A criterion for $2^{\mathfrak{c}}$ operator ideals on Banach spaces

Anna Pelczar-Barwacz

Jagiellonian University, Poland

March 18, 2025

Given Banach space X, Y, write $\mathscr{L}(X, Y)$ for the Banach space of bounded operators $X \to Y$.

An operator ideal $J \subset \mathscr{L}(X, Y)$ is a linear space containing finite dimensional operators, which is also a two-sided ideal in $\mathscr{L}(X, Y)$.

Given Banach space X, Y, write $\mathscr{L}(X, Y)$ for the Banach space of bounded operators $X \to Y$.

An operator ideal $J \subset \mathscr{L}(X, Y)$ is a linear space containing finite dimensional operators, which is also a two-sided ideal in $\mathscr{L}(X, Y)$.

Given an operator $T \in \mathscr{L}(X, Y)$ denote by J_T the smallest closed operator ideal containing T.

Given Banach space X, Y, write $\mathscr{L}(X, Y)$ for the Banach space of bounded operators $X \to Y$.

An operator ideal $J \subset \mathscr{L}(X, Y)$ is a linear space containing finite dimensional operators, which is also a two-sided ideal in $\mathscr{L}(X, Y)$.

Given an operator $T \in \mathscr{L}(X, Y)$ denote by J_T the smallest closed operator ideal containing T.

Notation: $[\mathbb{N}]$ and $[\mathbb{N}]^{<\infty}$ denote the families of infinite subsets of \mathbb{N} and finite subsets of \mathbb{N} , respectably.

Banach spaces with completely described lattice of closed operator ideals

• ℓ_p , $1 \leq p < \infty$, c_0 [J.W.Calkin 1941, I.Gohberg, A.Markus, I.Feldman 1967]

- ℓ_p , $1 \le p < \infty$, c_0 [J.W.Calkin 1941, I.Gohberg, A.Markus, I.Feldman 1967]
- $\ell_p(\Gamma)$, $1 \le p < \infty$, $c_0(\Gamma)$ [B.Gramsch 1967, E.Luft 1968, M.Daws 2006]

- ℓ_p , $1 \le p < \infty$, c_0 [J.W.Calkin 1941, I.Gohberg, A.Markus, I.Feldman 1967]
- $\ell_p(\Gamma)$, $1 \le p < \infty$, $c_0(\Gamma)$ [B.Gramsch 1967, E.Luft 1968, M.Daws 2006]
- $(\bigoplus_{k \in \mathbb{N}} \ell_2^k)_Y$ with $Y = c_0, \ell_1$ [N.Laustsen, R.Roy, C.Read, 2004, N.Laustsen, Th.Schlumprecht, A.Zsák 2006]

- ℓ_p , $1 \le p < \infty$, c_0 [J.W.Calkin 1941, I.Gohberg, A.Markus, I.Feldman 1967]
- $\ell_p(\Gamma)$, $1 \le p < \infty$, $c_0(\Gamma)$ [B.Gramsch 1967, E.Luft 1968, M.Daws 2006]
- $(\bigoplus_{k \in \mathbb{N}} \ell_2^k)_Y$ with $Y = c_0, \ell_1$ [N.Laustsen, R.Roy, C.Read, 2004, N.Laustsen, Th.Schlumprecht, A.Zsák 2006]
- Argyros-Haydon space [2011] and spaces built on its basis [M.Tarbard, 2012, P.Motakis, D.Puglisi, D.Zisimopoulou 2016, T.Kania, N.Laustsen 2017, P.Motakis 2021, P.Motakis, APB 2023]

