Generic operators

Wiesław Kubiś (Prague)

Research supported by EXPRO 20-31529X (Czech Science Foudation)

Structures in Banach Spaces Erwin Schrödinger Institute, Vienna, 17 – 21 March 2025

Definition

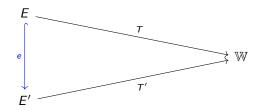
■ Fix a class ℜ of finite-dimensional Banach spaces, together with a class of "suitable" linear isometric embeddings between them.

- Fix a class *ℜ* of finite-dimensional Banach spaces, together with a class of "suitable" linear isometric embeddings between them.
- Fix a separable Banach space \mathbb{W} .

- Fix a class *ℜ* of finite-dimensional Banach spaces, together with a class of "suitable" linear isometric embeddings between them.
- Fix a separable Banach space \mathbb{W} .
- Our objects of interest will be non-expansive (e.g. of norm ≤ 1) operators T: E → W, where E ∈ R.

- Fix a class *ℜ* of finite-dimensional Banach spaces, together with a class of "suitable" linear isometric embeddings between them.
- Fix a separable Banach space W.
- Our objects of interest will be non-expansive (e.g. of norm ≤ 1) operators $T: E \rightarrow W$, where $E \in \mathfrak{K}$.
- An embedding of $T: E \to W$ into $T': E' \to W$ is defined to be any embedding $e: E \to E'$ in \Re satisfying $T = T' \circ e$.

- Fix a class *ℜ* of finite-dimensional Banach spaces, together with a class of "suitable" linear isometric embeddings between them.
- Fix a separable Banach space \mathbb{W} .
- Our objects of interest will be non-expansive (e.g. of norm ≤ 1) operators T: E → W, where E ∈ R.
- An embedding of $T: E \to W$ into $T': E' \to W$ is defined to be any embedding $e: E \to E'$ in \mathfrak{K} satisfying $T = T' \circ e$.



Definition

We consider the following infinite game.

• The first player chooses an operator $T_0: E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.

Definition

We consider the following infinite game.

- The first player chooses an operator $T_0: E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.
- The second player responds with a 'bigger' operator $T_1: E_1 \to \mathbb{W}$, together with an embedding in \mathfrak{K} .

Definition

We consider the following infinite game.

- The first player chooses an operator $T_0: E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.
- The second player responds with a 'bigger' operator $T_1: E_1 \to \mathbb{W}$, together with an embedding in \mathfrak{K} .
- They continue this way, building a 'chain' of non-expansive operators { T_n: E_n → W}_{n∈ω}.

Definition

We consider the following infinite game.

- The first player chooses an operator $T_0 \colon E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.
- The second player responds with a 'bigger' operator $T_1: E_1 \to \mathbb{W}$, together with an embedding in \mathfrak{K} .
- They continue this way, building a 'chain' of non-expansive operators { T_n: E_n → W}_{n∈ω}.
- The result is a (non-expansive) operator T_{∞} : $E_{\infty} \to \mathbb{W}$, where E_{∞} is the completion of the chain $\{E_n\}_{n \in \omega}$.

Definition

We consider the following infinite game.

- The first player chooses an operator $T_0 \colon E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.
- The second player responds with a 'bigger' operator $T_1: E_1 \to \mathbb{W}$, together with an embedding in \mathfrak{K} .
- They continue this way, building a 'chain' of non-expansive operators { T_n: E_n → W}_{n∈ω}.
- The result is a (non-expansive) operator T_{∞} : $E_{\infty} \to \mathbb{W}$, where E_{∞} is the completion of the chain $\{E_n\}_{n \in \omega}$.

We say that an operator $\Theta: V \to W$ is generic over $\langle \mathfrak{K}, W \rangle$ if the second player has a strategy such that, no matter how the first player plays, there is a linear isometry $h: V \to E_{\infty}$ satisfying $\Theta = T_{\infty} \circ h$.

Definition

We consider the following infinite game.

- The first player chooses an operator $T_0 \colon E_0 \to \mathbb{W}$, where $E_0 \in \mathfrak{K}$.
- The second player responds with a 'bigger' operator $T_1: E_1 \to \mathbb{W}$, together with an embedding in \mathfrak{K} .
- They continue this way, building a 'chain' of non-expansive operators { T_n: E_n → W}_{n∈ω}.
- The result is a (non-expansive) operator T_{∞} : $E_{\infty} \to \mathbb{W}$, where E_{∞} is the completion of the chain $\{E_n\}_{n \in \omega}$.

