The Grothendieck property for spaces $Lip_0(M)$ of Lipschitz functions

JERZY KAKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

Structures in Banach spaces, Vienna, March 17-21, 2025

Based on a joint work with Ch. Bargetz and D. Sobota

JERZY KAKOL The Grothendieck property for spaces *Lip*₀(*M*) of Lipschitz f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- There was a conjecture (Diestel): Each nonreflexive
 Grothendieck E contains l_∞, or at least has quotient l_∞.

- A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.
- O There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞, or at least has quotient ℓ_∞.
- There is in ZFC Grothendieck C(X) without a copy of ℓ_∞ (Haydon).

(B)

- A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.
- O There was a conjecture (Diestel): Each nonreflexive Grothendieck E contains ℓ_∞, or at least has quotient ℓ_∞.
- There is in ZFC Grothendieck C(X) without a copy of ℓ_∞ (Haydon).
- Haydon's space X contains $\beta \mathbb{N}$ (Koszmider-Shelah), so C(X) has a quotient isomorphic to ℓ_{∞} .

- A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.
- There was a conjecture (Diestel): Each nonreflexive
 Grothendieck E contains ℓ_∞, or at least has quotient ℓ_∞.
- There is in ZFC Grothendieck C(X) without a copy of ℓ_∞ (Haydon).
- Haydon's space X contains $\beta \mathbb{N}$ (Koszmider-Shelah), so C(X) has a quotient isomorphic to ℓ_{∞} .
- (CH) There is compact X without βN and such that C(X) is Grothendieck but without quotients isomorphic to ℓ_∞ (Talagrand).

- A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.
- There was a conjecture (Diestel): Each nonreflexive
 Grothendieck E contains ℓ_∞, or at least has quotient ℓ_∞.
- There is in ZFC Grothendieck C(X) without a copy of ℓ_∞ (Haydon).
- Haydon's space X contains $\beta \mathbb{N}$ (Koszmider-Shelah), so C(X) has a quotient isomorphic to ℓ_{∞} .
- (CH) There is compact X without βN and such that C(X) is Grothendieck but without quotients isomorphic to ℓ_∞ (Talagrand).
- ((MA)∧ ~ (CH)) Every nonreflexive Grothendieck space has a quotient isomorphic to ℓ_∞ (Haydon-Levy-Odell).

JERZY KAKOL The Grothendieck property for spaces *Lip*₀(*M*) of Lipschitz f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• For every infinite compact X the space C(X) contains c_0 .

JERZY KAKOL The Grothendieck property for spaces Lipo(M) of Lipschitz f

< ∃ >

- For every infinite compact X the space C(X) contains c_0 .
- A Banach space E with property (V) (of Pełczyński) is Grothendieck iff E does not contain complemented c₀.

A (1) < A (2) < A (2) </p>

- For every infinite compact X the space C(X) contains c_0 .
- A Banach space E with property (V) (of Pełczyński) is Grothendieck iff E does not contain complemented c₀.
- This leads to the following theorem (since C(X) for compact X has property (V)).

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not contain a complemented copy of c_0 .

- For every infinite compact X the space C(X) contains c_0 .
- A Banach space E with property (V) (of Pełczyński) is Grothendieck iff E does not contain complemented c₀.
- This leads to the following theorem (since C(X) for compact X has property (V)).

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

- For every infinite compact X the space C(X) contains c_0 .
- A Banach space E with property (V) (of Pełczyński) is Grothendieck iff E does not contain complemented c₀.
- This leads to the following theorem (since C(X) for compact X has property (V)).

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

We will study the same problem but for Banach spaces
 Lip₀(M) of Lipschitz functions on a metric space M.

