Continuous functions on Fedorchuk compacta

Todor Manev

Sofia University "St. Kliment Ohridski"

21/03/2025 Structures in Banach Spaces Vienna, Austria

Constructing topological spaces: Resolutions (Fedorchuk ('68))

- Y, X_y for $y \in Y$ topological spaces.
- $h_y: Y \setminus \{y\} \to X_y$ continuous mappings.
- $R(Y, X_y, h_y) := \{\{y\} \times X_y : y \in Y\}.$
- $\{y\} \times V \cup \left(\bigcup \left\{y' \times Y_{x'} : x' \in (U \cap h_y^{-1}(V))\right\}\right)$ for $U \subset Y, V \subset X_y$ open basic open sets.

Definition (Fedorchuk ('68))

Let X and Y be Hausdorff compact spaces and $f : X \to Y$ a continuous onto mapping. f is called *fully closed* if for any two closed disjoint subsets F_1, F_2 of X, the set $f(F_1) \cap f(F_2)$ is finite.

Definition (Fedorchuk ('68))

Let X and Y be Hausdorff compact spaces and $f : X \to Y$ a continuous onto mapping. f is called *fully closed* if for any two closed disjoint subsets F_1, F_2 of X, the set $f(F_1) \cap f(F_2)$ is finite.

Proposition

The canonical mapping π : $R(Y, X_y, h_y) \rightarrow Y$ (the resolution mapping) is fully closed.

Preliminaries

Definition

Let $S := \{X_{\alpha}, \pi_{\alpha}^{\beta}, \alpha, \beta \in \gamma\}$ be a well-ordered continuous inverse system of Hausdorff compacta with X_0 a singleton. We say that S is an *F*-system if the neighboring bonding mappings, $\pi_{\alpha}^{\alpha+1}$ for $\alpha + 1 \in \gamma$, are fully closed. We say that S is an *F*decomposable system if all bonding mappings, π_{β}^{α} for $\alpha, \beta \in \gamma$, are fully closed.

Definition (Ivanov ('84))

Let $S := \{X_{\alpha}, \pi_{\alpha}^{\beta}, \alpha, \beta \in \gamma\}$ be an F-system for which the fibers of all neighboring bonding mappings are metrizable. Then the limit $X := \lim_{\leftarrow} S$ is called a *Fedorchuk compact* (*F-compact*) and the length of the system is called its spectral height (denoted sh(X)). If S is moreover F-decomposable, we say that X is an F_d *compact*.

Double circle (Doubling of a compact space)

Double arrow (Any separable compact linearly ordered space (Ostraszewski ('74)))

 $Y = [0,1], X_y = \{0,1\} \ \forall y \in Y, \ h_y(y') = 0 \ \text{if} \ y' < y \ \text{and} \ h_y(y') = 1 \ \text{if} \ y' > y.$

Lexicographic square (cube)

The problem

Definition

Let *E* be a Banach space. The norm on *E* is called *locally uniformly rotund (LUR)* if for any point *x* in the unit sphere S_E and a sequence $\{x_n\}_{n\in\mathbb{N}} \subset S_E$ we have that

$$\lim_{n \to \infty} \left\| \frac{x + x_n}{2} \right\| = 1 \implies \lim_{n \to \infty} \|x - x_n\| = 0$$

Definition

Let *E* be a Banach space. The norm on *E* is called *locally uniformly rotund (LUR)* if for any point *x* in the unit sphere S_E and a sequence $\{x_n\}_{n\in\mathbb{N}} \subset S_E$ we have that

$$\lim_{n \to \infty} \left\| \frac{x + x_n}{2} \right\| = 1 \implies \lim_{n \to \infty} \|x - x_n\| = 0$$

Question

For which compact spaces K does C(K) admit an equivalent LUR norm?

Some examples

Theorem (Haydon, Rogers ('90))

Let K be a scattered compact space with $K^{(\omega_1)} = \emptyset$. Then C(K) admits an equivalent LUR norm.

Some examples

Theorem (Haydon, Rogers ('90))

Let K be a scattered compact space with $K^{(\omega_1)} = \emptyset$. Then C(K) admits an equivalent LUR norm.

Proposition (M. ('24))

Any scattered compact space is homeomorphic to the limit of an F-decomposable system, with the fibers of neighboring bonding mappings homeomorphic to the onepoint compactification of a discrete set.

Some examples

Theorem (Haydon, Rogers ('90))

Let K be a scattered compact space with $K^{(\omega_1)} = \emptyset$. Then C(K) admits an equivalent LUR norm.

Proposition (M. ('24))

Any scattered compact space is homeomorphic to the limit of an F-decomposable system, with the fibers of neighboring bonding mappings homeomorphic to the onepoint compactification of a discrete set.

