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Norms in RN

For a ’norm’
‖ · ‖ : `∞ → [0,∞]

we define

Fin(‖ · ‖) = {x ∈ `∞ : ‖x‖ <∞}.

e.g. `∞, `1, `2, . . . .

Exh(‖ · ‖) = {x ∈ `∞ : ‖(0, · · · , 0, x(n), x(n + 1), · · · )‖ →n 0}.

e.g. c0, `1, `2, . . .
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Banach exhaustive spaces

Theorem If a norm ‖ · ‖ is ’nice’, then Fin(‖ · ‖) and Exh(‖ · ‖) are
Banach spaces.

Theorem If X is a Banach space with unconditional basis, then X is
isometric to Exh(‖ · ‖) for some norm ‖ · ‖.

Theorem A space Exh(‖ · ‖) does not contain a copy of c0 if and only if
Exh(‖ · ‖) = Fin(‖ · ‖).

Theorem If a space Exh(‖ · ‖) does not contain a copy of `1, then
Fin(‖ · ‖) is isometric to the double dual of Exh(‖ · ‖).
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Combinatorial norm

Fix a hereditary family F of finite subsets of N.

For x ∈ `∞ let
‖x‖F = sup

F∈F

∑
i∈F
|x(i)|.

if F = {singletons}, then Fin(F) =`∞, Exh(F) =c0.

if F = {finite sets}, then Fin(F) =`1, Exh(F) =`1.

Convention: XF = Exh(F).
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The canonical example

The Schreier family:

S = {F ⊆ N : |F | ≤ minF + 1}.

XS is called the Schreier space.

The family S is compact (in the Cantor topology): a hereditary family F
is compact iff there is no infinite N ⊆ ω such that [N]∞ ⊆ F .
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Compact families

If F is compact, then XF can be embedded into C (F), the Banach space
of continuous functions on F .

Theorem (Pe lczyński) If K is compact and countable, then C (K ) is
c0-saturated, i.e. each ∞-dim subspace of C (K ) contains an isomorphic
copy of c0.

So, if F is compact, then XF is c0-saturated.

Each countable compact space is scattered (i.e. it does not contain a
Cantor set). One can analyze XF for compact families in terms of
Cantor-Bendixson rank of F (higher order Schreier spaces).
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What about non-compact families?

If F is not compact, then XF contains a copy of `1 (e.g. on any infinite
N ∈ F).

A natural example: consider the dyadic tree 2<N (instead of N).

Let A = {finite antichains} and C = {finite chains}.
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Farah space

Let In = [2n, 2n+1) for every n. Let

F = {F ∈ [N]<∞ : ∀n |F ∩ In|
|In|

< 1/n}.

Then

XF is not isomorphic to `1,

XF is `1-saturated,

in fact XF has the Schur property.

In general:

Schur property =⇒ `1-saturation =⇒ no copies of c0
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Schur property vs `1-saturation

It was an open problem if `1-saturation implies the Schur property. Solved
by Bourgain in negative, then another examples appeared (Azimi-Hagler,
Popov).

Another example:

fix a strictly increasing function g : N→ N,

define

Fg = {F ∈ [N]<∞ :
|F ∩ Ig(n)|
|Ig(n)|

< 1/n and F ∩ Ik = ∅ if k /∈ g [N]}.

finally let F be the union of all Fg ’s, for all possible strictly increasing
g ’s.

Then XF does not have the Schur property but it is `1-saturated.
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Back to dyadic trees

The spaces of the form XF look like amalgamates of c0’s and `1’s.

Conjecture. Each combinatorial Banach space is {c0, `1}-saturated, i.e.
each ∞-dim subspace of a combinatorial space contains a copy of c0 or a
copy of `1.

No! The space XA (stopping time space), by a result of Rosenthal,
contains isomorphic copies of `p for each p ≥ 1.

Even more, Rosenthal proved that XC is a universal space for all Banach
spaces with unconditional basis!

So, combinatorial spaces may be quite reach in terms of subspaces.
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A ’visible’ copy of `2

Let Y be a sequential space, with unconditional basis (e.g. Y = `2).

Here
is a procedure to create a combinatorial space with a tangible copy of Y .

Let

F = {F ∈ [N]<∞ :
( |F ∩ In|
|In|

)
n
∈ B(Y ∗)}.

Let

zn =
x2n + · · ·+ x2n+1−1

2n
.

Claim. (zn) generates an isomorphic copy of Y , and so Y can be
embedded (in a complemented way) in XF .