JERZY KAKOL The Grothendieck property for spaces Lip₀(M) of Lipschitz f

JERZY KAKOL The Grothendieck property for spaces *Lip*₀(*M*) of Lipschitz f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Lip₀(M) the Banach space of all real-valued Lipschitz functions f(e) = 0 (for fixed e) with the norm ||f||_{Lip₀(M)} = lip(f).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- Lip₀(M) the Banach space of all real-valued Lipschitz functions f(e) = 0 (for fixed e) with the norm ||f||_{Lip₀(M)} = lip(f).
- $\mathcal{F}(M) = \overline{\operatorname{span}\{\delta_x \colon x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.

伺下 イヨト イヨト ニヨ

- Lip₀(M) the Banach space of all real-valued Lipschitz functions f(e) = 0 (for fixed e) with the norm ||f||_{Lip₀(M)} = lip(f).
- $\mathcal{F}(M) = \overline{\operatorname{span}\{\delta_x \colon x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.

伺下 イヨト イヨト ニヨ

- Lip(M) Banach space of all bounded real-valued Lipschitz functions on M with the norm ||f||_{Lip(M)} = ||f||_∞ + lip(f), where ||f||_∞ = sup_{x∈M} |f(x)|, and lip(f) Lipschitz constant of f.
- Lip₀(M) the Banach space of all real-valued Lipschitz functions f(e) = 0 (for fixed e) with the norm ||f||_{Lip₀(M)} = lip(f).
- $\mathcal{F}(M) = \overline{\operatorname{span}\{\delta_x \colon x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.
- $\mathcal{F}(M)^*$ is isometrically isomorphic to $Lip_0(M)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Lip₀(M) the Banach space of all real-valued Lipschitz functions f(e) = 0 (for fixed e) with the norm ||f||_{Lip₀(M)} = lip(f).
- $\mathcal{F}(M) = \overline{\operatorname{span}\{\delta_x : x \in M\}}^{\|\cdot\|_{Lip_0(M)^*}}$ Lipschitz-free space.
- $\mathcal{F}(M)^*$ is isometrically isomorphic to $Lip_0(M)$.

Theorem 3 (Hájek–Novotný)

M an infinite metric space. Then $Lip_0(M)$ contains an isomorphic copy of $\ell_{\infty}(d(M))$. Hence $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$.

JERZY KAKOL The Grothendieck property for spaces *Lip*₀(*M*) of Lipschitz f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Apart the case Lip₀([0, 1]) ≃ ℓ_∞ ≃ Lip₀(2^N) there is no known example of Lip₀(M) which is a Grothendieck space.

- 4 母 6 4 日 6 4 日 6 - 日

- Apart the case Lip₀([0, 1]) ≃ ℓ_∞ ≃ Lip₀(2^N) there is no known example of Lip₀(M) which is a Grothendieck space.
- For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.

- Apart the case Lip₀([0, 1]) ≃ ℓ_∞ ≃ Lip₀(2^N) there is no known example of Lip₀(M) which is a Grothendieck space.
- For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.
- Indeed, the space *F*(*M*) contains a complemented copy of the space ℓ₁(*d*(*M*)). Hence *F*(*M*) contains a complemented copy of ℓ₁.

- 4 母 6 4 日 6 4 日 6 - 日

- Apart the case Lip₀([0, 1]) ≃ ℓ_∞ ≃ Lip₀(2^N) there is no known example of Lip₀(M) which is a Grothendieck space.
- For every infinite metric space M the space $\mathcal{F}(M)$ is not a Grothendieck space.
- Indeed, the space *F*(*M*) contains a complemented copy of the space ℓ₁(*d*(*M*)). Hence *F*(*M*) contains a complemented copy of ℓ₁.
- Since complemented subspaces of a Banach space with the Grothendieck property are Grothendieck, and l₁ fails the Grothendieck property, the claim holds.

JERZY KAKOL The Grothendieck property for spaces Lipo(M) of Lipschitz f

(4回) (4回) (4回)

For spaces Lip₀(M) Cembrano's theorem does not help:
 Every Lip₀(M) is isometrically isomorphic to F(M)*, hence it cannot contain any complemented copy of c₀.