- ℓ_p , $1 \le p < \infty$, c_0 [J.W.Calkin 1941, I.Gohberg, A.Markus, I.Feldman 1967]
- $\ell_p(\Gamma)$, $1 \le p < \infty$, $c_0(\Gamma)$ [B.Gramsch 1967, E.Luft 1968, M.Daws 2006]
- $(\bigoplus_{k \in \mathbb{N}} \ell_2^k)_Y$ with $Y = c_0, \ell_1$ [N.Laustsen, R.Roy, C.Read, 2004, N.Laustsen, Th.Schlumprecht, A.Zsák 2006]
- Argyros-Haydon space [2011] and spaces built on its basis [M.Tarbard, 2012, P.Motakis, D.Puglisi, D.Zisimopoulou 2016, T.Kania, N.Laustsen 2017, P.Motakis 2021, P.Motakis, APB 2023]
- *C*(*K*), for certain Koszmider-Mrowka compacta *K* [P.Koszmider 2005, G.Plebanek 2005]

• $X = L_p(0, 1), \ p \in (1, 2) \cup (2, \infty)$ [W.B.Johnson, G.Schechtman 2020]

- $X = L_p(0, 1), \ p \in (1, 2) \cup (2, \infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]

- $X = L_p(0,1), \ p \in (1,2) \cup (2,\infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]
- A general criterion, working in particular in ℓ_p ⊕ ℓ_q, 1 ≤ p < q ≤ ∞, apart from ℓ₁ ⊕ c₀ and ℓ₁ ⊕ ℓ_∞ [D.Freeman, Th.Schlumprecht, A.Zsák 2020]

- $X = L_p(0,1), p \in (1,2) \cup (2,\infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]
- A general criterion, working in particular in ℓ_p ⊕ ℓ_q, 1 ≤ p < q ≤ ∞, apart from ℓ₁ ⊕ c₀ and ℓ₁ ⊕ ℓ_∞ [D.Freeman, Th.Schlumprecht, A.Zsák 2020]
- Schlumprecht space and Gowers-Maurey space [A.Manoussakis, APB 2021]

- $X = L_p(0,1), \ p \in (1,2) \cup (2,\infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]
- A general criterion, working in particular in ℓ_p ⊕ ℓ_q, 1 ≤ p < q ≤ ∞, apart from ℓ₁ ⊕ c₀ and ℓ₁ ⊕ ℓ_∞ [D.Freeman, Th.Schlumprecht, A.Zsák 2020]
- Schlumprecht space and Gowers-Maurey space [A.Manoussakis, APB 2021]
- *p*-convex Schreier spaces and Baernstein spaces [N.J.Laustsen, J.Smith 2025]

- $X = L_p(0,1), \ p \in (1,2) \cup (2,\infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]
- A general criterion, working in particular in ℓ_p ⊕ ℓ_q, 1 ≤ p < q ≤ ∞, apart from ℓ₁ ⊕ c₀ and ℓ₁ ⊕ ℓ_∞ [D.Freeman, Th.Schlumprecht, A.Zsák 2020]
- Schlumprecht space and Gowers-Maurey space [A.Manoussakis, APB 2021]
- *p*-convex Schreier spaces and Baernstein spaces [N.J.Laustsen, J.Smith 2025]
- Open problem: ℓ₁ ⊕ c₀. So far an uncountable chain of closed operator ideals is known [G.Sirotkin, B.Wallis, 2016]

- $X = L_p(0, 1), \ p \in (1, 2) \cup (2, \infty)$ [W.B.Johnson, G.Schechtman 2020]
- Tsirelson spaces and Schreier spaces of arbitrary order [K.Beanland, T.Kania, N.Laustsen 2020, A.Manoussakis, APB 2021, H.V.Chu, Th.Schlumprecht 2024, R.M.Causey, APB 2025]
- A general criterion, working in particular in ℓ_p ⊕ ℓ_q, 1 ≤ p < q ≤ ∞, apart from ℓ₁ ⊕ c₀ and ℓ₁ ⊕ ℓ_∞ [D.Freeman, Th.Schlumprecht, A.Zsák 2020]
- Schlumprecht space and Gowers-Maurey space [A.Manoussakis, APB 2021]
- p-convex Schreier spaces and Baernstein spaces [N.J.Laustsen, J.Smith 2025]
- Open problem: ℓ₁ ⊕ c₀. So far an uncountable chain of closed operator ideals is known [G.Sirotkin, B.Wallis, 2016]
- Open problem: *L*₁(0, 1) and *C*[0, 1]. So far a chain of continuum many closed operator ideals is known [W.B.Johnson, G.Pisier, G.Schechtman 2020]

A sequence $(F_n)_n$ of finite dimensional subspaces of a Banach space X forms a UFDD (an unconditional finite dimensional decomposition) of X, if any $x \in X$ is a sum of unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, with $x_n \in F_n$ for each $n \in \mathbb{N}$.

