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The presentation is based on the results from the recent joint
paper

Jerzy Kakol, Ondrej Kurka, Arkady Leiderman,
"On Asplund spaces Cx(X) and w*-binormality”,
Results Math. 78:203 (2023).




What is binormality?

Definition 1.

Let X be a nonempty set and o, 7 be two topologies on X. We
say that (X, o, 7) is binormal, if for every disjoint pair S, T of
subsets of X such that Siis closed in 0 and T is closed in 7,
there is a disjoint pair of sets V and U suchthat Sc V,
TcU,Visopenint,and Uisopeninao.

This property is called pairwise normality in the paper J.C.
Kelly, Bitopological spaces, Proc. London Math. Soc. 13
(1963), 71-89.



Examples of binormality

(1) Luzin-Menchoff property of the pair of the Euclidean and
the density topologies on the real line R.

Luzin-Menchoff Theorem. If F is a perfect subset of a
measurable subset U C R consisting exclusively of its
points of density, then there exists a perfect set K with the
set K* consisting of density points of K, such that the
following inclusions hold:

FcK*cKcU.

(For the history see the paper "Urysohn Lemma or
Luzin-Menshov Theorem?” by Jerzy Mioduszewski).



Examples of binormality

(2) (P. Holicky, 1997) Let (X, 7) be a locally convex space and
let o be its weak topology. Assume that (X, 7) is Lindelf.
Then X is binormal with respect to o and 7.

Corollary: Every separable Banach space is binormal with
respect to its norm and weak topologies.

(3) (P. Holicky, 1997) The non-separable space Banach space
£ is not binormal with respect to its norm and weak
topologies.




Examples of binormality

Nevertheless, many non-separable Banach spaces are
binormal with respect to norm and weak topologies (O. Kurka,
2010).

(4) The space C([0, 1) is binormal for every ordinal 1.

(5) Every weakly compactly generated, in particular, every
reflexive Banach space is binormal.

(6) Every dual to an Asplund space is binormal.
(The reason: all those spaces have a projectional
resolution of the identity (PRI). For the duals of Asplund
spaces this is a result by M. Fabian and G. Godefroy.)

(7) There is a locally compact space T such that the function
space Cy(T) is Asplund and admits a locally uniformly
rotund (LUR) norm but Cy(T) is not binormal.




@ For a Tychonoff space X by Cx(X) we denote Ics of
continuous real-valued functions on X with the
compact-open topology.

o If E is alcs with its dual E’, by 3(E’, E) we mean the
strong topology of E’, i.e. the topology of uniform
convergence on bounded subsets of E.

@ If E is a Banach space then the strong topology of E’ is
just the normed topology.




w*-binormality

Specifically for the dual Ics we formulate the definition of
w*-binormality as follows:

Definition 2.

For a locally convex space E we will say that its dual E’ is
w*-binormal if for every disjoint 5(E’, E)-closed A C E’ and
w*-closed B C E’ there exist disjoint 3(E’, E)-open D C E’ and
w*-open C C E' suchthat Ac Cand B c D.




Results on w*-binormality

Theorem 0. (O. Kurka, 2010)

If the dual E’ of a Banach space E is w*-binormal, then E is
Asplund.

Theorem 1.

Let X be a pseudocompact space and assume that the strong
dual Cx(X)' of Cx(X) is w*-binormal. Then X is a A-space.

In particular, for a compact space X, if the dual space C(X)' is
w*-binormal, then X is a A-space.




A-spaces

Definition 3.

A topological space X is said to be a A-space if for every
decreasing sequence {D, : n € w} of subsets of X with empty
intersection, there is a decreasing sequence {V, : n € w}
consisting of open subsets of X, also with empty intersection,
and such that D, C V), for every n € w.




A systematic study of the class of A-spaces was originated in
the paper

1) J. Kakol, A. Leiderman, A characterization of X for which
spaces Cp(X) are distinguished and its applications,
Proc. Amer. Math. Soc., series B, 8 (2021), 86—99.

and continued in

2) J. Kakol, A. Leiderman, Basic properties of X for which the
space Cp(X) is distinguished,

Proc. Amer. Math. Soc., series B, 8 (2021), 267—280.

3) A. Leiderman, P. Szeptycki, On A-spaces,

published in Israel J. Math., 2025.




