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Notation

We write X ≃ Y when Banach spaces X ,Y are isomorphic and
X = Y when they are isometric.

For Banach spaces X ,Y we write X ↪→ Y for the isomorphic
embedding, X ↠ Y for a continuous linear surjection.

The character of a point, denoted χ(x ,F ), in topological space
F is the minimal cardinality of the base at the point x .
χ(F ) = sup{χ(x ,F ) : x ∈ F}.
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Motivations

Old problem (Banach, 1932)

Are Banach spaces C ([0, 1]) and C ([0, 1]2) isomorphic?

Answer (Miljutin, 1966): Yes.

Compact line is a linearly ordered space compact in the order
topology.

Generalised problem
Consider compact lines K1, . . . ,Kn, L1, . . . , Lk for n ̸= k . Is it possible
that Banach spaces C (

∏n
i=1 Ki) and C (

∏k
j=1 Lj) are isomorphic?
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Known progress about the problem

Metrizable case
Characterisations of isomorphisms of Banach spaces by Bessaga,
Pe lczyński and Miljutin are solving the case for metrizable compact
lines.

What happens for nonmetrizable compact lines?

Theorem (Michalak, 2020, [3])

Consider separable compact lines K1, . . . ,Kn, L1, . . . , Lk for n ̸= k.
Then Banach spaces C (

∏n
i=1 Ki) and C (

∏k
j=1 Lj) are not isomorphic.
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Semadeni-Pe lczyński derivative

Definition
For a Banach space X and a cardinal number κ ≥ ω put

κX = {x∗∗ ∈ X ∗∗ : ∀A ⊆ X ∗ |A| ≤ κ ∃x ∈ X x∗∗|A = x |A}.

We define κ-Semadeni-Pe lczyński derivative by SPκ(X ) = κX/X .

Fact
For any Banach spaces X ,Y , if X ↪→ Y , then SPκ(X ) ↪→ SPκ(Y ).

Theorem (Candido, 2022, [1])

For any family of Banach spaces {Xi : i ∈ I} we have

SPκ(c0(I ,Xi)) = c0(I ,SPκ(Xi))
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The original result

Theorem (Semadeni, 1960, [4])

For cardinal numbers κ ̸= λ we have

C ([0, ω1 · κ]) ̸≃ C ([0, ω1 · λ])

In particular, for κ = 1, λ = 2, it follows that

C ([0, ω1]) ̸≃ C ([0, ω1]× 2).

This theorem follows from the fact that for any κ we have

SPω(C ([0, ω1 · κ])) ≃ c0(κ).
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Semadeni-Pe lczyński dimension

Denote SP(1)
κ (X ) = SPκ(X ) and SP(n+1)

κ (X ) = SPκ(SP(n)
κ (X )).

Definition
Let X be any Banach space. We define κ-Semadeni-Pe lczyński
dimension of X by the following conditions

spκ(X ) = −1 if X = {0},
spκ(X ) = n if SP(n+1)

κ (X ) = {0} and SP(n)
κ (X ) ̸= {0},

spκ(X ) =∞ if for all n ∈ ω we have SP(n)
κ (X ) ̸= {0}.

Fact
If X ,Y are Banach spaces and X ↪→ Y or Y ↠ X , then

spκ(X ) ≤ spκ(Y ).
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Inaccessible points

Definition
Let K be a compact line and κ a cardinal number. Say that a point
is κ-inaccessible from the left [right] if

χ(x , (←, x ]) > κ
[
χ(x , [x ,→)) > κ

]
.

KL = {x ∈ K : x is κ-inaccessible from the left},
KR = {x ∈ K : x is κ-inaccessible from the right}.

Definition
For a compact line K define its κ-continuous completion

K = KL × {−1} ∪ K × {0} ∪ KR × {1},

considered with the lexicographic order and order topology.
K is a compact line of character χ(K) = χ(K ).
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Reproving Galego

In 2009, Galego [2] consistently proved a full isomorphic
characterisation of spaces of the form C (2κ × [0, ξ]), where κ is an
infinite cardinal and λ is an uncountable ordinal. We can prove a
similar result using the framework of Semadeni-Pe lczyński derivative.

Theorem
For any infinite cardinal numbers κ, κ′, λ, λ′, if λ and λ′ are below the
first measurable cardinal, then

C (2λ × [0, κ+]) ≃ C (2λ′ × [0, κ′+]) =⇒ κ = κ′ ∧ λ = λ′.
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Buildup

Lemma
Consider compact lines K1, . . . ,Kn. Then

κC (
n∏

i=1

Ki) = C (
n∏

i=1

Ki)

Lemma
Consider compact lines K1, . . . ,Kn. Then

SPκ(C (
n∏

i=1

Ki)) ≃
n∏

i=1

c0

(
KiL ⊔ KiR ,C (

n∏
j=1,j ̸=i

Kj)
)
.
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Dimension of C (
∏n

i=1 Ki)

Corollary
Character of a compact line K is an isomorphic invariant i.e. if K1,K2

are compact lines such that C (K1) ≃ C (K2), then χ(K1) = χ(K2).

Theorem
If K1, . . . ,Kn are compact lines satisfying χ(Ki) > κ and L is a
product of compact lines of character at most κ, then

spκ(C (L×
n∏

i=1

Ki)) = n.
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Final results

Corollary
Consider compact lines K1, . . . ,Kn, L1, . . . , Lk of uncountable
character. Then for n > k we have

C (
n∏

i=1

Ki) ̸↪→ C (
k∏

j=1

Lj)

and

C (
k∏

j=1

Lj) ̸↠ C (
n∏

i=1

Ki).
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Remaining question

Question
For n ̸= k consider nonseparable compact lines K1, . . . ,Kn, L1, . . . , Lk
of countable character. Is it possible that Banach spaces C (

∏n
i=1 Ki)

and C (
∏k

j=1 Lj) are isomorphic?
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