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@ A Banach space E is a Grothendieck space if every
weak*-convergent sequence in E’ is weakly convergent.
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© There was a conjecture (Diestel): Each nonreflexive
Grothendieck E contains /., or at least has quotient /..

© There is in ZFC Grothendieck C(X) without a copy of /.,
(Haydon).

@ Haydon's space X contains SN (Koszmider-Shelah), so
C(X) has a quotient isomorphic to /...

O (CH) There is compact X without SN and such that
C(X) is Grothendieck but without quotients isomorphic to
l~ (Talagrand).
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@ A Banach space E is a Grothendieck space if every
weak*-convergent sequence in E’ is weakly convergent.

© There was a conjecture (Diestel): Each nonreflexive

Grothendieck E contains /., or at least has quotient /..

© There is in ZFC Grothendieck C(X) without a copy of /.,
(Haydon).

@ Haydon's space X contains SN (Koszmider-Shelah), so
C(X) has a quotient isomorphic to /...

O (CH) There is compact X without SN and such that
C(X) is Grothendieck but without quotients isomorphic to
l~ (Talagrand).

O ((MA)A ~ (CH)) Every nonreflexive Grothendieck space
has a quotient isomorphic to /., (Haydon-Levy-Odell).
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O For every infinite compact X the space C(X) contains ¢.
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O For every infinite compact X the space C(X) contains ¢.
@ A Banach space E with property (V) (of Petczynski) is
Grothendieck iff E does not contain complemented c.

JERZY KAKOL The Grothendieck property for spaces Lipg(M) of Lipschitz fi



O For every infinite compact X the space C(X) contains ¢.

@ A Banach space E with property (V) (of Petczynski) is
Grothendieck iff E does not contain complemented c.

© This leads to the following theorem (since C(X) for
compact X has property (V)).

Theorem 1 (Cembranos)
A Banach space C(X) is Grothendieck iff C(X) does not
contain a complemented copy of ¢.
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© This leads to the following theorem (since C(X) for
compact X has property (V)).

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not
contain a complemented copy of ¢.

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space
C(K x L) contains a complemented copy of the space c.
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O For every infinite compact X the space C(X) contains ¢.

@ A Banach space E with property (V) (of Petczynski) is
Grothendieck iff E does not contain complemented c.

© This leads to the following theorem (since C(X) for
compact X has property (V)).

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not
contain a complemented copy of ¢.

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space
C(K x L) contains a complemented copy of the space c.

O We will study the same problem but for Banach spaces
Lipo(M) of Lipschitz functions on a metric space M.
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@ Lip(M) - Banach space of all bounded real-valued
Lipschitz functions on M with the norm
11l Liomy = [[Flloc + lip(f), where [[fl[oc = sup,epm |f(X)],
and lip(f) Lipschitz constant of f.
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@ Lip(M) - Banach space of all bounded real-valued
Lipschitz functions on M with the norm
11l Liomy = [[Flloc + lip(f), where [[fl[oc = sup,epm |f(X)],
and lip(f) Lipschitz constant of f.

@ Lipg(M) - the Banach space of all real-valued Lipschitz
functions f(e) = 0 (for fixed e) with the norm

11| Lipo(nay = lip(f).
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@ Lip(M) - Banach space of all bounded real-valued
Lipschitz functions on M with the norm
11l Liomy = [[Flloc + lip(f), where [[fl[oc = sup,epm |f(X)],
and lip(f) Lipschitz constant of f.

@ Lipg(M) - the Banach space of all real-valued Lipschitz
functions f(e) = 0 (for fixed e) with the norm
11l ipo(ny = lip(f).

Q@ F(M) =span{dy: x € M}”‘H”’D"(M)* Lipschitz-free space.

Q@ F(M)* is isometrically isomorphic to Lipy(M).

Theorem 3 (Hajek—Novotny)

M an infinite metric space. Then Lipy(M) contains an
isomorphic copy of l~(d(M)). Hence F(M) contains a
complemented copy of ¢1(d(M)).

I =
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O Apart the case Lipy([0,1]) ~ (s = Lipy(2") there is
no known example of Lipy(M) which is a
Grothendieck space.
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Apart the case Lipy([0,1]) ~ lo =~ Lips(2Y) there is
no known example of Lipy(M) which is a
Grothendieck space.