• E •

- Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .
- Recall that a Banach space E is a Grothendieck space iff E* is weakly sequentially complete and E has no quotient isomorphic to c₀ (Räbiger).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Every Lip₀(M) is isometrically isomorphic to F(M)*, hence it cannot contain any complemented copy of c₀.
- Recall that a Banach space E is a Grothendieck space iff
 E* is weakly sequentially complete and E has no quotient
 isomorphic to c₀ (Räbiger).
- To prove that Lip₀(M) is not Grothendieck (using Räbiger's criterion), we need either to look for a quotient of Lip₀(M) isomorphic to c₀ or to show that the dual space Lip₀(M)* is not weakly sequentially complete.

- Every $Lip_0(M)$ is isometrically isomorphic to $\mathcal{F}(M)^*$, hence it cannot contain any complemented copy of c_0 .
- Recall that a Banach space E is a Grothendieck space iff
 E* is weakly sequentially complete and E has no quotient
 isomorphic to c₀ (Räbiger).
- To prove that Lip₀(M) is not Grothendieck (using Räbiger's criterion), we need either to look for a quotient of Lip₀(M) isomorphic to c₀ or to show that the dual space Lip₀(M)* is not weakly sequentially complete.
- Grothendieck property is preserved by continuous (open) linear surjections, so Lip₀(E) lacks the Grothendieck property if E* fails to have it (since Lip₀(E) contains a complemented copy of E*). This provides examples of non-Grothendieck spaces Lip₀(E) over Banach spaces E.

JERZY KAKOL The Grothendieck property for spaces *Lip*₀(*M*) of Lipschitz f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall that if Lip₀(M) can be mapped onto l₁ by a continuous linear map, then Lip₀(M) is not Grothendieck.

- ★ 臣 ≯ - 臣

- Recall that if Lip₀(M) can be mapped onto l₁ by a continuous linear map, then Lip₀(M) is not Grothendieck.
- Using this fact we gather together a few classes of Banach spaces E for which Lip₀(E) is not Grothendieck.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Recall that if Lip₀(M) can be mapped onto l₁ by a continuous linear map, then Lip₀(M) is not Grothendieck.

• Using this fact we gather together a few classes of Banach spaces E for which $Lip_0(E)$ is not Grothendieck.

Theorem 4 (Bargetz-Kąkol-Sobota)

Let E be a Banach space satisfying any of the following conditions: (1) There is a continuous linear surjection $T: E^* \rightarrow \ell_1$. (2) E is separable and contains an isomorphic copy of a predual of ℓ_1 . (3) E contains a complemented copy of ℓ_1 . (4) E has property (V) and E is not Grothendieck. Then $Lip_0(E)$ is not a Grothendieck space.

Recall that if Lip₀(M) can be mapped onto l₁ by a continuous linear map, then Lip₀(M) is not Grothendieck.

• Using this fact we gather together a few classes of Banach spaces E for which $Lip_0(E)$ is not Grothendieck.

Theorem 4 (Bargetz-Kąkol-Sobota)

Let E be a Banach space satisfying any of the following conditions: (1) There is a continuous linear surjection $T: E^* \rightarrow \ell_1$. (2) E is separable and contains an isomorphic copy of a predual of ℓ_1 . (3) E contains a complemented copy of ℓ_1 . (4) E has property (V) and E is not Grothendieck. Then $Lip_0(E)$ is not a Grothendieck space.

Corollary 5

If $E = c_0$ or $E = \ell_1$, then $Lip_0(E)$ is not a Grothendieck space.

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

∃ >

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $Lip_0(E)$ is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $Lip_0(E)$ is not a Grothendieck space.

Indeed, F(E) contains an isometric copy of E. If E is separable, (by the lifting property) the space F(E) contains a linear isometric copy of E (Godefrey-Kalton).

Proposition 6

Let E be a separable Banach space not weakly sequentially complete. Then $Lip_0(E)$ is not a Grothendieck space.