A sequence $(F_n)_n$ of finite dimensional subspaces of a Banach space X forms a UFDD (an unconditional finite dimensional decomposition) of X, if any $x \in X$ is a sum of unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, with $x_n \in F_n$ for each $n \in \mathbb{N}$. In such setting, write Q_N , $N \in [\mathbb{N}]$, for the coordinate projection

$$Q_N: X \ni \sum_{n=1}^{\infty} x_n \mapsto \sum_{n \in N} x_n \in \overline{span} \bigcup_{n \in N} F_n \subset X$$

A sequence $(F_n)_n$ of finite dimensional subspaces of a Banach space X forms a UFDD (an unconditional finite dimensional decomposition) of X, if any $x \in X$ is a sum of unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, with $x_n \in F_n$ for each $n \in \mathbb{N}$. In such setting, write Q_N , $N \in [\mathbb{N}]$, for the coordinate projection

$$Q_N: X \ni \sum_{n=1}^{\infty} x_n \mapsto \sum_{n \in N} x_n \in \overline{span} \bigcup_{n \in N} F_n \subset X$$

Theorem (Freeman, Schlumprecht and Zsák, after Johnson and Schechtman)

Let $\mathscr{C} \subset [\mathbb{N}]$ be an almost disjoint family, let X and Y be Banach spaces with UFDDs $(F_n)_{n \in \mathbb{N}}$ and $(G_n)_{n \in \mathbb{N}}$, resp. and let $T \in \mathscr{L}(X, Y)$ satisfy the following.

- $TF_n \subset G_n$, $n \in \mathbb{N}$,
- $\inf\{dist(TQ_N, J_{TQ_M}): N, M \in [\mathbb{N}], |N \setminus M| = \infty\} > 0.$

A sequence $(F_n)_n$ of finite dimensional subspaces of a Banach space X forms a UFDD (an unconditional finite dimensional decomposition) of X, if any $x \in X$ is a sum of unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, with $x_n \in F_n$ for each $n \in \mathbb{N}$. In such setting, write Q_N , $N \in [\mathbb{N}]$, for the coordinate projection

$$Q_N: X \ni \sum_{n=1}^{\infty} x_n \mapsto \sum_{n \in N} x_n \in \overline{span} \bigcup_{n \in N} F_n \subset X$$

Theorem (Freeman, Schlumprecht and Zsák, after Johnson and Schechtman)

Let $\mathscr{C} \subset [\mathbb{N}]$ be an almost disjoint family, let X and Y be Banach spaces with UFDDs $(F_n)_{n \in \mathbb{N}}$ and $(G_n)_{n \in \mathbb{N}}$, resp. and let $T \in \mathscr{L}(X, Y)$ satisfy the following.

- $TF_n \subset G_n$, $n \in \mathbb{N}$,
- $\inf\{dist(TQ_N, J_{TQ_M}): N, M \in [\mathbb{N}], |N \setminus M| = \infty\} > 0.$

Given any $A \subset \mathscr{C}$ let $J_A \subset \mathscr{L}(X, Y)$ be the smallest closed operator ideal containing all TQ_N , $N \in A$. Then the map $2^{\mathscr{C}} \ni A \mapsto J_A \subset \mathscr{L}(X, Y)$ is an embedding of $2^{\mathscr{C}}$ into the lattice of closed ideals in $\mathscr{L}(X, Y)$.

