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Constructing topological spaces: Resolutions

(Fedorchuk (’68))

• Y , Xy for y ∈ Y - topological spaces.

• hy : Y \ {y} → Xy - continuous mappings.

• R(Y ,Xy , hy ) :=
{
{y} × Xy : y ∈ Y

}
.

• {y} × V ∪
(⋃{

y ′ × Yx′ : x ′ ∈ (U ∩ h−1
y (V ))

})
for U ⊂ Y ,V ⊂ Xy open -

basic open sets.
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Preliminaries

Definition (Fedorchuk (’68))

Let X and Y be Hausdorff compact spaces and f : X → Y a continuous onto

mapping. f is called fully closed if for any two closed disjoint subsets F1,F2 of X ,

the set f (F1) ∩ f (F2) is finite.

Proposition

The canonical mapping π : R(Y ,Xy , hy ) → Y (the resolution mapping) is fully

closed.
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Preliminaries

Definition

Let S := {Xα, πβα, α, β ∈ γ} be a well-ordered continuous inverse system of Haus-

dorff compacta with X0 a singleton. We say that S is an F-system if the neighboring

bonding mappings, πα+1
α for α + 1 ∈ γ, are fully closed. We say that S is an F-

decomposable system if all bonding mappings, παβ for α, β ∈ γ, are fully closed.

Definition (Ivanov (’84))

Let S := {Xα, πβα, α, β ∈ γ} be an F-system for which the fibers of all neighboring

bonding mappings are metrizable. Then the limit X := lim
←

S is called a Fedorchuk

compact (F-compact) and the length of the system is called its spectral height

(denoted sh(X )). If S is moreover F-decomposable, we say that X is an Fd -

compact.
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Double circle (Doubling of a compact space)

Y = S1, Xy = {0, 1}, hy (y ′) = 0 ∀y 6= y ′ ∈ Y .

0

1
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Double arrow (Any separable compact linearly

ordered space (Ostraszewski (’74)))

Y = [0, 1], Xy = {0, 1} ∀y ∈ Y , hy (y ′) = 0 if y ′ < y and hy (y ′) = 1 if y ′ > y .

1

0
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Lexicographic square (cube)

Y = [0, 1], Xy = [0, 1] ∀y ∈ Y , hy (y ′) = 0 if y ′ < y and hy (y ′) = 1 if y ′ > y .

0

1

0 1
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The problem

Definition

Let E be a Banach space. The norm on E is called locally uniformly rotund (LUR)

if for any point x in the unit sphere SE and a sequence {xn}n∈N ⊂ SE we have that

lim
n→∞

∥∥∥∥x + xn
2

∥∥∥∥ = 1 =⇒ lim
n→∞

‖x − xn‖ = 0

Question

For which compact spaces K does C (K ) admit an equivalent LUR norm?
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Some examples

Theorem (Haydon, Rogers (’90))

Let K be a scattered compact space with K (ω1) = ∅. Then C (K ) admits an

equivalent LUR norm.

Proposition (M. (’24))

Any scattered compact space is homeomorphic to the limit of an F-decomposable

system, with the fibers of neighboring bonding mappings homeomorphic to the one-

point compactification of a discrete set.

Theorem (Haydon, Jayne, Namioka, Rogers (’00))

The space C ([0, 1]γlex) admits an equivalent LUR (strictly convex) norm if and only

if γ is countable.
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The problem for F-compacta

Theorem (Gul’ko, Ivanov, Shulikina, Troyanski (’20))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is

a Fedorchuk compact of spectral height 3.

Theorem (M. (24’))

Let X and Y be Hausdorff compacta and π a fully closed mapping from X onto Y .

Then C (X ) admits an equivalent τp-lower semicontinuous LUR norm provided that

the spaces C (Y ) and C
(
π−1(y)

)
for y ∈ Y admit equivalent τp-lsc LUR norms.

Theorem (M. (25’))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is

an Fd -compact of countable spectral height.
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The main tool

Theorem (Moltó, Orihuela, Troyanski (’97))

Let E be a Banach space and F a norming subspace of its dual. Then E admits

an equivalent σ(E ,F )-lower semicontinuous LUR norm if and only if for any ε > 0

there exists a countable decomposition X =
⋃
n∈N

Xn such that for all n ∈ N and

x ∈ Xn there exists H an open half space containing x and satisfying:

‖ · ‖- diam (Xn ∩ H) < ε.
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A characterization (fully closed mapping)

Proposition (Gul’ko, Ivanov, Shulikina, Troyanski (’20))

Let π : X → Y be a continuous surjective mapping between Hausdorff compacta.

Then π is fully closed if and only if for all f ∈ C (X ) we have(
oscπ−1(y) f : y ∈ Y

)
∈ c0(Y )

.
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The tree of an inverse system

Let S := {Xα, πβα, α, β ∈ γ} be a continuous inverse system of Hausdorff

compacta.

Define Υ(S) :=
⋃
{Xα, α ∈ γ} and a partial order � on Υ(S) as follows. If

y ∈ Xα, x ∈ Xβ , then

y � x ⇐⇒ α ≤ β and πβα(x) = y .

We shall refer to Υ(S) as the tree of the system S .
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A characterization (F-decomposable system)

Lemma

Let S and Υ(S) be as above and X := lim
←

S. Consider the mapping

Φ : C (X )→ l∞(Υ(S))

Φ(f )(x) := oscπ−1
α (x) f .

Then Φ maps C (X ) into C0(Υ(S)) if and only if S is an F-decomposable system.
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Another characterization (fully closed mapping)

Notation

Let X and Y be topological spaces and π a continuous mapping from X onto Y .

If M ⊂ Y , by YM we will denote the quotient space corresponding to the following

equivalence classes:

[x ] =

 x , x ∈ π−1(M);

π−1
(
π(x)

)
, π(x) ∈ Y \M.

We will denote the corresponding quotient mapping from X to YM by pM and by

πM : YM → Y the unique mapping such that π = πM ◦ pM .

Proposition (Fedorchuk (’06))

Let X and Y be Hausdorff compacta and f : X → Y a continuous mapping. Then

f is fully closed if and only if for any M ⊂ Y , the space YM is Hausdorff.
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R2 square Lexicographic square

Y y Y y

X X
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Idea of the proof

X Y Z

ZM1

(
ZM1

)f1(M2)

f2

πM1◦f2
q

f1

πM1 pM1

pf (M2)
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Idea of the proof

X K
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Thank you for the attention!
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