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Banach lattices (1)

Definition
A Banach lattice is a real Banach space X equipped with a partial
order < such that, for all x,y,z€ X:

1. x < yimplies x4+ z< y+ z and Ax < Ay for all A > 0;

2. xV y (the least upper bound of {x,y}) exists;

3. setting |x| = xV (—x), if |x] < |y| then ||x|| < |y]|.
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Banach lattices (1)

Definition
A Banach lattice is a real Banach space X equipped with a partial
order < such that, for all x,y,z€ X:

1. x< yimplies x4+ z< y+ z and Ax < Ay for all A > 0;

2. xV y (the least upper bound of {x,y}) exists;

3. setting |x| = xV (—x), if [x] < |y| then [|x]| < |||l

1. (K) = ((K,R) with pointwise order,

2. Lp(p), 1 < p < oo, with pointwise almost everywhere order.

From now on, X will denote a Banach lattice, and
Xy ={xe X: x>0} its positive cone.



A vector subspace Y of X'is a sublattice if xVy € Yforall x,ye Y
(equivalently, if |y| € Yfor all y € Y).
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A vector subspace Y of Xis a sublattice if xVy € Yforall x,ye Y
(equivalently, if |y| € Yfor all y € Y).
The dual of a Banach lattice is again a Banach lattice when
equipped with the order: x* < y* if and only if x*(x) < y*(x) for all
X € X_|_.
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Banach lattices (1)

Definition
A vector subspace Y of Xis a sublattice if x\VVy € Yforall x,y € Y
(equivalently, if |y| € Yfor all y € Y).

The dual of a Banach lattice

The dual of a Banach lattice is again a Banach lattice when
equipped with the order: x* < y* if and only if x*(x) < y*(x) for all
X € X+.

Definition
Let X and Y be Banach lattices. An operator T: X — Y'is said to
be a lattice homomorphism if T(xV y) = TxV Ty for all x,y € X.

Point evaluations ¢;: C(K) — R, 0+(f) = f(t), are lattice
homomorphisms.




We say that X is an AM-space if it satisfies
[xV yll = max{|Ix]|, [y} forall x,y € X.
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We say that X is an AM-space if it satisfies
[xV yll = max{|Ix]|, [y} forall x,y € X.

Let e € Xy . We say that X is an AM-space with unit e if

x|l =inf{A\>0:|x] < Xe} forall xe X

In this case, e is also called a (strong) order unit.
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AM-spaces
Definition
We say that X is an AM-space if it satisfies

[Ix v yll = max{Ixl], [I¥ll} for all x,y € X.

Let e € X;. We say that X is an AM-space with unit e if

Ix|| =inf{A>0:|x] < Ae} forall xe X
In this case, e is also called a (strong) order unit.

Certainly, every AM-space with unit is an AM-space.

1. ((K) is an AM-space with unit 1.

2. Every closed sublattice of C(K) is an AM-space.
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Kakutani’s theorem

Theorem (S. Kakutani, 1941)

1. Every AM-space with unit is lattice isometric to C(K) for
some compact Hausdorff space K, with the unit corresponding
to the constant one function 1.
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Kakutani’s theorem

Theorem (S. Kakutani, 1941)

1. Every AM-space with unit is lattice isometric to C(K) for
some compact Hausdorff space K, with the unit corresponding
to the constant one function 1.

2. Every AM-space is lattice isometric to a closed sublattice of
C(K) for some compact Hausdorff space K. More precisely,
there exists a family of pairs of points {(t;,s;)}ic; C K x K
and scalars {\;}ic) C [0,1) such that the AM-space is lattice
isometric to the closed sublattice of C(K):

{fe AK): f(t) = \f(s;) forall i€ I}.



What about the algebraic structure?
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What about the algebraic structure?

» By Kakutani's theorem, we can interpret the AM-space
condition as an intrinsic characterization of the closed
sublattices of C(K).

» But ((K) also has a natural algebraic structure (the pointwise
product) compatible with the lattice structure (for example,
the product of positive functions is positive, i.e., it is a
Banach lattice algebra).

Can we characterize intrinsically the AM-spaces that embed as a
closed sublattice-algebra of C(K)?
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We need to find an appropriate compatibility condition between
in this direction.

the AM-space and algebraic structures. The following result points
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AM-algebras with unit

We need to find an appropriate compatibility condition between
the AM-space and algebraic structures. The following result points
in this direction.

Theorem (L. Martignon, 1980)

Let A be a Banach lattice algebra with algebraic identity e. If A is
also an AM-space with unit e, then A is both lattice and algebra
isometric to a C(K), with e going to 1.

