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Banach lattices (I)

Definition
A Banach lattice is a real Banach space X equipped with a partial
order ≤ such that, for all x, y, z ∈ X:

1. x ≤ y implies x + z ≤ y + z and λx ≤ λy for all λ > 0;
2. x ∨ y (the least upper bound of {x, y}) exists;
3. setting |x| = x ∨ (−x), if |x| ≤ |y| then ∥x∥ ≤ ∥y∥.

Examples

1. C(K) = C(K,R) with pointwise order,
2. Lp(µ), 1 ≤ p ≤ ∞, with pointwise almost everywhere order.

From now on, X will denote a Banach lattice, and
X+ = { x ∈ X : x ≥ 0 } its positive cone.
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Banach lattices (II)

Definition
A vector subspace Y of X is a sublattice if x ∨ y ∈ Y for all x, y ∈ Y
(equivalently, if |y| ∈ Y for all y ∈ Y).

The dual of a Banach lattice
The dual of a Banach lattice is again a Banach lattice when
equipped with the order: x∗ ≤ y∗ if and only if x∗(x) ≤ y∗(x) for all
x ∈ X+.

Definition
Let X and Y be Banach lattices. An operator T : X → Y is said to
be a lattice homomorphism if T(x ∨ y) = Tx ∨ Ty for all x, y ∈ X.

Example
Point evaluations δt : C(K) → R, δt(f) = f(t), are lattice
homomorphisms.
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AM-spaces

Definition
We say that X is an AM-space if it satisfies

∥x ∨ y∥ = max{∥x∥, ∥y∥} for all x, y ∈ X+.

Let e ∈ X+. We say that X is an AM-space with unit e if

∥x∥ = inf{λ > 0 : |x| ≤ λe } for all x ∈ X.

In this case, e is also called a (strong) order unit.

Certainly, every AM-space with unit is an AM-space.

Examples

1. C(K) is an AM-space with unit 1K.
2. Every closed sublattice of C(K) is an AM-space.
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Kakutani’s theorem

Theorem (S. Kakutani, 1941)

1. Every AM-space with unit is lattice isometric to C(K) for
some compact Hausdorff space K, with the unit corresponding
to the constant one function 1K.

2. Every AM-space is lattice isometric to a closed sublattice of
C(K) for some compact Hausdorff space K. More precisely,
there exists a family of pairs of points {(ti, si)}i∈I ⊆ K × K
and scalars {λi}i∈I ⊆ [0, 1) such that the AM-space is lattice
isometric to the closed sublattice of C(K):

{ f ∈ C(K) : f(ti) = λif(si) for all i ∈ I }.
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What about the algebraic structure?

▶ By Kakutani’s theorem, we can interpret the AM-space
condition as an intrinsic characterization of the closed
sublattices of C(K).

▶ But C(K) also has a natural algebraic structure (the pointwise
product) compatible with the lattice structure (for example,
the product of positive functions is positive, i.e., it is a
Banach lattice algebra).

Question
Can we characterize intrinsically the AM-spaces that embed as a
closed sublattice-algebra of C(K)?
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AM-algebras with unit

We need to find an appropriate compatibility condition between
the AM-space and algebraic structures. The following result points
in this direction.

Theorem (L. Martignon, 1980)

Let A be a Banach lattice algebra with algebraic identity e. If A is
also an AM-space with unit e, then A is both lattice and algebra
isometric to a C(K), with e going to 1K.

Definition
Let A be a Banach lattice algebra with identity e. We say that A is
an AM-algebra with unit e if A is also an AM-space with unit e.

How can we extend this idea to general AM-spaces, where no unit
is present?
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Approximate order units

This characterization of order units…
Lemma
A Banach lattice X is an AM-space with unit e ∈ X+ if and only if
x∗(e) = ∥x∗∥ for all x∗ ∈ (X∗)+.

…led us to the following notion.

Definition
Let X be a Banach lattice, and let (eγ) ⊆ X+ be a net. We say
that X is an AM-space with approximate unit (eγ) if

x∗(eγ) → ∥x∗∥ for every x∗ ∈ (X∗)+.

We also say that (eγ) is an approximate order unit of X.

Does having an approximate order unit imply that X is an
AM-space?
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AM-algebras with approximate unit

Yes! Moreover, the converse is also true.
Lemma
A Banach lattice X has an approximate order unit if and only if X
is an AM-space.

Recall that, in a Banach algebra A, a net (eγ) is an approximate
(algebraic) identity if eγa → a and aeγ → a for all a ∈ A.

Definition
Let A be a Banach lattice algebra and let (eγ) ⊆ A+. We say that
A is an AM-algebra with approximate unit (eγ) if (eγ) is both an
approximate order unit and an approximate algebraic identity.