- Indeed, F(E) contains an isometric copy of E. If E is separable, (by the lifting property) the space F(E) contains a linear isometric copy of E (Godefrey-Kalton).
- Hence Lip₀(E)* ~ F(E)** is not weakly sequentially complete, so R\u00e4biger's theorem applies.

(日) (四) (三) (三) (三) (三)

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

JERZY KAKOL The Grothendieck property for spaces $Lip_0(M)$ of Lipschitz f

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

Summing up the above results, we have the following selected cases of metric spaces M for which the space Lip₀(M) does not have the Grothendieck property:

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- Summing up the above results, we have the following selected cases of metric spaces M for which the space Lip₀(M) does not have the Grothendieck property:
- *M* is a separable Banach space which is not weakly sequentially complete, e.g. *M* is the James space *J*.

A (10) A (10) A (10) A

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- Summing up the above results, we have the following selected cases of metric spaces M for which the space Lip₀(M) does not have the Grothendieck property:
- M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space J.
- *M* contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. M = C(K) for some infinite compact space *K*.

・ 同 ト ・ ヨ ト ・ ヨ ト

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- Summing up the above results, we have the following selected cases of metric spaces M for which the space Lip₀(M) does not have the Grothendieck property:
- M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space J.
- *M* contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. M = C(K) for some infinite compact space *K*.
- *M* is a net in c_0 or ℓ_1 .

$Lip_0(\mathcal{J})$ over the James space \mathcal{J} is not Grothendieck.

- Summing up the above results, we have the following selected cases of metric spaces M for which the space Lip₀(M) does not have the Grothendieck property:
- M is a separable Banach space which is not weakly sequentially complete, e.g. M is the James space J.
- M contains a bilipschitz copy of the unit sphere S_{c_0} , e.g. M = C(K) for some infinite compact space K.
- *M* is a net in c_0 or ℓ_1 .
- M is a C(K)-space, L₁(µ)-space, Lip₀(M)-space, or
 F(M)-space.

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

A subspace N of a metric space M is a net if there are ε, δ > 0 such that ρ(x, y) ≥ ε for every x ≠ y ∈ N and for every x ∈ M there is y ∈ N with ρ(x, y) < δ.
Lip₀(N), where N is a net in either c₀ or ℓ₁, admits a continuous operator onto ℓ₁ (Candido, Cúth, Doucha)

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

 Recall that a metric space M is an absolute Lipschitz retract if M is a Lipschitz retract of every metric space containing M.

э

- Recall that a metric space M is an absolute Lipschitz retract if M is a Lipschitz retract of every metric space containing M.
- Q Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces P ⊆ N and every Lipschitz mapping f : P → M there is a Lipschitz extension F : N → M of f.

A (1) > A (2) > A (2) >

- Recall that a metric space M is an absolute Lipschitz retract if M is a Lipschitz retract of every metric space containing M.
- Q Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces P ⊆ N and every Lipschitz mapping f : P → M there is a Lipschitz extension F : N → M of f.

A (1) > A (2) > A (2) >

- Recall that a metric space M is an absolute Lipschitz retract if M is a Lipschitz retract of every metric space containing M.
- Q Equivalently, a metric space M is an absolute Lipschitz retract if for all metric spaces P ⊆ N and every Lipschitz mapping f : P → M there is a Lipschitz extension F : N → M of f.
- Banach spaces c₀ and C(K) for K metric compact are absolute Lipschitz retracts (Lindenstrauss).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Again recall that Lip₀(E) with a continuous linear surjection onto l₁ are not Grothendieck.

Again recall that Lip₀(E) with a continuous linear surjection onto l₁ are not Grothendieck.

Theorem 8 (Bargetz-Kąkol-Sobota)

Let E be a separable Banach space which is an absolute Lipschitz retract and contains c_0 . If M contains a bilipschitz copy of S_E of E, then $Lip_0(M)$ is not Grothendieck (since it admits a continuous operator onto ℓ_1 .) Again recall that Lip₀(E) with a continuous linear surjection onto l₁ are not Grothendieck.

