Combinatorial Banach spaces

Piotr Borodulin-Nadzieja

Wrocław

Structures in Banach spaces

This represents joint works with Barnabas Farkas, Sebastian Jachimek, Jordi Lopez-Abad, Anna Pelczar-Barwacz.

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

- 3

For a 'norm'

$$\|\cdot\|:\ell_{\infty}\to[0,\infty]$$

we define

•
$$Fin(\|\cdot\|) = \{x \in \ell_{\infty} : \|x\| < \infty\}.$$

- 3

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

•
$$Fin(\|\cdot\|) = \{x \in \ell_{\infty} \colon \|x\| < \infty\}.$$

e.g.
$$\ell_{\infty}$$
, ℓ_1 , ℓ_2 ,

- 3

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

- 3

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

•
$$Fin(\|\cdot\|) = \{x \in \ell_{\infty} : \|x\| < \infty\}.$$

e.g. $\ell_{\infty}, \ell_{1}, \ell_{2}, \dots$
• $Exh(\|\cdot\|) = \{x \in \ell_{\infty} : \|(0, \dots, 0, x(n), x(n+1), \dots)\| \to_{n} 0\}.$
e.g. $c_{0},$

- 3

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

- 3

For a 'norm'

$$\|\cdot\| \colon \ell_{\infty} \to [0,\infty]$$

we define

- 3

Theorem If a norm $\|\cdot\|$ is 'nice', then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

3

< A > <

Theorem If a norm $\|\cdot\|$ is 'nice', then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem If a norm $\|\cdot\|$ is 'nice', then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem A space $Exh(\|\cdot\|)$ does not contain a copy of c_0 if and only if $Exh(\|\cdot\|) = Fin(\|\cdot\|)$.

イロト 不得 トイヨト イヨト 三日

Theorem If a norm $\|\cdot\|$ is 'nice', then $Fin(\|\cdot\|)$ and $Exh(\|\cdot\|)$ are Banach spaces.

Theorem If X is a Banach space with unconditional basis, then X is isometric to $Exh(\|\cdot\|)$ for some norm $\|\cdot\|$.

Theorem A space $Exh(\|\cdot\|)$ does not contain a copy of c_0 if and only if $Exh(\|\cdot\|) = Fin(\|\cdot\|)$.

Theorem If a space $Exh(\|\cdot\|)$ does not contain a copy of ℓ_1 , then $Fin(\|\cdot\|)$ is isometric to the double dual of $Exh(\|\cdot\|)$.

・ロット (雪) (日) (日) (日)

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

For $x \in \ell_{\infty}$ let

$$\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$$

Fix a hereditary family \mathcal{F} of finite subsets of \mathbb{N} .

For $x \in \ell_{\infty}$ let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

• if
$$\mathcal{F} = \{ singletons \}$$
, then $Fin(\mathcal{F}) =$

- A - E - N

3

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

For
$$x \in \ell_\infty$$
 let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

• if
$$\mathcal{F} = \{ \text{singletons} \}$$
, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) =$

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

For
$$x \in \ell_\infty$$
 let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

• if
$$\mathcal{F} = \{ \text{singletons} \}$$
, then $Fin(\mathcal{F}) = \ell_{\infty}$, $Exh(\mathcal{F}) = c_0$.

Fix a hereditary family \mathcal{F} of finite subsets of \mathbb{N} .

For $x \in \ell_{\infty}$ let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

if *F* = {singletons}, then *Fin*(*F*) = ℓ_∞, *Exh*(*F*) = c₀.
if *F* = {finite sets}, then *Fin*(*F*) =

Fix a hereditary family \mathcal{F} of finite subsets of \mathbb{N} .

For
$$x \in \ell_\infty$$
 let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

if *F* = {singletons}, then *Fin*(*F*) = ℓ_∞, *Exh*(*F*) = c₀.
if *F* = {finite sets}, then *Fin*(*F*) = ℓ₁, *Exh*(*F*) =

Fix a hereditary family \mathcal{F} of finite subsets of \mathbb{N} .