A sequence $(F_n)_n$ of finite dimensional subspaces of a Banach space X forms a UFDD (an unconditional finite dimensional decomposition) of X, if any $x \in X$ is a sum of unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, with $x_n \in F_n$ for each $n \in \mathbb{N}$. In such setting, write Q_N , $N \in [\mathbb{N}]$, for the coordinate projection

$$Q_N: X \ni \sum_{n=1}^{\infty} x_n \mapsto \sum_{n \in N} x_n \in \overline{\text{span}} \bigcup_{n \in N} F_n \subset X$$

Theorem (Freeman, Schlumprecht and Zsák, after Johnson and Schechtman)

Let $\mathscr{C} \subset [\mathbb{N}]$ be an almost disjoint family, let X and Y be Banach spaces with UFDDs $(F_n)_{n \in \mathbb{N}}$ and $(G_n)_{n \in \mathbb{N}}$, resp. and let $T \in \mathscr{L}(X, Y)$ satisfy the following.

- $TF_n \subset G_n$, $n \in \mathbb{N}$,
- $\inf\{dist(TQ_N, J_{TQ_M}): N, M \in [\mathbb{N}], |N \setminus M| = \infty\} > 0.$

Given any $A \subset \mathscr{C}$ let $J_A \subset \mathscr{L}(X, Y)$ be the smallest closed operator ideal containing all TQ_N , $N \in A$. Then the map $2^{\mathscr{C}} \ni A \mapsto J_A \subset \mathscr{L}(X, Y)$ is an embedding of $2^{\mathscr{C}}$ into the lattice of closed ideals in $\mathscr{L}(X, Y)$.

The above tool is used explicitly or implicitly in all known results on 2^c closed operator ideals in $\mathcal{L}(X)$.

"Inhomogeneity" property of a Schauder basis

Let X be a Banach space with a normalized unconditional basis $(x_i)_i$.

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

no $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ admit an operator $R \in \mathscr{L}(X)$ with $Rx_i \in \{x_j : j \in L_M\}, i \in L_N$.

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

no $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ admit an operator $R \in \mathscr{L}(X)$ with $Rx_i \in \{x_j : j \in L_M\}, i \in L_N$.

• Regarding the general criterion setting: trivially subspaces $(F_n)_n$, with $F_n = span\{x_i : i \in I_n\}, n \in \mathbb{N}$, form a UFDD of X.

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

no $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ admit an operator $R \in \mathscr{L}(X)$ with $Rx_i \in \{x_j : j \in L_M\}, i \in L_N$.

- Regarding the general criterion setting: trivially subspaces $(F_n)_n$, with $F_n = span\{x_i : i \in I_n\}, n \in \mathbb{N}$, form a UFDD of X.
- Recall that the basis $(x_i)_i$ generates as a spreading model a basic sequence $(\tilde{x}_i)_i$, if for any $\varepsilon > 0$ and $n \in \mathbb{N}$ there is $m \in \mathbb{N}$ so that $(x_{i_1}, \ldots, x_{i_n})$ and $(\tilde{x}_1, \ldots, \tilde{x}_n)$ are $(1 + \varepsilon)$ -equivalent for any $m \leq i_1 < \cdots < i_n$.

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

no $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ admit an operator $R \in \mathscr{L}(X)$ with $Rx_i \in \{x_j : j \in L_M\}, i \in L_N$.

- Regarding the general criterion setting: trivially subspaces $(F_n)_n$, with $F_n = span\{x_i : i \in I_n\}, n \in \mathbb{N}$, form a UFDD of X.
- Recall that the basis $(x_i)_i$ generates as a spreading model a basic sequence $(\tilde{x}_i)_i$, if for any $\varepsilon > 0$ and $n \in \mathbb{N}$ there is $m \in \mathbb{N}$ so that $(x_{i_1}, \ldots, x_{i_n})$ and $(\tilde{x}_1, \ldots, \tilde{x}_n)$ are $(1 + \varepsilon)$ -equivalent for any $m \leq i_1 < \cdots < i_n$.