Definition

Let A be a Banach lattice algebra with identity e. We say that A is
an AM-algebra with unit e if A is also an AM-space with unit e.

How can we extend this idea to general AM-spaces, where no unit
is present?



This characterization of order units...
A Banach lattice X is an AM-space with unit e € X, if and only if
x*(e) = [|x*|| for all x* € (X*)4.
..led us to the following notion.
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Approximate order units

This characterization of order units...
Lemma

A Banach lattice X is an AM-space with unit e € Xy if and only if
x*(e) = ||x*|| for all x* € (X*)4+.

..led us to the following notion.
Definition

Let X be a Banach lattice, and let (e,) C X, be a net. We say
that X is an AM-space with approximate unit (ey) if

X*(ey) = ||X*|| for every x* € (X*)4.

We also say that (ey) is an approximate order unit of X.



Approximate order units

This characterization of order units...
Lemma

A Banach lattice X is an AM-space with unit e € Xy if and only if
x*(e) = ||x*|| for all x* € (X*)4+.

..led us to the following notion.
Definition

Let X be a Banach lattice, and let (e,) C X, be a net. We say
that X is an AM-space with approximate unit (ey) if

X*(ey) = ||X*|| for every x* € (X*)4.
We also say that (ey) is an approximate order unit of X.

Does having an approximate order unit imply that X is an
AM-space?



Yes! Moreover, the converse is also true.
A Banach lattice X has an approximate order unit if and only if X
is an AM-space.
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Recall that, in a Banach algebra A, a net (e,) is an approximate
(algebraic) identity if e;a — a and ae, — a for all a € A.

Definition
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A'is an AM-algebra with approximate unit (ey) if (ey) is both an
approximate order unit and an approximate algebraic identity.



AM-algebras with approximate unit

Yes! Moreover, the converse is also true.

Lemma

A Banach lattice X has an approximate order unit if and only if X
is an AM-space.

Recall that, in a Banach algebra A, a net (e,) is an approximate
(algebraic) identity if e;a — a and ae, — a for all a € A.

Definition

Let A be a Banach lattice algebra and let (e,) € A. We say that
A'is an AM-algebra with approximate unit (ey) if (ey) is both an
approximate order unit and an approximate algebraic identity.

This is the interaction between the AM-space and algebraic
structures we were looking for!



Kakutani’s theorem...

Theorem (S. Kakutani, 1941)

1. Every AM-space with unit is lattice isometric to C(K) for
some compact Hausdorff space K, with the unit corresponding
to the constant one function 1.

2. Every AM-space is lattice isometric to a closed sublattice of
C(K) for some compact Hausdorff space K. More precisely,
there exists a family of pairs of points {(t;,s;)}ic; C K x K
and scalars {\;}ic) C [0,1) such that the AM-space is lattice
isometric to the closed sublattice of C(K):

{fe AK): f(t) = \f(s;) forall i€ I}.
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Theorem (M.-L., Tradacete)

1. Every AM-algebra with unit is lattice and algebra isometric to
C(K) for some compact Hausdorff space K, with the unit
corresponding to the constant one function 1.
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...for Banach lattice algebras

Theorem (M.-L., Tradacete)

1. Every AM-algebra with unit is lattice and algebra isometric to
C(K) for some compact Hausdorff space K, with the unit
corresponding to the constant one function 1.

2. Every AM-algebra with approximate unit is lattice and algebra
isometric to a closed sublattice-algebra of C(K) for some
compact Hausdorff space K.More precisely, there exists a
closed set F C K such that the AM-algebra is lattice and
algebra isometric to the closed sublattice-algebra of C(K):

{fe ((K): f(t)=0 for all t € F}.

In particular, it embeds as an order and algebraic ideal in

a(K).



Recall: (ey) € Xy is an approximate order unit if x*(e,) — ||x*||
for all (X*).
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Remarks on approximate order units

Remarks

Recall: (e,) € Xy is an approximate order unit if x*(e,) — ||x*||
for all (X*).

1. Approximate order units need not be bounded or even have
bounded tails.

2. Even if a Banach lattice algebra has approximate order units
and approximate identities, it may not be an AM-algebra with
approximate unit.

3. If Ais an AM-algebra with approximate unit, then (Ba) is
an approximate order unit and an approximate identity.

4. Let A be an AM-space and a Banach lattice algebra. Then A
is an AM-algebra with approximate unit (i.e., lattice-algebra
embeds in a C(K)) if and only if (Ba)+ is an approximate
identity.



Applications (1)

As an application, we can establish precisely when Banach lattice
algebras have a C*-algebra structure that preserves the positive
cone. Since the natural scalar field for C*-algebras is C, we now
introduce complex Banach lattice algebras.
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introduce complex Banach lattice algebras.