For $x \in \ell_\infty$ let $\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

if *F* = {singletons}, then *Fin*(*F*) = ℓ_∞, *Exh*(*F*) = c₀.
if *F* = {finite sets}, then *Fin*(*F*) = ℓ₁, *Exh*(*F*) = ℓ₁.

Fix a hereditary family ${\mathcal F}$ of finite subsets of ${\mathbb N}.$

For
$$x \in \ell_\infty$$
 let $\|x\|_\mathcal{F} = \sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|.$

Convention: $X_{\mathcal{F}} = Exh(\mathcal{F})$.

The canonical example

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 $X_{\mathcal{S}}$ is called the *Schreier space*.

The canonical example

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 X_S is called the *Schreier space*.

The family S is compact (in the Cantor topology):

The canonical example

The Schreier family:

$$\mathcal{S} = \{ F \subseteq \mathbb{N} \colon |F| \le \min F + 1 \}.$$

 X_S is called the *Schreier space*.

The family S is compact (in the Cantor topology): a hereditary family F is compact iff there is no infinite $N \subseteq \omega$ such that $[N]^{\infty} \subseteq F$.

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

So, if \mathcal{F} is compact, then $X_{\mathcal{F}}$ is c_0 -saturated.

If \mathcal{F} is compact, then $X_{\mathcal{F}}$ can be embedded into $C(\mathcal{F})$, the Banach space of continuous functions on \mathcal{F} .

Theorem (Pełczyński) If K is compact and countable, then C(K) is c_0 -saturated, i.e. each ∞ -dim subspace of C(K) contains an isomorphic copy of c_0 .

So, if \mathcal{F} is compact, then $X_{\mathcal{F}}$ is c_0 -saturated.

Each countable compact space is scattered (i.e. it does not contain a Cantor set). One can analyze $X_{\mathcal{F}}$ for compact families in terms of Cantor-Bendixson rank of \mathcal{F} (higher order Schreier spaces).

(日)

Piotr Borodulin-Nadzieja (Wrocław)

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

A natural example: consider the dyadic tree $2^{<\mathbb{N}}$ (instead of \mathbb{N}).

If \mathcal{F} is not compact, then $X_{\mathcal{F}}$ contains a copy of ℓ_1 (e.g. on any infinite $N \in \overline{\mathcal{F}}$).

A natural example: consider the dyadic tree $2^{<\mathbb{N}}$ (instead of \mathbb{N}).

Let $\mathcal{A} = \{$ finite antichains $\}$ and $\mathcal{C} = \{$ finite chains $\}$.

Farah space

Let $I_n = [2^n, 2^{n+1})$ for every n. Let $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} \colon \forall n \ \frac{|F \cap I_n|}{|I_n|} < 1/n\}.$

Then

3

- (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (同) - (п

Farah space

Let $I_n = [2^n, 2^{n+1})$ for every n. Let $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} \colon \forall n \ \frac{|F \cap I_n|}{|I_n|} < 1/n\}.$

Then

• $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,

Farah space

Let $I_n = [2^n, 2^{n+1})$ for every n. Let $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} \colon \forall n \ \frac{|F \cap I_n|}{|I_n|} < 1/n\}.$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,

Farah space

Let $I_n = [2^n, 2^{n+1})$ for every n. Let $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} \colon \forall n \ \frac{|F \cap I_n|}{|I_n|} < 1/n\}.$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,
- in fact $X_{\mathcal{F}}$ has the Schur property.

Farah space

Let $I_n = [2^n, 2^{n+1})$ for every n. Let $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} \colon \forall n \ \frac{|F \cap I_n|}{|I_n|} < 1/n\}.$

Then

- $X_{\mathcal{F}}$ is not isomorphic to ℓ_1 ,
- $X_{\mathcal{F}}$ is ℓ_1 -saturated,
- in fact $X_{\mathcal{F}}$ has the Schur property.