A sufficient condition for "inhomogeneity" of a basic sequence

Assume the basis $(x_i)_i$ with a spreading model $(\tilde{x}_i)_i$ admits no subsequence dominating $(\tilde{x}_i)_i$. Then some subsequence of $(x_i)_i$ is inhomogeneous.

We say that the basis $(x_i)_i$ is inhomogeneous, if for some partition $\mathbb{N} = \bigcup_{n \in \mathbb{N}} I_n$ into successive intervals, writing $L_N = \bigcup_{n \in \mathbb{N}} I_n$, $N \in [\mathbb{N}]$, we have the following:

no $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ admit an operator $R \in \mathscr{L}(X)$ with $Rx_i \in \{x_j : j \in L_M\}, i \in L_N$.

- Regarding the general criterion setting: trivially subspaces $(F_n)_n$, with $F_n = span\{x_i : i \in I_n\}, n \in \mathbb{N}$, form a UFDD of X.
- Recall that the basis $(x_i)_i$ generates as a spreading model a basic sequence $(\tilde{x}_i)_i$, if for any $\varepsilon > 0$ and $n \in \mathbb{N}$ there is $m \in \mathbb{N}$ so that $(x_{i_1}, \ldots, x_{i_n})$ and $(\tilde{x}_1, \ldots, \tilde{x}_n)$ are $(1 + \varepsilon)$ -equivalent for any $m \leq i_1 < \cdots < i_n$.

A sufficient condition for "inhomogeneity" of a basic sequence

Assume the basis $(x_i)_i$ with a spreading model $(\tilde{x}_i)_i$ admits no subsequence dominating $(\tilde{x}_i)_i$. Then some subsequence of $(x_i)_i$ is inhomogeneous.

Proof: Gasparis dichotomy on compact families of finite sets of integers and Schreier families of countable order.

Let X, E be Banach spaces with normalized bases $(x_i)_i$ and $(e_i)_i$, resp.

We say that $(x_i)_i \propto \text{-dominates } (e_i)_i$, if

- (1) $(x_i)_i$ dominates $(e_i)_i$ (the map $Tx_i = e_i$, $i \in \mathbb{N}$, extends to $T \in \mathscr{L}(X, E)$).
- (2) $\inf_{n \in \mathbb{N}} ||z_n||_{\infty} > 0$, for any seminormalized $(z_n)_n \subset X$ with $(Tz_n)_n \subset E$ seminormalized.

We say that $(x_i)_i \propto -\text{dominates } (e_i)_i$, if

- (1) $(x_i)_i$ dominates $(e_i)_i$ (the map $Tx_i = e_i$, $i \in \mathbb{N}$, extends to $T \in \mathscr{L}(X, E)$).
- (2) $\inf_{n \in \mathbb{N}} ||z_n||_{\infty} > 0$, for any seminormalized $(z_n)_n \subset X$ with $(Tz_n)_n \subset E$ seminormalized.
 - Any normalized basis $(x_i)_i \infty$ -dominates the unit vector basis $(e_i)_i \subset c_0$.

We say that $(x_i)_i \propto -\text{dominates } (e_i)_i$, if

- (1) $(x_i)_i$ dominates $(e_i)_i$ (the map $Tx_i = e_i$, $i \in \mathbb{N}$, extends to $T \in \mathscr{L}(X, E)$).
- (2) $\inf_{n \in \mathbb{N}} ||z_n||_{\infty} > 0$, for any seminormalized $(z_n)_n \subset X$ with $(Tz_n)_n \subset E$ seminormalized.
 - Any normalized basis $(x_i)_i \propto$ -dominates the unit vector basis $(e_i)_i \subset c_0$.
 - The unit vector basis of $\ell_p \infty$ -dominates the unit vector basis of ℓ_q , provided $q > p \ge 1$.