For every infinite metric space M the space F(M) is not
a Grothendieck space.

Indeed, the space F(M) contains a complemented copy of
the space ¢1(d(M)). Hence F(M) contains a
complemented copy of /;.

Since complemented subspaces of a Banach space with
the Grothendieck property are Grothendieck, and /; fails
the Grothendieck property, the claim holds.
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For spaces Lipg(M) Cembrano’s theorem does not help:
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For spaces Lipg(M) Cembrano’s theorem does not help:
@ Every Lipy(M) is isometrically isomorphic to F(M)*,
hence it cannot contain any complemented copy of ¢.
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For spaces Lipg(M) Cembrano’s theorem does not help:
@ Every Lipy(M) is isometrically isomorphic to F(M)*,
hence it cannot contain any complemented copy of ¢.
@ Recall that a Banach space E is a Grothendieck space iff
E* is weakly sequentially complete and E has no quotient
isomorphic to ¢y (Rabiger).

JERZY KAKOL The Grothendieck property for spaces Lipg(M) of Lipschitz fi



For spaces Lipg(M) Cembrano’s theorem does not help:

@ Every Lipy(M) is isometrically isomorphic to F(M)*,
hence it cannot contain any complemented copy of ¢.

@ Recall that a Banach space E is a Grothendieck space iff
E* is weakly sequentially complete and E has no quotient
isomorphic to ¢y (Rabiger).

© To prove that Lipo(M) is not Grothendieck (using
Rébiger's criterion), we need either to look for a quotient
of Lipg(M) isomorphic to ¢y or to show that the dual
space Lipo(M)* is not weakly sequentially complete.
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For spaces Lipg(M) Cembrano’s theorem does not help:

@ Every Lipy(M) is isometrically isomorphic to F(M)*,
hence it cannot contain any complemented copy of ¢.

@ Recall that a Banach space E is a Grothendieck space iff
E* is weakly sequentially complete and E has no quotient
isomorphic to ¢y (Rabiger).

© To prove that Lipo(M) is not Grothendieck (using
Rébiger's criterion), we need either to look for a quotient
of Lipg(M) isomorphic to ¢y or to show that the dual
space Lipo(M)* is not weakly sequentially complete.

Q Grothendieck property is preserved by continuous (open)
linear surjections, so Lipy(E) lacks the Grothendieck
property if E£* fails to have it (since Lipy(E) contains
a complemented copy of E*). This provides examples of
non-Grothendieck spaces Lipy(E) over Banach spaces E.
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Q@ Recall that if Lipy(M) can be mapped onto ¢; by a
continuous linear map, then Lipy(M) is not Grothendieck.
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Q@ Recall that if Lipy(M) can be mapped onto ¢; by a
continuous linear map, then Lipy(M) is not Grothendieck.

@ Using this fact we gather together a few classes of Banach
spaces E for which Lipy(E) is not Grothendieck.

JERZY KAKOL The Grothendieck property for spaces Lipg(M) of Lipschitz fi



Q@ Recall that if Lipy(M) can be mapped onto ¢; by a
continuous linear map, then Lipy(M) is not Grothendieck.

@ Using this fact we gather together a few classes of Banach
spaces E for which Lipy(E) is not Grothendieck.

Theorem 4 (Bargetz-Kakol-Sobota)

Let E be a Banach space satisfying any of the following
conditions: (1) There is a continuous linear surjection

T: E* — (1. (2) E is separable and contains an isomorphic
copy of a predual of ¢1. (3) E contains a complemented copy
of {1. (4) E has property (V) and E is not Grothendieck.
Then Lipy(E) is not a Grothendieck space.
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Q@ Recall that if Lipy(M) can be mapped onto ¢; by a
continuous linear map, then Lipy(M) is not Grothendieck.

@ Using this fact we gather together a few classes of Banach
spaces E for which Lipy(E) is not Grothendieck.

Theorem 4 (Bargetz-Kakol-Sobota)

Let E be a Banach space satisfying any of the following
conditions: (1) There is a continuous linear surjection

T: E* — (1. (2) E is separable and contains an isomorphic
copy of a predual of ¢1. (3) E contains a complemented copy
of {1. (4) E has property (V) and E is not Grothendieck.
Then Lipy(E) is not a Grothendieck space.