In general:

Schur property $\implies \ell_1$ -saturation \implies no copies of c_0

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

• fix a strictly increasing function $g \colon \mathbb{N} \to \mathbb{N}$,

10 / 23

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g \colon \mathbb{N} \to \mathbb{N}$,
- define

$$\mathcal{F}_g = \{F \in [\mathbb{N}]^{<\infty} \colon \frac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n \text{ and } F \cap I_k = \emptyset \text{ if } k \notin g[\mathbb{N}]\}.$$

10 / 23

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g \colon \mathbb{N} \to \mathbb{N}$,
- define

•

$$\mathcal{F}_g = \{ F \in [\mathbb{N}]^{<\infty} \colon \frac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n \text{ and } F \cap I_k = \emptyset \text{ if } k \notin g[\mathbb{N}] \}.$$

• finally let ${\mathcal F}$ be the union of all ${\mathcal F}_g$'s, for all possible strictly increasing g 's.

It was an open problem if ℓ_1 -saturation implies the Schur property. Solved by Bourgain in negative, then another examples appeared (Azimi-Hagler, Popov).

Another example:

- fix a strictly increasing function $g \colon \mathbb{N} \to \mathbb{N}$,
- define

•

$$\mathcal{F}_g = \{ F \in [\mathbb{N}]^{<\infty} \colon \frac{|F \cap I_{g(n)}|}{|I_{g(n)}|} < 1/n \text{ and } F \cap I_k = \emptyset \text{ if } k \notin g[\mathbb{N}] \}.$$

• finally let ${\mathcal F}$ be the union of all ${\mathcal F}_g$'s, for all possible strictly increasing g 's.

Then $X_{\mathcal{F}}$ does not have the Schur property but it is ℓ_1 -saturated.

・ コット (雪) ・ モ) ・ ヨ)

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space $X_{\mathcal{A}}$ (stopping time space), by a result of Rosenthal, contains isomorphic copies of ℓ_p for each $p \ge 1$.

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space $X_{\mathcal{A}}$ (stopping time space), by a result of Rosenthal, contains isomorphic copies of ℓ_p for each $p \ge 1$.

Even more, Rosenthal proved that X_C is a universal space for all Banach spaces with unconditional basis!

・ロット (雪) (日) (日) (日)

The spaces of the form $X_{\mathcal{F}}$ look like amalgamates of c_0 's and ℓ_1 's.

Conjecture. Each combinatorial Banach space is $\{c_0, \ell_1\}$ -saturated, i.e. each ∞ -dim subspace of a combinatorial space contains a copy of c_0 or a copy of ℓ_1 .

No! The space $X_{\mathcal{A}}$ (stopping time space), by a result of Rosenthal, contains isomorphic copies of ℓ_p for each $p \ge 1$.

Even more, Rosenthal proved that X_C is a universal space for all Banach spaces with unconditional basis!

So, combinatorial spaces may be quite reach in terms of subspaces.

11 / 23

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$).

э

12 / 23

< A ▶

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

Let

$$\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \left(\frac{|F \cap I_n|}{|I_n|}\right)_n \in B(Y^*) \}.$$

Let

Let

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

 $\mathcal{F} = \{F \in [\mathbb{N}]^{<\infty} : \left(\frac{|F \cap I_n|}{|I_n|}\right)_n \in B(Y^*)\}.$ $z_n = \frac{x_{2^n} + \dots + x_{2^{n+1}-1}}{2^n}.$

▲□▼▲■▼▲■▼ ■ シタの

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

 $\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \left(\frac{|F \cap I_n|}{|I_n|}\right)_n \in B(Y^*) \}.$

Let

Let

$$z_n = \frac{x_{2^n} + \dots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates an isomorphic copy of Y, and so Y can be embedded (in a complemented way) in $X_{\mathcal{F}}$.

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

 $\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \left(\frac{|F \cap I_n|}{|I_n|}\right)_n \in B(Y^*) \}.$

Let

Let

$$z_n = \frac{x_{2^n} + \dots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates an isomorphic copy of Y, and so Y can be embedded (in a complemented way) in $X_{\mathcal{F}}$.