This is the interaction between the AM-space and algebraic
structures we were looking for!
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…for Banach lattice algebras

Theorem (M.-L., Tradacete)

1. Every AM-algebra with unit is lattice and algebra isometric to
C(K) for some compact Hausdorff space K, with the unit
corresponding to the constant one function 1K.

2. Every AM-algebra with approximate unit is lattice and algebra
isometric to a closed sublattice-algebra of C(K) for some
compact Hausdorff space K.More precisely, there exists a
closed set F ⊆ K such that the AM-algebra is lattice and
algebra isometric to the closed sublattice-algebra of C(K):

{ f ∈ C(K) : f(t) = 0 for all t ∈ F }.

In particular, it embeds as an order and algebraic ideal in
C(K).
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Remarks on approximate order units

Remarks
Recall: (eγ) ⊆ X+ is an approximate order unit if x∗(eγ) → ∥x∗∥
for all (X∗)+.

1. Approximate order units need not be bounded or even have
bounded tails.

2. Even if a Banach lattice algebra has approximate order units
and approximate identities, it may not be an AM-algebra with
approximate unit.

3. If A is an AM-algebra with approximate unit, then (BA)+ is
an approximate order unit and an approximate identity.

4. Let A be an AM-space and a Banach lattice algebra. Then A
is an AM-algebra with approximate unit (i.e., lattice-algebra
embeds in a C(K)) if and only if (BA)+ is an approximate
identity.
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Applications (I)
As an application, we can establish precisely when Banach lattice
algebras have a C∗-algebra structure that preserves the positive
cone. Since the natural scalar field for C∗-algebras is C, we now
introduce complex Banach lattice algebras.

Complex Banach lattices
Let X be a Banach lattice and let XC = X + iX. For every
z = x + iy ∈ XC, the supremum

|z| = sup{ cos θx + sin θy : θ ∈ [0, 2π] }

exists in X and is called the modulus of z. Define ∥z∥C = ∥|z|∥.
Then (XC, ∥·∥C) is a complex Banach space. Any Banach space of
this form is called a complex Banach lattice.

Example
C(K)C = C(K,C).
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Applications (II)

Complex Banach lattice algebras
Let A be a Banach lattice algebra. The complex Banach lattice
(AC, ∥·∥C), equipped with the usual product

(x + iy)(z + it) = (xz − yt) + i(yz + xt) where x, y, z, t ∈ A,

becomes a complex Banach algebra. This product is compatible
with the complex Banach lattice structure: |z1z2| ≤ |z1||z2|. The
space AC is said to be a complex Banach lattice algebra.

Question
When can a complex Banach lattice algebra AC be equipped with
a C∗-algebra structure so that the positive elements of the
C∗-algebra (i.e., the self-adjoint elements with positive spectrum)
are precisely A+?
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Applications (III)

Corollary
Let A be a Banach lattice algebra. Its complexification AC can be
endowed with a C∗-algebra structure in such a way that A+ is the
cone of self-adjoint elements with positive spectrum if and only if
A is an AM-algebra with approximate unit.



Applications (IV)

Definition
A Banach lattice algebra A is said to be an f-algebra if a ∧ b = 0
implies

(ca) ∧ b = (ac) ∧ b = 0 for all a, b, c ∈ A+.

(That is, if the left and right multiplications are orthomorphisms).

Example
Every closed sublattice-algebra of C(K) is an f-algebra.

Corollary
Every AM-algebra with approximate unit is an f-algebra.
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Work in progress (I)

Question
Does every AM-space admit a product making it into an
AM-algebra with approximate unit?

Work in progress

▶ No. But when it does, it is unique.
▶ This AM-algebra product can be characterized in many “nice”

ways. For instance, it is the unique product for which the
norm-one lattice homomorphisms are also algebra
homomorphisms.

▶ Another way: lattice embed your AM-space X in a C(K) space
in such a way that it is also a subalgebra. Then the pointwise
product of C(K) coincides with the canonical product in X.

▶ When the AM-space has unit (i.e., it is a C(K)), this
AM-algebra product is, of course, the pointwise product.
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Work in progress (II)

In other words…
“Many” AM-spaces come with a canonical product that is the
natural generalization of the pointwise product in AM-spaces with
unit (i.e., C(K) spaces).

Work in progress

▶ Most of the familiar examples of AM-spaces admit such a
product.

▶ We have several characterizations of the spaces that admit an
AM-algebra product.

▶ We believe that several results that relate the lattice and
algebraic structures of C(K) can be extended to general
AM-spaces with this canonical product.
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