If E = ¢y or E = {1, then Lipy(E) is not a Grothendieck space.

™ =
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@ If the dual E* of a Banach space E is not weakly
sequentially complete, then E is not a Grothendieck space.
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@ If the dual E* of a Banach space E is not weakly
sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially
complete. Then Lipo(E) is not a Grothendieck space.
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@ If the dual E* of a Banach space E is not weakly
sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially
complete. Then Lipo(E) is not a Grothendieck space.

@ Indeed, F(E) contains an isometric copy of E. If E is
separable, (by the lifting property) the space F(E)
contains a linear isometric copy of E (Godefrey-Kalton).
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@ If the dual E* of a Banach space E is not weakly
sequentially complete, then E is not a Grothendieck space.

Proposition 6

Let E be a separable Banach space not weakly sequentially
complete. Then Lipo(E) is not a Grothendieck space.

@ Indeed, F(E) contains an isometric copy of E. If E is
separable, (by the lifting property) the space F(E)
contains a linear isometric copy of E (Godefrey-Kalton).

© Hence Lipy(E)* ~ F(E)** is not weakly sequentially
complete, so Rabiger’s theorem applies.
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Lipo(T) over the James space [J is not Grothendieck.
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Lipo(T) over the James space [J is not Grothendieck.

@ Summing up the above results, we have the following
selected cases of metric spaces M for which the space
Lipg(M) does not have the Grothendieck property:
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Lipo(T) over the James space [J is not Grothendieck.

@ Summing up the above results, we have the following
selected cases of metric spaces M for which the space
Lipg(M) does not have the Grothendieck property:

@ M is a separable Banach space which is not weakly
sequentially complete, e.g. M is the James space 7.
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Lipo(T) over the James space [J is not Grothendieck.

@ Summing up the above results, we have the following
selected cases of metric spaces M for which the space
Lipg(M) does not have the Grothendieck property:

@ M is a separable Banach space which is not weakly
sequentially complete, e.g. M is the James space 7.

© M contains a bilipschitz copy of the unit sphere
Se, €8 M = C(K) for some infinite compact space K.
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Lipo(T) over the James space [J is not Grothendieck.

@ Summing up the above results, we have the following
selected cases of metric spaces M for which the space
Lipg(M) does not have the Grothendieck property:

@ M is a separable Banach space which is not weakly
sequentially complete, e.g. M is the James space 7.

© M contains a bilipschitz copy of the unit sphere
Se, €8 M = C(K) for some infinite compact space K.

Q@ M is a net in ¢ or /4.
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Lipo(T) over the James space [J is not Grothendieck.

@ Summing up the above results, we have the following
selected cases of metric spaces M for which the space
Lipg(M) does not have the Grothendieck property:

@ M is a separable Banach space which is not weakly
sequentially complete, e.g. M is the James space 7.

© M contains a bilipschitz copy of the unit sphere
Se, €8 M = C(K) for some infinite compact space K.

Q@ M is a net in ¢ or /4.

Q@ M is a C(K)-space, L;(u)-space, Lipy(M)-space, or
F(M)-space.
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@ A subspace N of a metric space M is a net if there are
g,0 > 0 such that p(x,y) > ¢ for every x #y € N and
for every x € M there is y € N with p(x,y) < 0.
Lipo(N'), where N is a net in either ¢y or {1, admits a
continuous operator onto ¢; (Candido, Cath, Doucha)
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O Recall that a metric space M is an absolute Lipschitz
retract if M is a Lipschitz retract of every metric space
containing M.
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O Recall that a metric space M is an absolute Lipschitz
retract if M is a Lipschitz retract of every metric space
containing M.

@ Equivalently, a metric space M is an absolute Lipschitz
retract if for all metric spaces P C N and every Lipschitz

mapping f : P — M there is a Lipschitz extension
F:N— Moff.
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mapping f : P — M there is a Lipschitz extension
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O Recall that a metric space M is an absolute Lipschitz
retract if M is a Lipschitz retract of every metric space
containing M.