It follows from the fact that

$$\|y\|_{Y} = \sup\{\langle x, y \rangle \colon x \in B(Y^{*})\}.$$

Let Y be a sequential space, with unconditional basis (e.g. $Y = \ell_2$). Here is a procedure to create a combinatorial space with a tangible copy of Y.

 $\mathcal{F} = \{ F \in [\mathbb{N}]^{<\infty} \colon \left(\frac{|F \cap I_n|}{|I_n|}\right)_n \in B(Y^*) \}.$

Let

Let

$$z_n = \frac{x_{2^n} + \dots + x_{2^{n+1}-1}}{2^n}.$$

Claim. (z_n) generates an isomorphic copy of Y, and so Y can be embedded (in a complemented way) in $X_{\mathcal{F}}$.

It follows from the fact that

$$\|y\|_{Y} = \sup\{\langle x, y \rangle \colon x \in B(Y^{*})\}.$$

<ロト < 同ト < ヨト < ヨト

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

э

13/23

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then

13 / 23

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit.

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Theorem. $X_{\mathcal{F}}$ is universal for Banach spaces with unconditional basis. Moreover, each Banach space with unconditional basis has a complemented copy in $X_{\mathcal{F}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let ${\mathcal F}$ be an universal family of finite sets, i.e. such that

whenever \mathcal{G} is a family of finite sets and $N \subseteq \mathbb{N}$ is finite, then there is $M \subseteq \mathbb{N}$ such that $\mathcal{F}_{|M}$ is isomorphic to $\mathcal{G}_{|N}$.

Such family can be constructed e.g. as a Fraisse limit. (In fact, this is the random hypergraph).

Theorem. $X_{\mathcal{F}}$ is universal for Banach spaces with unconditional basis. Moreover, each Banach space with unconditional basis has a complemented copy in $X_{\mathcal{F}}$.

By a theorem due to Pełczyński X_F is isomorphic to so called Pełczyński space.

・ロット (雪) (日) (日) (日)

Pełczyński space

Problem (Pełczyński, 1969). Is a base of every Pełczyński space permutatively equivalent to the base of **the** Pełczyński space?

ヨト イヨト

э

14 / 23

Problem (Pełczyński, 1969). Is a base of every Pełczyński space permutatively equivalent to the base of **the** Pełczyński space?

Theorem No, $X_{\mathcal{F}}$ is not. In $X_{\mathcal{F}}$ the base is not universal (contrary to the case of the Pełczyński space).

A structure problem

Theorem. TFAE

- $X_{\mathcal{F}}$ does not contain an isomorphic copy of ℓ_1 ,
- $X_{\mathcal{F}}$ is c_0 -saturated,
- $\mathcal F$ is compact,
- \mathcal{F} is scattered.

э

A structure problem

Theorem. TFAE

- $X_{\mathcal{F}}$ does not contain an isomorphic copy of ℓ_1 ,
- $X_{\mathcal{F}}$ is c_0 -saturated,
- $\mathcal F$ is compact,
- \mathcal{F} is scattered.

Problem. How to characterize in a combinatorial way families \mathcal{F} such that $X_{\mathcal{F}}$ does not contain an isomorphic copy of c_0 ?

Theorem (Bang, Odell, 1989)

- $(Exh(\mathcal{C}))^* = Fin(\mathcal{A}),$
- $(Exh(\mathcal{A}))^* = Fin(\mathcal{C}).$

э

< A > <

∃ ► < ∃ ►</p>

Theorem (Bang, Odell, 1989)

- $(Exh(\mathcal{C}))^* = Fin(\mathcal{A}),$
- $(Exh(\mathcal{A}))^* = Fin(\mathcal{C}).$

We will call pairs of families as above geometrically dual.

Theorem (Bang, Odell, 1989)

- $(Exh(\mathcal{C}))^* = Fin(\mathcal{A}),$
- $(Exh(\mathcal{A}))^* = Fin(\mathcal{C}).$

We will call pairs of families as above geometrically dual.

Question Can we characterize geometrically dual families?

Theorem (Bang, Odell, 1989)

- $(Exh(\mathcal{C}))^* = Fin(\mathcal{A}),$
- $(Exh(\mathcal{A}))^* = Fin(\mathcal{C}).$

We will call pairs of families as above geometrically dual.

