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operators X — Y.

An operator ideal J C Z(X,Y) is a linear space containing finite dimensional
operators, which is also a two-sided ideal in .Z(X,Y).

Given an operator T € .Z(X, Y) denote by Jr the smallest closed operator

ideal containing T.

Notation: [N] and [N]<>° denote the families of infinite subsets of N and finite
subsets of N, respectably.
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2020]
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Given any A C € let Ja C Z(X,Y) be the smallest closed operator ideal
containing all TQu, N € A. Then the map 2% 5 A Ja C Z(X,Y) is an
embedding of 2 into the lattice of closed ideals in Z(X,Y).

The above tool is used explicitly or implicitly in all known results on 2° closed
operator ideals in Z(X).
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We say that the basis (x;); is inhomogeneous, if for some partition N =, . /n

into successive intervals, writing Ly = |J__p In, N € [N], we have the following:

neN

no N, M € [N] with |N\ M| = oo admit an operator R € £ (X) with
Rxi € {xj:j € Lm}, i € Ln.

@ Regarding the general criterion setting: trivially subspaces (Fn)n, with
Fn=span{x;:i € I}, n € N, form a UFDD of X.

@ Recall that the basis (x;); generates as a spreading model a basic sequence
(%Xi)i, if for any € > 0 and n € N there is m € N so that (x;,, ..., X;,) and
(X1,...,%n) are (1 + €)-equivalent for any m < iy < -+ < ip.

A sufficient condition for "inhomogeneity" of a basic sequence

Assume the basis (x;); with a spreading model (X;); admits no subsequence
dominating (X;);. Then some subsequence of (x;); is inhomogeneous.

Proof: Gasparis dichotomy on compact families of finite sets of integers and
Schreier families of countable order.
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Let X, E be Banach spaces with normalized bases (x;); and (e;);, resp.
Consider in X the "supremum" norm || - ||o := sup{|x/(-)|}, where (x/); C X*
is the biorthogonal sequence to (x;);.
We say that (x;); oo-dominates (e&;);, if
(1) (x;)i dominates (e;)i (the map Tx; = e, i € N, extends to T € Z(X, E)).
(2) ian |znllos > 0O, for any seminormalized (z,), C X with (Tz,), C E

ne

seminormalized.

@ Any normalized basis (x;); co-dominates the unit vector basis (&;)i C co.

@ The unit vector basis of £, co-dominates the unit vector basis of /g,
provided g > p > 1.

@ Assume (x;); admit no subsequence equivalent to the unit vector basis of
¢o and dominates (e;); via the operator T. Then the condition (2) implies
strict singularity of T, but not vice versa.
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Let X, E be Banach spaces with normalized unconditional bases (x;); and (e&);,
resp., with (x;); shrinking. Assume that (x;); co-dominates (e;); and (x;); is
inhomogeneous.Then there are 2° many pairwise distinct closed operator ideals

in Z(X, E).
Proof:

@ Take T € Z(X, E) with Tx; = e for each i and the UFDD (F,), and
(Gn)n defined by intervals witnessing by the inhomogeneity of the basis
(xi)i and test against the Johnson-Schechtman criterion:

@ Take N, M € [N] with [N\ M| = co and assume dist(TQn, Jrq,,) < 1.
@ oo-domination of (e;); by (x;); yields an operator S € .Z(X) with
inf || Qu Sxiljoe > 0.

@ One of Gasparis-Leung tools provides an operator contradicting
inhomogeneity of (x;);.
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The Schreier space [1937] is the prototype of combinatorial spaces, named by
W.T.Gowers and studied by A.Antunes, K.Beanland and H.V.Chu, C.Brech,
V.Ferenczi and A.Tcaciuc, P.Borodulin-Nadzieja and B.Farkas, S.Jachimek,
APB. The p-convex versions were introduced by A.Bird, N.J.Laustsen and
A.Zsak, and considered by M.Fakhoury.
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Fix a family F C [N]<* which is hereditary (with respect to taking subsets),
compact (in the product topology), covering N (contains all singletons) and
large (any L € [N] contains elements of F of arbitrary length). Define the
p-convex combinatorial space X, 1 < p < 00, as the completion of cpo with

[(@)ill7,p = sup [[(ai)icrllp, (ai)i € coo
FeF

@ The unit vector basis (x;); C Xz, is 1-unconditional and shrinking.