Some topological properties of compact A-spaces

@ Every compact A-space X is scattered.

@ Every compact A-space X has countable tightness, i.e. if
x € cl(A) in X then there is a countable M C A such that
x € cl(M)in X.

@ If X is a compact A-space and Y is its continuous image,
then Y also is a compact A-space.

@ If X = U, Xn, and every X, is a compact A-space, then
X also is a A-space.




Corollary.

Let X be a compact space X.
If the dual C(X)’ is w*-binormal, then X is scattered, or,
equivalently, the Banach space C(X) is Asplund.

The compact space of ordinals X = [0,w1] is not a A-space.

Hence Theorem 1 yields that the dual of C(X) is not
w*-binormal for the scattered compact space X = [0, w+], in
other words, C(X) is Asplund, but the dual of C(X)' is not
w*-binormal.




We don’t know whether the converse implication in Theorem 1
also holds.

Problem 1.

Assume that X is a compact A-space. Is the dual Banach
space C(X)" w*-binormal?




We have however a positive answer to Problem 1 for Corson
compact spaces.

Theorem 2.

Let K be a Corson compact space. The following assertions
are equivalent:

(i) Kis a A-space.
(i) K is a scattered Eberlein compact space.
(iii) The Banach space C(K) is Asplund.
(iv) The dual Banach space C(K)' is w*-binormal.




Effectively A-spaces

Now we define a property of a topological space which is
stronger than the property of being a A-space.

Definition 4.

A topological space X is called an effectively A-space if there
exists a system of open neighborhoods {P} > x : x € X, n € w}

such that
() Pr #0

new

implies that {x, : n € w} is a finite set.




Effectively A-spaces

@ Every effectively A-space is a A-space.

Q@ Let p: X — Y be a continuous closed map onto. If X is an
effectively A-space then Y is also an effectively A-space.

© Every scattered Eberlein compact space is an effectively
A-space.

© Moreover, if a compact space K can be represented as a

countable union of scattered Eberlein compact spaces,
then K is an effectively A-space.

© In particular, for every Isbell-Mréwka W-space its one-point
compactification is an effectively A-space.




Effectively w*-binormal spaces

Now we define a property which formally is stronger than the
property of being a w*-binormal space.

Definition 5.

The dual E’ of a Banach space E will be called effectively
w*-binormal if there exists in the dual of E a system of w*-open
neighborhoods {U? 5 x : x € E', n € w}, such that

(U, +enBi) #0

new

implies that the sequence {x, : n € w} is norm-relatively
compact, whenever e, \, 0, and B, is the closed unit ball in the
dual of E.




Main result

Let K be a compact space. Then the dual space C(K)' is
effectively w*-binormal if and only if K is an effectively A-space.




Corollary 4.

(1) C(K)"is w*-binormal for every compact K which is
representable as a countable union of scattered Eberlein
compact spaces.

(2) C(K)'is w*-binormal for every compact K which is an
effectively A-space.

(3) Let X and Y be two compact spaces such that the Banach
spaces C(X) and C(Y) are topologically isomorphic. If X
is an effectively A-space then Y also is an effectively
A-space.




(4) The one-point compactification of any Isbell-Mrowka
V-gpace provides an example of a compact space K such
that the dual Banach space C(K)' is w*-binormal but K is
not Eberlein.




Problem 2.

Let X be a compact space. Is it true that

X is a A-space iff X is an effectively A-space, i.e.
C(K)' is a w*-binormal space iff C(K)' is an effectively
w*-binormal space?




Problem 3.

Let X and Y be two compact spaces such that the Banach
spaces C(X) and C(Y) are topologically isomorphic.

Assume that X can be represented as a countable union of
scattered Eberlein compact spaces.

Is it true that Y also can be represented as a countable union of
scattered Eberlein compact spaces?
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Some new results

Proposition 5.

Let X = (J,c., Xn, Where each X is closed in X. If every X, is
an effectively A-space then X also is an effectively A-space.

Proposition 6.

Let f: X — Y be a continuous countable-to-one surjective map
such that all its fibers are scattered. If Y is an effectively
A-space then X also is an effectively A-space.

\




Let X be a compact space and let f : X — Y be a continuous
countable-to-one surjective map. If Y is a countable union of
scattered Eberlein compact spaces then so is X.




Thank you !