Theorem (Haydon, Jayne, Namioka, Rogers ('00))

The space $C([0,1]_{lex}^{\gamma})$ admits an equivalent LUR (strictly convex) norm if and only if γ is countable.

Theorem (Gul'ko, Ivanov, Shulikina, Troyanski ('20))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is a Fedorchuk compact of spectral height 3.

Theorem (Gul'ko, Ivanov, Shulikina, Troyanski ('20))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is a Fedorchuk compact of spectral height 3.

Theorem (M. (24'))

Let X and Y be Hausdorff compacta and π a fully closed mapping from X onto Y. Then C(X) admits an equivalent τ_p -lower semicontinuous LUR norm provided that the spaces C(Y) and $C(\pi^{-1}(y))$ for $y \in Y$ admit equivalent τ_p -lsc LUR norms.

Theorem (Gul'ko, Ivanov, Shulikina, Troyanski ('20))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is a Fedorchuk compact of spectral height 3.

Theorem (M. (24'))

Let X and Y be Hausdorff compacta and π a fully closed mapping from X onto Y. Then C(X) admits an equivalent τ_p -lower semicontinuous LUR norm provided that the spaces C(Y) and $C(\pi^{-1}(y))$ for $y \in Y$ admit equivalent τ_p -lsc LUR norms.

Theorem (M. (25'))

X admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is an F_d -compact of countable spectral height.

Theorem (Moltó, Orihuela, Troyanski ('97))

Let E be a Banach space and F a norming subspace of its dual. Then E admits an equivalent $\sigma(E, F)$ -lower semicontinuous LUR norm if and only if for any $\epsilon > 0$ there exists a countable decomposition $X = \bigcup_{n \in \mathbb{N}} X_n$ such that for all $n \in \mathbb{N}$ and $x \in X_n$ there exists H an open half space containing x and satisfying:

 $\|\cdot\|$ -diam $(X_n \cap H) < \epsilon$.

Proposition (Gul'ko, Ivanov, Shulikina, Troyanski ('20))

Let $\pi : X \to Y$ be a continuous surjective mapping between Hausdorff compacta. Then π is fully closed if and only if for all $f \in C(X)$ we have $\left(\operatorname{osc}_{\pi^{-1}(y)} f : y \in Y\right) \in c_0(Y)$ Let $S := \{X_{\alpha}, \pi_{\alpha}^{\beta}, \alpha, \beta \in \gamma\}$ be a continuous inverse system of Hausdorff compacta.

Define $\Upsilon(S) := \bigcup \{X_{\alpha}, \alpha \in \gamma\}$ and a partial order \preceq on $\Upsilon(S)$ as follows. If $y \in X_{\alpha}, x \in X_{\beta}$, then

$$y \preceq x \quad \iff \quad \alpha \leq \beta \text{ and } \pi^{\beta}_{\alpha}(x) = y.$$

We shall refer to $\Upsilon(S)$ as the *tree of the system* S.

A characterization (F-decomposable system)

Lemma

Let S and $\Upsilon(S)$ be as above and $X := \lim S$. Consider the mapping

$$\Phi: C(X) \to I_{\infty}(\Upsilon(S))$$
$$\Phi(f)(x) := \operatorname{osc}_{\pi_{\alpha}^{-1}(x)} f.$$

Then Φ maps C(X) into $C_0(\Upsilon(S))$ if and only if S is an F-decomposable system.

Another characterization (fully closed mapping)

Notation

Let X and Y be topological spaces and π a continuous mapping from X onto Y. If $M \subset Y$, by Y^M we will denote the quotient space corresponding to the following equivalence classes:

$$[x] = \left\{ egin{array}{ccc} x, & x \in \pi^{-1}(M); \ \pi^{-1}\left(\pi(x)
ight), & \pi(x) \in Y \setminus M. \end{array}
ight.$$

We will denote the corresponding quotient mapping from X to Y^M by p^M and by $\pi^M: Y^M \to Y$ the unique mapping such that $\pi = \pi^M \circ p^M$.

Another characterization (fully closed mapping)

Notation

Let X and Y be topological spaces and π a continuous mapping from X onto Y. If $M \subset Y$, by Y^M we will denote the quotient space corresponding to the following equivalence classes:

$$[x] = \begin{cases} x, & x \in \pi^{-1}(M); \\ \pi^{-1}(\pi(x)), & \pi(x) \in Y \setminus M. \end{cases}$$

We will denote the corresponding quotient mapping from X to Y^M by p^M and by $\pi^M: Y^M \to Y$ the unique mapping such that $\pi = \pi^M \circ p^M$.

Proposition (Fedorchuk ('06))

Let X and Y be Hausdorff compacta and $f : X \to Y$ a continuous mapping. Then f is fully closed if and only if for any $M \subset Y$, the space Y^M is Hausdorff.

Idea of the proof

Idea of the proof

Thank you for the attention!