@ (x;)i C Xr,p admits a subsequence with a spreading model (e;); C ¢,,
(xi)i € XF,p is 1-dominated by (e;)i C £,, and admits no subsequence
equivalent to (&;)i C £, (thus (x;); has an inhomogeneous subsequence).

@ Xr,, contains an isomorphic copy of co.

The criterion yields the following generalization of results in [A.Manoussakis,
APB 2021, R.M.Causey, APB 2025, N.J.Laustsen, J.Smith 2025].

Corollary. There are 2° many closed operator ideals in .Z(Xx,5).
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Fix a family F C [N]<> which is hereditary (with respect to taking subsets),
compact (in the product topology), covering N (contains all singletons) and
large (any L € [N] contains elements of F of arbitrary length).

Define the Baernstein space Brp, 1 < p < 00, as the completion of cpo with a
norm

m
l@)iller, = sup|[(Ilerlls)” || o (a)i€ o
Fi<--<Fn€F Jj=1llp
@ Br, is reflexive, the unit vector basis (x;)i C Br,p is 1-unconditional.

(xi)i C Br,p admits a subsequence with a spreading model (e;);i C 41
(thus by reflexivity (x;); contains an inhomogeneous subsequence).

@ Bzr , contains an isomorphic copy of /.

@ (x;)i C Br,p co-dominates (e;); C 4.

The criterion implies the following generalization of one of results in
[N.J.Laustsen-J.Smith].

Corollary. There are 2° many closed operator ideals in £ (Bx,p).
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Application - Rosenthal spaces and their duals

Fix g < 2 < p with % + % =1, and w = (w;); \ 0 with )", wl.z"/”_2 = 0.
Define the Rosenthal space X, , as the completion of cpo with a norm
(ai)illw,p = max {H(ai)iHm H(W,‘a,'),‘Hz}, (ai)i € oo
Spaces Xu,, defined by different w's as above are isomorphic [H.Rosenthal].
@ Xy, is a complemented subspace of L,(0,1) [H.Rosenthal], the unit
vector basis (x;); C Xw,p is 1-unconditional.

@ (x)i C Xu , generates (e;); C {4 as a spreading model (however, any
subsequence (x;"); C X, , contains further equivalent to (e;)i C ¢g, thus
the "spreading model" criterion for inhomogeneity doesn’t apply).

@ A careful choice of w provides a partition N = [ J, . /n 50 that any (x)ie,
is co-equivalent to (&)ies, C ¢2, with ¢, < |I;|. This property combined
with the ¢,-spreading model yields inhomogeneity of (x"); C Xy .

@ X, , contains an isomorphic copy of /> [H.Rosenthal].

@ (x)i C Xy, co-dominates (&;); C 42.

Corollary [W.B.Johnson, G.Schechtman]
There are 2° many closed operator ideals in (X, ,) and Z(Xw,p).
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Fix 1 < p <ooand w = (w;);i \,0 with >, w; = co. Let I be the set of all
permutations of N. Define the Lorentz sequence space d,,,, as the completion
of coo with

(@il , = sup (w2 )llos (a); € con

@ dy p is reflexive, the unit vector basis (e;); C d,p is 1-unconditional and
symmetric (i.e. equivalent to all of its subsequences).

@ Any block sequence of averages of the basis spans a complemented
subspace (general fact concerning symmetric bases).
@ Fix k € N. Decompose N = | J; EF into successive intervals of length k.
— . kK_ 1 k_ 1
For v := ZiEEl w; define w/ = " ZJEE( wj and x; = a7 ZjeEf g

Then (x¥); is 1-equivalent to (e/); C d(w*, p) with w* = (w/);.

Assume () 3(kn)n C N: w™** > wf for any n,i € N and
S w5 w5 oo for some (sn)n C N. Then there is a sequence
(xi)i C (xF)ik that is inhomogeneous and co-dominates (e;); C d(w, p).

Corollary. There are 2° many closed operator ideals in .Z(dw,p) for w with ().
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