Question Can we characterize geometrically dual families?

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

<ロト < 同ト < ヨト < ヨト

э

For a family ${\mathcal F}$ let

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

• We say that \mathcal{F} and \mathcal{G} are *combinatorially dual* if $\mathcal{F} = \mathcal{G}^{\perp}$ and vice versa.

э

17 / 23

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

- We say that \mathcal{F} and \mathcal{G} are *combinatorially dual* if $\mathcal{F} = \mathcal{G}^{\perp}$ and vice versa.
- If \mathcal{F} and \mathcal{G} are geometrically dual, then they are combinatorially dual.

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

- We say that \mathcal{F} and \mathcal{G} are *combinatorially dual* if $\mathcal{F} = \mathcal{G}^{\perp}$ and vice versa.
- If \mathcal{F} and \mathcal{G} are geometrically dual, then they are combinatorially dual.
- We say that \mathcal{F} is conformal if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

- We say that \mathcal{F} and \mathcal{G} are *combinatorially dual* if $\mathcal{F} = \mathcal{G}^{\perp}$ and vice versa.
- If \mathcal{F} and \mathcal{G} are geometrically dual, then they are combinatorially dual.
- We say that \mathcal{F} is conformal if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.
- Examples: singletons, all finite subsets, antichains, chains.

$$\mathcal{F}^{\perp} = \{ A \in [\mathbb{N}]^{<\infty} \colon \forall F \in \mathcal{F} \ |A \cap F| \le 1 \}.$$

- We say that \mathcal{F} and \mathcal{G} are *combinatorially dual* if $\mathcal{F} = \mathcal{G}^{\perp}$ and vice versa.
- If \mathcal{F} and \mathcal{G} are geometrically dual, then they are combinatorially dual.
- We say that \mathcal{F} is conformal if $\mathcal{F}^{\perp\perp} = \mathcal{F}$.
- Examples: singletons, all finite subsets, antichains, chains.
- If families \mathcal{F} and \mathcal{G} are combinatorially dual, then they are conformal.

<ロト < 同ト < ヨト < ヨト

э

Fact. A family \mathcal{F} is *conformal* if and only if there is an infinite graph G such that $\mathcal{F} = \mathcal{C}(G)$, the family of cliques of G.

э

- 4 同 ト - 4 回 ト

Fact. A family \mathcal{F} is *conformal* if and only if there is an infinite graph G such that $\mathcal{F} = \mathcal{C}(G)$, the family of cliques of G.(Then $\mathcal{F}^{\perp} = \mathcal{A}(G)$, the family of anti-cliques of G).

Question. Does combinatorial duality implies geometric duality?

・ 何 ト ・ ラ ト ・ ラ ト

Fact. A family \mathcal{F} is *conformal* if and only if there is an infinite graph G such that $\mathcal{F} = \mathcal{C}(G)$, the family of cliques of G.(Then $\mathcal{F}^{\perp} = \mathcal{A}(G)$, the family of anti-cliques of G).

Question. Does combinatorial duality implies geometric duality?

Fact. If \mathcal{F} and \mathcal{G} are geometrically dual and x is an extreme point of the ball in (a finitely dimensional subspace of) $X_{\mathcal{F}}$ then $rng(x) \subseteq \{-1, 0, 1\}$.

Fact. A family \mathcal{F} is *conformal* if and only if there is an infinite graph G such that $\mathcal{F} = \mathcal{C}(G)$, the family of cliques of G.(Then $\mathcal{F}^{\perp} = \mathcal{A}(G)$, the family of anti-cliques of G).

Question. Does combinatorial duality implies geometric duality?

Fact. If \mathcal{F} and \mathcal{G} are geometrically dual and x is an extreme point of the ball in (a finitely dimensional subspace of) $X_{\mathcal{F}}$ then $rng(x) \subseteq \{-1, 0, 1\}$.

Proposition. If *G* contains an odd hole or an odd anti-hole, then the family of cliques and the family of anti-cliques are not geometrically dual.

