \in \mathcal{A}$, define

 $\widehat{A} := \{ p : p \text{ is ultrafilter in } \mathcal{A} \text{ with } A \in p \}.$

The sets $\{\widehat{A} : A \in \mathcal{A}\}$ form a base of neighbourhoods for a topology $\tau_{\mathcal{A}}$ on $Ult\mathcal{A}$. Moreover, for every $A \in \mathcal{A}$, $Ult\mathcal{A} \setminus \widehat{A} = \widehat{-A}$, which implies that every basic set \widehat{A} is closed and open (clopen). Actually:

 $(Ult \mathcal{A}, \tau_{\mathcal{A}})$ is Hausdorff, compact, has a basis of clopen sets. $(Ult \mathcal{A}, \tau_{\mathcal{A}})$ is called the Stone topological space of \mathcal{A} .

The necessary conditions are not sufficient

 $\Gamma := [0, \omega_1).$

 $\mathcal{A}_c := \{ A \subset \Gamma : \text{either } A \text{ or its complementary } \Gamma \setminus A \text{ is countable} \}.$

 \mathcal{A}_c is a countable complete Boolean algebra. Then $K := Ult \mathcal{A}_c$ is basically disconnected, that is, the closure of every F_{σ} open set is open. In particular K is an F-space.

Theorem

The following holds:

- X, the space of all bounded functions defined on [0, ω₁) that are constant out of a countable set, is isometric to C(UltA_c).
- Additionally, X_0 is isometric to $C_0(Ult\mathcal{A}_c, p)$, where

 $p = \{A \in \mathcal{A}_c : A \text{ is uncountable}\}$

p is an ultrafilter in \mathcal{A}_c which is P-point of $Ult\mathcal{A}_c$.

Some consequences and extensions

Corollary

- K being a compact F-space (or even being basically disconnected) is not enough for the BFPP in C(K).
- Likewise, the condition of being a P-point is not enough for BFPP for $C_0(K,p)$.
- Being ω -hyperconvex is not enough for the FPP.

Theorem

For all infinite cardinal κ , \exists a compact topological space K such that

- C(K) is κ -order complete (if $A \subset C(K)$ bounded from above with $card(A) \leq \kappa$, then $sup(A) \in C(K)$)
- $B_{C(K)}$ is κ -hyperconvex.

and yet, $B_{C(K)}$ fails the FPP.

Summarizing:

Being an F-space is a necessary condition for the BFPP (but not sufficient), since we have shown a compact F-space for which the BFPP fails.

But what about $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$? Does $C(\mathbb{N}^*)$ have the BFPP?

- \mathbb{N}^* is an *F*-space (closed subspace of $\beta \mathbb{N}$).
- \mathbb{N}^* is not extremally disconnected: Take (A_n) infinite pair-disjoint sets in \mathbb{N} and consider $A_n^* = \overline{A_n}^{\beta \mathbb{N}} \setminus \mathbb{N}$ is open (and closed) in \mathbb{N}^* , but $\overline{\bigcup_n A_n^*}^{\mathbb{N}^*}$ is not open in \mathbb{N}^* .
- $C(\mathbb{N}^*) \equiv (\ell_{\infty}/c_0, \|\cdot\|_{\sim})$ isometrically.

I.E. Leonard, J. Whitfield, A classic Banach space ℓ_{∞}/c_0 . Rocky Mountain J. Math, 1983.

ション ふゆ メ キャ キャ マ ちょう

Does $C(\mathbb{N}^*)$ have the BFPP?

Definition

Let K, L be compact spaces: L is a continuous retract of K is there exist $e: L \to K$ and $r: K \to L$ continuous such that $r \circ e = Id_L$.

Every continuous function $\phi: K_1 \to K_2$ induces a nonexpansive linear operator $\phi^0: C(K_2) \to C(K_1)$ acting by composition $\phi^0(f) = f \circ \phi$.

Lemma

If L is a continuous retract of K and C(K) has the BFPP, then so does C(L).

Indeed, let $T: B_{C(L)} \to B_{C(L)}$ be nonexpansive. Define $\tilde{T} = r^0 \circ T \circ e^0 : B_{C(K)} \to B_{C(K)}$ and let $\tilde{T}(g) = g$ with $g \in C(K)$. Define $f := g \circ e$. Then $Tf = T(g \circ e) = (T \circ e^0)(g) = (T \circ e^0)(g) \circ r \circ e = (e^0 \circ r^0 \circ T \circ e^0)(g) = e^0(Tg) = e^0(g) = f$.

Under CH, $C(\mathbb{N}^*)$ fails the BFPP

Solution An introduction to $\beta\omega$. Chapter 11. Handbook of set-theoretical topology. North Holland, 1984.

Theorem (Theorem 1.4.4. and Theorem 1.8.1)

Under (CH), every compact F-space K of weight ω_1 is a continuous retract of \mathbb{N}^* .

Remember the Boolean algebra: $\mathcal{A}_c := \{A \subset [0, \omega_1) : \text{either } A \text{ or its complementary is countable}\},\$ $K = (Ult \mathcal{A}_c, \tau_{\mathcal{A}_c}), \text{ compact } F\text{-space with a basis of open sets:}$ $\{\hat{A} : A \in \mathcal{A}_c\}.$

In particular, under (CH), the weight of $Ult \mathcal{A}_c$ is ω_1 .

Under CH, $C(\mathbb{N}^*)$ fails the BFPP

Corollary

Under (CH), $Ult \mathcal{A}_c$ is a continuous retract of \mathbb{N}^* .

Corollary

Under (CH), $C(\mathbb{N}^*)$ fails the BFPP.

IMUS

▲ロト ▲□ト ▲ヨト ▲ヨト 三目 - のへで

Under CH, $C(\mathbb{N}^*)$ fails the BFPP

Corollary

Under (CH), $Ult \mathcal{A}_c$ is a continuous retract of \mathbb{N}^* .

Corollary

Under (CH), $C(\mathbb{N}^*)$ fails the BFPP.

Questions:

- Is it possible to construct an explicit example of a fixed point free nonexpansive mapping on the unit ball of $C(\mathbb{N}^*)$, or equivalently on the unit ball of ℓ_{∞}/c_0 ?
- Is there a non-trivial case where $C_0(K, p)$ has the BFPP?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The question:

K, L are homeomorphic $\iff C(K)$ and C(L) are isometric K is metrizable $\iff C(K)$ is separable K is extremally disconnected $\iff C(K)$ is order-complete $K \quad ?? \qquad \iff C(K)$ has the BFPP

The question:

K, L are homeomorphic $\iff C(K)$ and C(L) are isometric K is metrizable $\iff C(K)$ is separable K is extremally disconnected $\iff C(K)$ is order-complete K ?? $\iff C(K)$ has the BFPP Conjecture:

K extremally disconnected $\iff C(K)$ has the BFPP ??

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you very much for your attention

ES

Erwin Schrödinger International Institute for Mathematics and Physics

26 / 26