We say that an operator $\Theta: V \to W$ is generic over $\langle \mathfrak{K}, W \rangle$ if the second player has a strategy such that, no matter how the first player plays, there is a linear isometry $h: V \to E_{\infty}$ satisfying $\Theta = T_{\infty} \circ h$.

Claim

A generic operator (if exists) is unique, up to isometry.

Example

Let $\mathbb{W}=\{0\}.$ Then the operators play no role and we may just talk about a generic space over $\mathfrak{K}.$

Example

Let $\mathbb{W}=\{0\}.$ Then the operators play no role and we may just talk about a generic space over $\mathfrak{K}.$

Claim

Let \mathfrak{B} be the class of all [polyhedral] finite-dimensional spaces with all isometric embeddings. Then the Gurarii space \mathbb{G} is generic over \mathfrak{B} .

Example

Let $\mathbb{W} = \{0\}$. Then the operators play no role and we may just talk about a generic space over \mathfrak{K} .

Claim

Let \mathfrak{B} be the class of all [polyhedral] finite-dimensional spaces with all isometric embeddings. Then the Gurarii space \mathbb{G} is generic over \mathfrak{B} .

Remark

The Gurarii space is the unique, up to isometry, separable Banach space G with the following extension property.

Example

Let $\mathbb{W} = \{0\}$. Then the operators play no role and we may just talk about a generic space over \mathfrak{K} .

Claim

Let \mathfrak{B} be the class of all [polyhedral] finite-dimensional spaces with all isometric embeddings. Then the Gurarii space \mathbb{G} is generic over \mathfrak{B} .

Remark

The Gurarii space is the unique, up to isometry, separable Banach space G with the following extension property.

(E) Given a finite-dimensional space E and its subspace E_0 , given an isometric embedding $e_0: E_0 \to G$, for every $\varepsilon > 0$ there is an isometric embedding $e: E \to G$ such that

$$\|e \upharpoonright E_0 - e_0\| < \varepsilon.$$

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

(U) For every separable Banach space X, for every non-expansive operator $T: X \to W$ there exists an isometric embedding $e: X \to G_W$ such that $T = \Omega_W \circ e$.

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

- (U) For every separable Banach space X, for every non-expansive operator T: X → W there exists an isometric embedding
 e: X → G_W such that T = Ω_W ∘ e.
- (H) Given finite-dimensional spaces $E_0, E_1 \subseteq G_W$, given an isometry $h: E_0 \to E_1$ such that $\Omega_W \upharpoonright E_0 = \Omega_W \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: G_W \to G_W$ satisfying

$$\Omega_{\mathbb{W}} = \Omega_{\mathbb{W}} \circ H \qquad \text{and} \qquad \|H \upharpoonright E_0 - h\| < \varepsilon.$$

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

- (U) For every separable Banach space X, for every non-expansive operator $T: X \to W$ there exists an isometric embedding $e: X \to G_W$ such that $T = \Omega_W \circ e$.
- (H) Given finite-dimensional spaces $E_0, E_1 \subseteq G_W$, given an isometry $h: E_0 \to E_1$ such that $\Omega_W \upharpoonright E_0 = \Omega_W \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: G_W \to G_W$ satisfying

$$\Omega_{\mathbb{W}} = \Omega_{\mathbb{W}} \circ H$$
 and $\|H \upharpoonright E_0 - h\| < \varepsilon$.

(P) Ω_W is right-invertible and its kernel is the Gurarii space.

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

- (U) For every separable Banach space X, for every non-expansive operator $T: X \to W$ there exists an isometric embedding $e: X \to G_W$ such that $T = \Omega_W \circ e$.
- (H) Given finite-dimensional spaces $E_0, E_1 \subseteq G_W$, given an isometry $h: E_0 \to E_1$ such that $\Omega_W \upharpoonright E_0 = \Omega_W \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: G_W \to G_W$ satisfying

$$\Omega_{\mathbb{W}} = \Omega_{\mathbb{W}} \circ H$$
 and $\|H \upharpoonright E_0 - h\| < \varepsilon$.

(P) $\Omega_{\mathbb{W}}$ is right-invertible and its kernel is the Gurarii space. In particular, $G_{\mathbb{W}}$ is isomorphic to $\mathbb{G} \oplus \mathbb{W}$.

Theorem (F. Cabello Sánchez, J. Garbulińska-Węgrzyn, K. 2014)

Let \mathbb{W} be a separable Banach space. Then there exists a non-expansive operator $\Omega_{\mathbb{W}}$: $G_{\mathbb{W}} \to \mathbb{W}$ with the following properties.