Complex Banach lattices
Let X be a Banach lattice and let X¢ = X+ iX. For every
z= x+ iy € X¢, the supremum

|z| = sup{cosfx+sinfy: 6 € [0,2n7] }

exists in X and is called the modulus of z. Define ||z|lc = |||Z]||.
Then (Xc, ||-|lc) is a complex Banach space. Any Banach space of
this form is called a complex Banach lattice.



Applications (1)

As an application, we can establish precisely when Banach lattice
algebras have a C*-algebra structure that preserves the positive
cone. Since the natural scalar field for C*-algebras is C, we now
introduce complex Banach lattice algebras.

Complex Banach lattices
Let X be a Banach lattice and let X¢ = X+ iX. For every
z= x+ iy € X¢, the supremum

|z| = sup{cosfx+sinfy: 6 € [0,2x] }

exists in X and is called the modulus of z. Define ||z|lc = |||Z]||.
Then (X, ||-|lc) is @ complex Banach space. Any Banach space of
this form is called a complex Banach lattice.

C(K)c = C(K, C).




Applications (I1)

Complex Banach lattice algebras
Let A be a Banach lattice algebra. The complex Banach lattice
(Ac, ||*llc), equipped with the usual product

(x+ iy)(z+ it) = (xz— yt) + i(yz+ xt) where x,y,z,t € A,

becomes a complex Banach algebra. This product is compatible
with the complex Banach lattice structure: |z1z3| < |z;1||z2|]. The
space Ac is said to be a complex Banach lattice algebra.



Applications (I1)

Complex Banach lattice algebras

Let A be a Banach lattice algebra. The complex Banach lattice
(Ac, ||*llc), equipped with the usual product

(x+ iy)(z+ it) = (xz — yt) + i(yz+ xt) where x,y,z, t € A,

becomes a complex Banach algebra. This product is compatible
with the complex Banach lattice structure: |z1z3| < |z;1||z2|]. The
space Ac is said to be a complex Banach lattice algebra.

When can a complex Banach lattice algebra Ac be equipped with
a C'-algebra structure so that the positive elements of the
C*-algebra (i.e., the self-adjoint elements with positive spectrum)
are precisely A7




Let A be a Banach lattice algebra. Its complexification Ac can be
endowed with a C*-algebra structure in such a way that A, is the

cone of self-adjoint elements with positive spectrum if and only if
A is an AM-algebra with approximate unit.
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A Banach lattice algebra A is said to be an f-algebraif aAb=10
implies

(ca)Ab=(ac)Ab=0 forall a,b,ce A,.

(That is, if the left and right multiplications are orthomorphisms).

«O» <« F»

DA



Applications (1V)

Definition

implies

A Banach lattice algebra A is said to be an f-algebra if aA b= 0

(ca)Ab=(ac) Ab=0 forall a,bce A;.

(That is, if the left and right multiplications are orthomorphisms).

Every closed sublattice-algebra of C(K) is an f-algebra.




Applications (1V)

Definition

implies

A Banach lattice algebra A is said to be an f-algebra if aA b= 0

(ca)Ab=(ac) Ab=0 forall a,bce A;.

(That is, if the left and right multiplications are orthomorphisms).

Every closed sublattice-algebra of C(K) is an f-algebra.
Corollary

Every AM-algebra with approximate unit is an f-algebra.
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Does every AM-space admit a product making it into an
AM-algebra with approximate unit?
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Does every AM-space admit a product making it into an
AM-algebra with approximate unit?

Work in progress

» No. But when it does, it is unique.

» This AM-algebra product can be characterized in many “nice”
ways. For instance, it is the unique product for which the
norm-one lattice homomorphisms are also algebra
homomorphisms.

» Another way: lattice embed your AM-space X in a C(K) space
in such a way that it is also a subalgebra. Then the pointwise
product of C(K) coincides with the canonical product in X.

» When the AM-space has unit (i.e., it is a ((K)), this
AM-algebra product is, of course, the pointwise product.



“Many” AM-spaces come with a canonical product that is the
natural generalization of the pointwise product in AM-spaces with
unit (i.e., C(K) spaces).
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Work in progress (1)

In other words...

“Many"” AM-spaces come with a canonical product that is the
natural generalization of the pointwise product in AM-spaces with
unit (i.e., C(K) spaces).

Work in progress

» Most of the familiar examples of AM-spaces admit such a
product.

» We have several characterizations of the spaces that admit an
AM-algebra product.

» We believe that several results that relate the lattice and
algebraic structures of C(K) can be extended to general
AM-spaces with this canonical product.
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