Theorem 8 (Bargetz-Kąkol-Sobota)

Let E be a separable Banach space which is an absolute Lipschitz retract and contains c_0 . If M contains a bilipschitz copy of S_E of E, then $Lip_0(M)$ is not Grothendieck (since it admits a continuous operator onto ℓ_1 .)

Corollary 9

If M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $Lip_0(M)$ is not Grothendieck.

(D) (A) (A) (A) (A)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• A few open problems and comments.

JERZY KAKOL The Grothendieck property for spaces Lipo(M) of Lipschitz f

- 4 回 ト - 4 回 ト - 4 回 ト

3

• A few open problems and comments.

Problem 10

Does there exist a Banach space E of dimension at least 2 such that $Lip_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $Lip_0(E)$ still admit a continuous linear surjection onto c_0 ?

• A few open problems and comments.

Problem 10

Does there exist a Banach space E of dimension at least 2 such that $Lip_0(E)$ admits no continuous linear surjection onto ℓ_1 ? Can such $Lip_0(E)$ still admit a continuous linear surjection onto c_0 ?

Problem 11

Is there an infinite-dimensional Banach space E for which the space $Lip_0(E)$ is a Grothendieck space?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.

A 3 >

 A positive answer to Problem 11 provides a positive answer to the first question in Problem 10, as the Grothendieck property is preserved by quotients.

Natural variants of the above problems:

• E •

Problem 12

Is there a reflexive Banach space X such that $Lip_0(X)$ is a Grothendieck space?

Problem 12

Is there a reflexive Banach space X such that $Lip_0(X)$ is a Grothendieck space?

Problem 13

Is the space $Lip_0(\ell_2)$ a Grothendieck space?

Problem 12

Is there a reflexive Banach space X such that $Lip_0(X)$ is a Grothendieck space?

Problem 13

Is the space $Lip_0(\ell_2)$ a Grothendieck space?

Problem 14

Is $Lip_0(\mathbb{R}^2)$ a Grothendieck space? Note $Lip_0(\mathbb{R}) \simeq L^{\infty}(\mathbb{R})$.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem 12

Is there a reflexive Banach space X such that $Lip_0(X)$ is a Grothendieck space?

Problem 13

Is the space $Lip_0(\ell_2)$ a Grothendieck space?

Problem 14

Is $Lip_0(\mathbb{R}^2)$ a Grothendieck space? Note $Lip_0(\mathbb{R}) \simeq L^{\infty}(\mathbb{R})$.

• Note that $Lip_0(\mathbb{R}^n)^*$ $(n \ge 1)$ is not Grothendieck, since it contains $\mathcal{F}(\mathbb{R}^n)$ complemented (Cuth-Kalenda-Kaplicky).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

If Lip₀(ℓ₂) is Grothendieck, then for any d ∈ N the space Lip₀(ℝ^d) is Grothendieck, since ℝ^d is a Lipschitz retract of ℓ₂.

(本間) (本語) (本語) (語)

If Lip₀(ℓ₂) is Grothendieck, then for any d ∈ N the space Lip₀(ℝ^d) is Grothendieck, since ℝ^d is a Lipschitz retract of ℓ₂.

(本間) (本語) (本語) (二語

- If Lip₀(ℓ₂) is Grothendieck, then for any d ∈ N the space Lip₀(ℝ^d) is Grothendieck, since ℝ^d is a Lipschitz retract of ℓ₂.
- If Lip₀(l₂) is not Grothendieck and one can find a separable infinite-dimensional Banach space E such that Lip₀(E) is Grothendieck, then this would answer in negative a question (Candido, Cúth, Doucha) whether Lip₀(l₂) is complemented in Lip₀(F) for every separable infinite-dimensional Banach space F.

(日本)(日本)(日本)