On w^* -binormality of the dual space $C_k(X)'$

Arkady Leiderman

(Ben-Gurion University of the Negev, Beer Sheva, ISRAEL)

March 21, 2025, Vienna, Austria Conference Structures in Banach Spaces

> ◆□ → < □ → < 三 → < 三 → < 三 → ○ Q (*) 1/26

The presentation is based on the results from the recent joint paper

Jerzy Kąkol, Ondřej Kurka, Arkady Leiderman, "On Asplund spaces $C_k(X)$ and w^* -binormality", Results Math. **78:203** (2023).

Definition 1.

Let *X* be a nonempty set and σ, τ be two topologies on *X*. We say that (X, σ, τ) is binormal, if for every disjoint pair *S*, *T* of subsets of *X* such that *S* is closed in σ and *T* is closed in τ , there is a disjoint pair of sets *V* and *U* such that $S \subset V$, $T \subset U$, *V* is open in τ , and *U* is open in σ .

This property is called pairwise normality in the paper J.C. Kelly, *Bitopological spaces*, Proc. London Math. Soc. 13 (1963), 71–89.

(1) Luzin-Menchoff property of the pair of the Euclidean and the density topologies on the real line \mathbb{R} .

Luzin-Menchoff Theorem. If *F* is a perfect subset of a measurable subset $U \subset \mathbb{R}$ consisting exclusively of its points of density, then there exists a perfect set *K* with the set K^* consisting of density points of *K*, such that the following inclusions hold:

$$F \subset K^* \subset K \subset U.$$

(For the history see the paper "Urysohn Lemma or Luzin-Menshov Theorem?" by Jerzy Mioduszewski).

- (2) (P. Holický, 1997) Let (X, τ) be a locally convex space and let σ be its weak topology. Assume that (X, τ) is Lindelöf. Then X is binormal with respect to σ and τ.
 Corollary: Every separable Banach space is binormal with respect to its norm and weak topologies.
- (3) (P. Holický, 1997) The non-separable space Banach space ℓ^{∞} is not binormal with respect to its norm and weak topologies.

Nevertheless, many non-separable Banach spaces are binormal with respect to norm and weak topologies (O. Kurka, 2010).

- (4) The space $C([0, \mu])$ is binormal for every ordinal μ .
- (5) Every weakly compactly generated, in particular, every reflexive Banach space is binormal.
- (6) Every dual to an Asplund space is binormal. (The reason: all those spaces have a projectional resolution of the identity (PRI). For the duals of Asplund spaces this is a result by M. Fabian and G. Godefroy.)
- (7) There is a locally compact space T such that the function space $C_0(T)$ is Asplund and admits a locally uniformly rotund (LUR) norm but $C_0(T)$ is not binormal.

- For a Tychonoff space X by C_k(X) we denote lcs of continuous real-valued functions on X with the compact-open topology.
- If *E* is a lcs with its dual *E'*, by β(*E'*, *E*) we mean the strong topology of *E'*, i.e. the topology of uniform convergence on bounded subsets of *E*.
- If E is a Banach space then the strong topology of E' is just the normed topology.

Specifically for the dual lcs we formulate the definition of w^* -binormality as follows:

Definition 2.

For a locally convex space *E* we will say that its dual *E'* is *w**-binormal if for every disjoint $\beta(E', E)$ -closed $A \subset E'$ and *w**-closed $B \subset E'$ there exist disjoint $\beta(E', E)$ -open $D \subset E'$ and *w**-open $C \subset E'$ such that $A \subset C$ and $B \subset D$.

Theorem 0. (O. Kurka, 2010)

If the dual E' of a Banach space E is w^* -binormal, then E is Asplund.

Theorem 1.

Let *X* be a pseudocompact space and assume that the strong dual $C_k(X)'$ of $C_k(X)$ is *w*^{*}-binormal. Then *X* is a Δ -space.

In particular, for a compact space X, if the dual space C(X)' is w^* -binormal, then X is a Δ -space.

Definition 3.

A topological space *X* is said to be a Δ -space if for every decreasing sequence $\{D_n : n \in \omega\}$ of subsets of *X* with empty intersection, there is a decreasing sequence $\{V_n : n \in \omega\}$ consisting of open subsets of *X*, also with empty intersection, and such that $D_n \subset V_n$ for every $n \in \omega$.

A systematic study of the class of Δ -spaces was originated in the paper

1) J. Kąkol, A. Leiderman, A characterization of X for which spaces $C_p(X)$ are distinguished and its applications, Proc. Amer. Math. Soc., series B, **8** (2021), 86–99.

and continued in

2) J. Kąkol, A. Leiderman, *Basic properties of X for which the space* $C_p(X)$ *is distinguished*, Proc. Amer. Math. Soc., series B, **8** (2021), 267–280. **3)** A. Leiderman, P. Szeptycki, *On* Δ *-spaces*, published in Israel J. Math., 2025.