It follows from the fact that

‖y‖Y = sup{〈x , y〉 : x ∈ B(Y ∗)}.
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Another universal space

Let F be an universal family of finite sets, i.e. such that

whenever G is a family of finite sets and N ⊆ N is finite, then
there is M ⊆ N such that F|M is isomorphic to G|N .

Such family can be constructed e.g. as a Fraisse limit.
(In fact, this is the random hypergraph).

Theorem. XF is universal for Banach spaces with unconditional basis.
Moreover, each Banach space with unconditional basis has a
complemented copy in XF .

By a theorem due to Pe lczyński XF is isomorphic to so called Pe lczyński
space.
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space.

Piotr Borodulin-Nadzieja (Wroc law) Combinatorial Banach spaces Structures in Banach spaces 13 / 23



Another universal space

Let F be an universal family of finite sets, i.e. such that

whenever G is a family of finite sets and N ⊆ N is finite, then
there is M ⊆ N such that F|M is isomorphic to G|N .

Such family can be constructed e.g. as a Fraisse limit.
(In fact, this is the random hypergraph).

Theorem. XF is universal for Banach spaces with unconditional basis.
Moreover, each Banach space with unconditional basis has a
complemented copy in XF .
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Pe lczyński space

Problem (Pe lczyński, 1969). Is a base of every Pe lczyński space
permutatively equivalent to the base of the Pe lczyński space?

Theorem No, XF is not. In XF the base is not universal (contrary to the
case of the Pe lczyński space).
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A structure problem

Theorem. TFAE

XF does not contain an isomorphic copy of `1,

XF is c0-saturated,

F is compact,

F is scattered.

Problem. How to characterize in a combinatorial way families F such
that XF does not contain an isomorphic copy of c0?
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Back to dyadic trees again.

Theorem (Bang, Odell, 1989)

(Exh(C))∗ = Fin(A),

(Exh(A))∗ = Fin(C).

We will call pairs of families as above geometrically dual.

Question Can we characterize geometrically dual families?
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Cominatorial duality

For a family F let

F⊥ = {A ∈ [N]<∞ : ∀F ∈ F |A ∩ F | ≤ 1}.

We say that F and G are combinatorially dual if F = G⊥ and vice
versa.

If F and G are geometrically dual, then they are combinatorially dual.

We say that F is conformal if F⊥⊥ = F .

Examples: singletons, all finite subsets, antichains, chains.

If families F and G are combinatorially dual, then they are conformal.
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Conformal families

Fact. A family F is conformal if and only if there is an infinite graph G
such that F = C(G ), the family of cliques of G .(Then F⊥ = A(G ), the
family of anti-cliques of G ).

Question. Does combinatorial duality implies geometric duality?

Fact. If F and G are geometrically dual and x is an extreme point of the
ball in (a finitely dimensional subspace of) XF then rng(x) ⊆ {−1, 0, 1}.

Proposition. If G contains an odd hole or an odd anti-hole, then the
family of cliques and the family of anti-cliques are not geometrically dual.
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Perfect graphs

A (finite) graph G is perfect if χ(G ) = ω(G ).

χ(G ) is the chromatic number of G (the minimal number of colors which
is needed to color vertices so that there is no edge between vertices of the
same color).

ω(G ) is the clique number of G (the maximal cardinality of a clique in G ).

An infinite graph G is perfect if each vertex generated finite subgraph of G
is perfect.
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Perfect graph conjecture

Perfect graph conjecture. (Berg, 1963) A complement of a perfect
graph is perfect.

Theorem. (Lovasz, 1972) PFG is true.

Corollary (from the proof) If G is perfect then C(G ) and A(G ) are
geometrically dual, i.e.

Exh(C(G ))∗ = Fin(A(G )).
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Strong perfect graph conjecture

Strong perfect graph conjecture. (Berg, 1961) A graph is perfect if and
only if it does not contain neither odd holes nor odd anti-holes.

Theorem. (Chudnovsky et al, 2006) SPFG is true.

Corollary A graph G is perfect if and only if C(G ) and A(G ) are
geometrically dual.
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Sierpiński family

Fix a bijection f : N→ Q.

Let

n ≤f k ⇐⇒ f (n) ≤ f (k).

The Sierpiński graph Gf joins n and k by an edge if ≤ agrees with ≤g

about n, k .

What about XC(Gf )?

Piotr Borodulin-Nadzieja (Wroc law) Combinatorial Banach spaces Structures in Banach spaces 22 / 23
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Thanks.
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