- (U) For every separable Banach space X, for every non-expansive operator T: X → W there exists an isometric embedding
 e: X → G_W such that T = Ω_W ∘ e.
- (H) Given finite-dimensional spaces $E_0, E_1 \subseteq G_W$, given an isometry $h: E_0 \to E_1$ such that $\Omega_W \upharpoonright E_0 = \Omega_W \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: G_W \to G_W$ satisfying

$$\Omega_{\mathbb{W}} = \Omega_{\mathbb{W}} \circ H \quad \text{and} \quad \|H \upharpoonright E_0 - h\| < \varepsilon.$$

(P) $\Omega_{\mathbb{W}}$ is right-invertible and its kernel is the Gurarii space. In particular, $G_{\mathbb{W}}$ is isomorphic to $\mathbb{G} \oplus \mathbb{W}$.

Claim

The projection $\Omega_{\mathbb{W}}$ is generic over $\langle \mathfrak{B}, \mathbb{W} \rangle$.

Roughly:

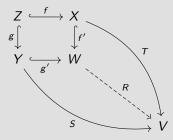
Fraïssé theory in slice categories. Inspired by [Pech & Pech 2014].

Roughly:

Fraïssé theory in slice categories. Inspired by [Pech & Pech 2014].

Pushouts

Given embeddings of Banach spaces $f: Z \to X$, $g: Z \to Y$, there exists a uniquely determined space $W = X \oplus_W Y$, together with embeddings $f': X \to W$, $g': Y \to W$ satisfying $f' \circ f = g' \circ g$ and such that, given any operators $T: X \to V$, $S: Y \to V$, there exists a unique operator $R: W \to V$ satisfying $R \circ f' = T$ and $R \circ g' = S$.

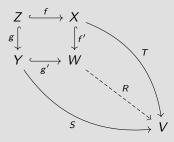


Roughly:

Fraïssé theory in slice categories. Inspired by [Pech & Pech 2014].

Pushouts

Given embeddings of Banach spaces $f: Z \to X$, $g: Z \to Y$, there exists a uniquely determined space $W = X \oplus_W Y$, together with embeddings $f': X \to W$, $g': Y \to W$ satisfying $f' \circ f = g' \circ g$ and such that, given any operators $T: X \to V$, $S: Y \to V$, there exists a unique operator $R: W \to V$ satisfying $R \circ f' = T$ and $R \circ g' = S$.



Furthermore, $||R|| = \max\{||T||, ||S||\}$.

Let \Re be a category of finite-dimensional spaces, containing the trivial space and closed under pushouts. Then for every separable space \mathbb{W} , there exists a \Re -generic operator with codomain \mathbb{W} .

An embedding $e: X \to Y$ is left-invertible if there exists a non-expansive operator $P: Y \to X$ such that $P \circ e = Id_X$.

An embedding $e: X \to Y$ is left-invertible if there exists a non-expansive operator $P: Y \to X$ such that $P \circ e = Id_X$.

Example

Let $\mathfrak P$ be the class of all finite-dimensional normed spaces with left-invertible isometric embeddings. It is well-known that $\mathfrak K$ is closed under pushouts.

An embedding $e: X \to Y$ is left-invertible if there exists a non-expansive operator $P: Y \to X$ such that $P \circ e = Id_X$.

Example

Let $\mathfrak P$ be the class of all finite-dimensional normed spaces with left-invertible isometric embeddings. It is well-known that $\mathfrak K$ is closed under pushouts.

Claim

For every separable Banach space \mathbb{W} there exists an operator $\Psi_{\mathbb{W}}: \P \to \mathbb{W}$, that is generic over $\langle \mathfrak{P}, \mathbb{W} \rangle$.

An embedding $e: X \to Y$ is left-invertible if there exists a non-expansive operator $P: Y \to X$ such that $P \circ e = Id_X$.

Example

Let $\mathfrak P$ be the class of all finite-dimensional normed spaces with left-invertible isometric embeddings. It is well-known that $\mathfrak K$ is closed under pushouts.

Claim

For every separable Banach space \mathbb{W} there exists an operator $\Psi_{\mathbb{W}} : \P \to \mathbb{W}$, that is generic over $\langle \mathfrak{P}, \mathbb{W} \rangle$. Furthermore, the space \P does not depend on \mathbb{W} and is isomorphic to the universal Kadec – Pełczyński – Wojtaszczyk space.

The operator $\Psi_{\mathbb{W}}\colon \P\to \mathbb{W}$ has the following properties.