Some topological properties of compact Δ -spaces

- Every compact Δ -space X is scattered.
- Every compact Δ -space X has countable tightness, i.e. if $x \in cl(A)$ in X then there is a countable $M \subset A$ such that $x \in cl(M)$ in X.
- If X is a compact Δ-space and Y is its continuous image, then Y also is a compact Δ-space.
- If $X = \bigcup_{n \in \omega} X_n$, and every X_n is a compact Δ -space, then X also is a Δ -space.

Corollary.

Let X be a compact space X. If the dual C(X)' is w*-binormal, then X is scattered, or, equivalently, the Banach space C(X) is Asplund.

The compact space of ordinals $X = [0, \omega_1]$ is not a Δ -space.

Hence Theorem 1 yields that the dual of C(X) is not w^* -binormal for the scattered compact space $X = [0, \omega_1]$, in other words, C(X) is Asplund, but the dual of C(X)' is not w^* -binormal.

We don't know whether the converse implication in Theorem 1 also holds.

Problem 1.

Assume that X is a compact Δ -space. Is the dual Banach space $C(X)' w^*$ -binormal?

We have however a positive answer to Problem 1 for Corson compact spaces.

Theorem 2.

Let K be a Corson compact space. The following assertions are equivalent:

- (i) K is a Δ -space.
- (ii) K is a scattered Eberlein compact space.
- (iii) The Banach space C(K) is Asplund.
- (iv) The dual Banach space C(K)' is w^* -binormal.

Now we define a property of a topological space which is stronger than the property of being a Δ -space.

Definition 4.

A topological space X is called an effectively Δ -space if there exists a system of open neighborhoods $\{P_x^n \ni x : x \in X, n \in \omega\}$ such that

$$\bigcap_{n\in\omega}P^n_{x_n}\neq\emptyset$$

implies that $\{x_n : n \in \omega\}$ is a finite set.

- Every effectively Δ -space is a Δ -space.
- **2** Let $\varphi : X \to Y$ be a continuous closed map onto. If X is an effectively Δ -space then Y is also an effectively Δ -space.
- Every scattered Eberlein compact space is an effectively Δ-space.
- Moreover, if a compact space K can be represented as a countable union of scattered Eberlein compact spaces, then K is an effectively Δ-space.
- In particular, for every Isbell-Mrówka Ψ-space its one-point compactification is an effectively Δ-space.

Now we define a property which formally is stronger than the property of being a w^* -binormal space.

Definition 5.

The dual E' of a Banach space E will be called effectively w^* -binormal if there exists in the dual of E a system of w^* -open neighborhoods $\{U_x^n \ni x : x \in E', n \in \omega\}$, such that

$$\bigcap_{n\in\omega}(U_{x_n}^n+\epsilon_nB_{E'}^*)\neq\emptyset$$

implies that the sequence $\{x_n : n \in \omega\}$ is norm-relatively compact, whenever $\epsilon_n \searrow 0$, and $B^*_{E'}$ is the closed unit ball in the dual of *E*.

Theorem 3.

Let *K* be a compact space. Then the dual space C(K)' is effectively w^* -binormal if and only if *K* is an effectively Δ -space.

Corollary 4.

- (1) C(K)' is w^* -binormal for every compact K which is representable as a countable union of scattered Eberlein compact spaces.
- (2) C(K)' is *w**-binormal for every compact *K* which is an effectively Δ -space.
- (3) Let X and Y be two compact spaces such that the Banach spaces C(X) and C(Y) are topologically isomorphic. If X is an effectively Δ-space then Y also is an effectively Δ-space.

(4) The one-point compactification of any Isbell-Mrówka Ψ-space provides an example of a compact space K such that the dual Banach space C(K)' is w*-binormal but K is not Eberlein.

Problem 2.

Let X be a compact space. Is it true that X is a Δ -space iff X is an effectively Δ -space, i.e. C(K)' is a w^* -binormal space iff C(K)' is an effectively w^* -binormal space?

Problem 3.

Let X and Y be two compact spaces such that the Banach spaces C(X) and C(Y) are topologically isomorphic. Assume that X can be represented as a countable union of scattered Eberlein compact spaces. Is it true that Y also can be represented as a countable union of

Is it true that Y also can be represented as a countable union of scattered Eberlein compact spaces?

Proposition 5.

Let $X = \bigcup_{n \in \omega} X_n$, where each X_n is closed in X. If every X_n is an effectively Δ -space then X also is an effectively Δ -space.

Proposition 6.

Let $f : X \to Y$ be a continuous countable-to-one surjective map such that all its fibers are scattered. If *Y* is an effectively Δ -space then *X* also is an effectively Δ -space.

Theorem 7.

Let X be a compact space and let $f : X \to Y$ be a continuous countable-to-one surjective map. If Y is a countable union of scattered Eberlein compact spaces then so is X.

Thank you !

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > の Q (C 26/26