@ Equivalently, a metric space M is an absolute Lipschitz
retract if for all metric spaces P C N and every Lipschitz

mapping f : P — M there is a Lipschitz extension
F:N— Moff.

© Banach spaces ¢y and C(K) for K metric compact are
absolute Lipschitz retracts (Lindenstrauss).
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@ Again recall that Lipy(E) with a continuous linear
surjection onto /; are not Grothendieck.
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@ Again recall that Lipy(E) with a continuous linear
surjection onto /; are not Grothendieck.

Theorem 8 (Bargetz-Kakol-Sobota)

Let E be a separable Banach space which is an absolute
Lipschitz retract and contains cy. If M contains a bilipschitz
copy of Sg of E, then Lipy(M) is not Grothendieck (since it
admits a continuous operator onto (;.)
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@ Again recall that Lipy(E) with a continuous linear
surjection onto /; are not Grothendieck.

Theorem 8 (Bargetz-Kakol-Sobota)

Let E be a separable Banach space which is an absolute
Lipschitz retract and contains cy. If M contains a bilipschitz
copy of Sg of E, then Lipy(M) is not Grothendieck (since it
admits a continuous operator onto (;.)

Corollary 9

If M contains a bilipschitz copy of the unit sphere S, of c,
then Lipg(M) is not Grothendieck.
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@ A few open problems and comments.
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@ A few open problems and comments.

Problem 10

Does there exist a Banach space E of dimension at least 2
such that Lipy(E) admits no continuous linear surjection onto
(17 Can such Lipy(E) still admit a continuous linear surjection

onto ¢y’ )
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@ A few open problems and comments.

Problem 10

Does there exist a Banach space E of dimension at least 2
such that Lipy(E) admits no continuous linear surjection onto
(17 Can such Lipy(E) still admit a continuous linear surjection

onto ¢y?

Problem 11

Is there an infinite-dimensional Banach space E for which the

space Lipy(E) is a Grothendieck space?

€
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@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

JERZY KAKOL The Grothendieck property for spaces Lipg(M) of Lipschitz fi



@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

@ Natural variants of the above problems:
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@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

@ Natural variants of the above problems:

Problem 12

Is there a reflexive Banach space X such that Lipy(X) is a
Grothendieck space?
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@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

@ Natural variants of the above problems:

Problem 12
Is there a reflexive Banach space X such that Lipy(X) is a

Grothendieck space?

Problem 13
Is the space Lipy((2) a Grothendieck space?
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@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

@ Natural variants of the above problems:

Problem 12
Is there a reflexive Banach space X such that Lipy(X) is a

Grothendieck space?

Problem 13
Is the space Lipy((2) a Grothendieck space?

Problem 14
Is Lipo(R?) a Grothendieck space? Note Lipy(R) ~ L*°(R).

JERZY KAKOL The Grothendieck property for spaces Lipg(M) of Lipschitz fi



@ A positive answer to Problem 11 provides a positive
answer to the first question in Problem 10, as the
Grothendieck property is preserved by quotients.

@ Natural variants of the above problems:

Problem 12
Is there a reflexive Banach space X such that Lipy(X) is a

Grothendieck space?

Problem 13
Is the space Lipy((2) a Grothendieck space?

Problem 14
Is Lipo(R?) a Grothendieck space? Note Lipy(R) ~ L*°(R).

© Note that Lipg(R")* (n > 1) is not Grothendieck, since it
contains F(R") complemented (Cuth-Kalenda-Kaplicky).
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O If Lipy(¢2) is Grothendieck, then for any d € N the
space Lipg(IR9) is Grothendieck, since R? is a Lipschitz
retract of /5.
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space Lipg(IR9) is Grothendieck, since R? is a Lipschitz
retract of /5.
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O If Lipy(¢2) is Grothendieck, then for any d € N the
space Lipg(IR9) is Grothendieck, since R? is a Lipschitz
retract of /5.

Q If Lipy(¢2) is not Grothendieck and one can find a
separable infinite-dimensional Banach space E such that
Lipo(E) is Grothendieck, then this would answer in
negative a question (Candido, Cath, Doucha) whether
Lipg(¢>) is complemented in Lipg(F) for every separable
infinite-dimensional Banach space F.
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