The operator $\Psi_{\mathbb{W}} \colon \P \to \mathbb{W}$ has the following properties.

(U) For every separable Banach space X with a monotone FDD, for every non-expansive operator $T: X \to W$ there exists an isometric embedding $e: X \to \P$ such that $T = \Psi_W \circ e$.

The operator $\Psi_{\mathbb{W}} \colon \P \to \mathbb{W}$ has the following properties.

- (U) For every separable Banach space X with a monotone FDD, for every non-expansive operator T : X → W there exists an isometric embedding e : X → ¶ such that T = Ψ_W ∘ e.
- (H) Given finite-dimensional 1-complemented spaces $E_0, E_1 \subseteq \P$, given an isometry $h: E_0 \to E_1$ such that $\Psi_{\mathbb{W}} \upharpoonright E_0 = \Psi_{\mathbb{W}} \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: \P \to \P$ satisfying

$$\Psi_{\mathbb{W}} = \Psi_{\mathbb{W}} \circ H$$
 and $\|H \upharpoonright E_0 - h\| < \varepsilon$.

The operator $\Psi_{\mathbb{W}} \colon \P \to \mathbb{W}$ has the following properties.

- (U) For every separable Banach space X with a monotone FDD, for every non-expansive operator T : X → W there exists an isometric embedding e : X → ¶ such that T = Ψ_W ∘ e.
- (H) Given finite-dimensional 1-complemented spaces $E_0, E_1 \subseteq \P$, given an isometry $h: E_0 \to E_1$ such that $\Psi_{\mathbb{W}} \upharpoonright E_0 = \Psi_{\mathbb{W}} \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: \P \to \P$ satisfying

$$\Psi_{\mathbb{W}} = \Psi_{\mathbb{W}} \circ H \quad \text{and} \quad \|H \upharpoonright E_0 - h\| < \varepsilon.$$

(P) $\Psi_{\mathbb{W}}$ is surjective. If \mathbb{W} has a monotone FDD then it is right-invertible.

The operator $\Psi_{\mathbb{W}} \colon \P \to \mathbb{W}$ has the following properties.

- (U) For every separable Banach space X with a monotone FDD, for every non-expansive operator T : X → W there exists an isometric embedding e : X → ¶ such that T = Ψ_W ∘ e.
- (H) Given finite-dimensional 1-complemented spaces $E_0, E_1 \subseteq \P$, given an isometry $h: E_0 \to E_1$ such that $\Psi_{\mathbb{W}} \upharpoonright E_0 = \Psi_{\mathbb{W}} \circ h$, for every $\varepsilon > 0$ there is a bijective isometry $H: \P \to \P$ satisfying

$$\Psi_{\mathbb{W}} = \Psi_{\mathbb{W}} \circ H$$
 and $\|H \upharpoonright E_0 - h\| < \varepsilon$.

(P) $\Psi_{\mathbb{W}}$ is surjective. If \mathbb{W} has a monotone FDD then it is right-invertible.

Remark

In case $\mathbb{W} = \{0\}$, this is the result of J. Garbulińska-Węgrzyn from 2014.

Which separable Banach spaces have a generic self-operator?

Which separable Banach spaces have a generic self-operator?

Question

How to construct generic operators without using pushouts?

Which separable Banach spaces have a generic self-operator?

Question

How to construct generic operators without using pushouts?

 \rightarrow Ongoing project with D. Bartošová and J. López-Abad.

Which separable Banach spaces have a generic self-operator?

Question

How to construct generic operators without using pushouts?

 \rightarrow Ongoing project with D. Bartošová and J. López-Abad.

Problem

Find new (and natural) pushout-closed categories of finite-dimensional spaces leading to generic operators.

Which separable Banach spaces have a generic self-operator?

Question

How to construct generic operators without using pushouts?

 \rightarrow Ongoing project with D. Bartošová and J. López-Abad.

Problem

Find new (and natural) pushout-closed categories of finite-dimensional spaces leading to generic operators.

 \rightarrow Ongoing project with J. Garbulińska-Węgrzyn, A. Pelczar-Barwacz, and S. Turek.

Which separable Banach spaces have a generic self-operator?

Question

How to construct generic operators without using pushouts?

 \rightarrow Ongoing project with D. Bartošová and J. López-Abad.

Problem

Find new (and natural) pushout-closed categories of finite-dimensional spaces leading to generic operators.

 \rightarrow Ongoing project with J. Garbulińska-Węgrzyn, A. Pelczar-Barwacz, and S. Turek.

THE END