・ロット (雪) (日) (日) (日)

Fact. A family \mathcal{F} is *conformal* if and only if there is an infinite graph G such that $\mathcal{F} = \mathcal{C}(G)$, the family of cliques of G.(Then $\mathcal{F}^{\perp} = \mathcal{A}(G)$, the family of anti-cliques of G).

Question. Does combinatorial duality implies geometric duality?

Fact. If \mathcal{F} and \mathcal{G} are geometrically dual and x is an extreme point of the ball in (a finitely dimensional subspace of) $X_{\mathcal{F}}$ then $rng(x) \subseteq \{-1, 0, 1\}$.

Proposition. If *G* contains an odd hole or an odd anti-hole, then the family of cliques and the family of anti-cliques are not geometrically dual.

・ロット (雪) (日) (日) (日)

Perfect graphs

A (finite) graph G is perfect if $\chi(G) = \omega(G)$.

(人間) くう くう くう

3

19/23

Perfect graphs

A (finite) graph G is perfect if $\chi(G) = \omega(G)$.

 $\chi(G)$ is the chromatic number of G (the minimal number of colors which is needed to color vertices so that there is no edge between vertices of the same color).

 $\omega(G)$ is the clique number of G (the maximal cardinality of a clique in G).

Perfect graphs

A (finite) graph G is perfect if $\chi(G) = \omega(G)$.

 $\chi(G)$ is the chromatic number of G (the minimal number of colors which is needed to color vertices so that there is no edge between vertices of the same color).

 $\omega(G)$ is the clique number of G (the maximal cardinality of a clique in G).

An infinite graph G is *perfect* if each vertex generated finite subgraph of G is perfect.

Perfect graph conjecture

Perfect graph conjecture. (Berg, 1963) A complement of a perfect graph is perfect.

- E - E

Perfect graph conjecture

Perfect graph conjecture. (Berg, 1963) A complement of a perfect graph is perfect.

Theorem. (Lovasz, 1972) PFG is true.

Perfect graph conjecture

Perfect graph conjecture. (Berg, 1963) A complement of a perfect graph is perfect.

Theorem. (Lovasz, 1972) PFG is true.

Corollary (from the proof) If G is perfect then C(G) and A(G) are geometrically dual, i.e.

 $\operatorname{Exh}(\mathcal{C}(G))^* = \operatorname{Fin}(\mathcal{A}(G)).$

Strong perfect graph conjecture

Strong perfect graph conjecture. (Berg, 1961) A graph is perfect if and only if it does not contain neither odd holes nor odd anti-holes.

21 / 23

Strong perfect graph conjecture

Strong perfect graph conjecture. (Berg, 1961) A graph is perfect if and only if it does not contain neither odd holes nor odd anti-holes.

Theorem. (Chudnovsky et al, 2006) SPFG is true.

Strong perfect graph conjecture. (Berg, 1961) A graph is perfect if and only if it does not contain neither odd holes nor odd anti-holes.

Theorem. (Chudnovsky et al, 2006) SPFG is true.

Corollary A graph G is perfect if and only if C(G) and A(G) are geometrically dual.

Sierpiński family

Fix a bijection $f : \mathbb{N} \to \mathbb{Q}$.

э

<ロト < 同ト < ヨト < ヨト

Sierpiński family

Fix a bijection $f : \mathbb{N} \to \mathbb{Q}$. Let

$n \leq_f k \iff f(n) \leq f(k).$

3

イロト イボト イヨト イヨト

Fix a bijection $f : \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_f k \iff f(n) \leq f(k).$$

The Sierpiński graph G_f joins n and k by an edge if \leq agrees with \leq_g about n, k.

b) (1) (2) (3)

э

Fix a bijection $f : \mathbb{N} \to \mathbb{Q}$. Let

$$n \leq_f k \iff f(n) \leq f(k).$$

The Sierpiński graph G_f joins n and k by an edge if \leq agrees with \leq_g about n, k.

What about $X_{\mathcal{C}(G_f)}$?

► 4 3 5 €

3

Thanks.

æ

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