We say that $(x_i)_i \propto -\text{dominates } (e_i)_i$, if

- (1) $(x_i)_i$ dominates $(e_i)_i$ (the map $Tx_i = e_i$, $i \in \mathbb{N}$, extends to $T \in \mathscr{L}(X, E)$).
- (2) $\inf_{n \in \mathbb{N}} ||z_n||_{\infty} > 0$, for any seminormalized $(z_n)_n \subset X$ with $(Tz_n)_n \subset E$ seminormalized.
 - Any normalized basis $(x_i)_i \propto$ -dominates the unit vector basis $(e_i)_i \subset c_0$.
 - The unit vector basis of $\ell_p \infty$ -dominates the unit vector basis of ℓ_q , provided $q > p \ge 1$.
 - Assume $(x_i)_i$ admit no subsequence equivalent to the unit vector basis of c_0 and dominates $(e_i)_i$ via the operator T. Then the condition (2) implies strict singularity of T, but not vice versa.

A criterion

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking.

A criterion

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous.
Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous. Then there are 2^c many pairwise distinct closed operator ideals in $\mathscr{L}(X, E)$.

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous. Then there are 2^c many pairwise distinct closed operator ideals in $\mathscr{L}(X, E)$.

Proof:

• Take $T \in \mathscr{L}(X, E)$ with $Tx_i = e_i$ for each *i* and the UFDD $(F_n)_n$ and $(G_n)_n$ defined by intervals witnessing by the inhomogeneity of the basis $(x_i)_i$ and test against the Johnson-Schechtman criterion:

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous. Then there are 2^c many pairwise distinct closed operator ideals in $\mathscr{L}(X, E)$.

Proof:

- Take $T \in \mathscr{L}(X, E)$ with $Tx_i = e_i$ for each *i* and the UFDD $(F_n)_n$ and $(G_n)_n$ defined by intervals witnessing by the inhomogeneity of the basis $(x_i)_i$ and test against the Johnson-Schechtman criterion:
- Take $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ and assume $dist(TQ_N, J_{TQ_M}) < 1$.

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous. Then there are 2^c many pairwise distinct closed operator ideals in $\mathscr{L}(X, E)$.

Proof:

- Take $T \in \mathscr{L}(X, E)$ with $Tx_i = e_i$ for each *i* and the UFDD $(F_n)_n$ and $(G_n)_n$ defined by intervals witnessing by the inhomogeneity of the basis $(x_i)_i$ and test against the Johnson-Schechtman criterion:
- Take $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ and assume $dist(TQ_N, J_{TQ_M}) < 1$.
- ∞ -domination of $(e_i)_i$ by $(x_i)_i$ yields an operator $S \in \mathscr{L}(X)$ with $\inf_{i \in N} ||Q_M S x_i||_{\infty} > 0.$

Let X, E be Banach spaces with normalized unconditional bases $(x_i)_i$ and $(e_i)_i$, resp., with $(x_i)_i$ shrinking. Assume that $(x_i)_i \infty$ -dominates $(e_i)_i$ and $(x_i)_i$ is inhomogeneous. Then there are 2^c many pairwise distinct closed operator ideals in $\mathscr{L}(X, E)$.

Proof:

- Take $T \in \mathscr{L}(X, E)$ with $Tx_i = e_i$ for each *i* and the UFDD $(F_n)_n$ and $(G_n)_n$ defined by intervals witnessing by the inhomogeneity of the basis $(x_i)_i$ and test against the Johnson-Schechtman criterion:
- Take $N, M \in [\mathbb{N}]$ with $|N \setminus M| = \infty$ and assume $dist(TQ_N, J_{TQ_M}) < 1$.
- ∞ -domination of $(e_i)_i$ by $(x_i)_i$ yields an operator $S \in \mathscr{L}(X)$ with $\inf_{i \in N} ||Q_M S x_i||_{\infty} > 0.$
- One of Gasparis-Leung tools provides an operator contradicting inhomogeneity of (x_i)_i.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length).

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F\in\mathcal{F}} \|(a_i)_{i\in F}\|_p, \ \ (a_i)_i\in c_{00}$$

The Schreier space [1937] is the prototype of combinatorial spaces, named by W.T.Gowers and studied by A.Antunes, K.Beanland and H.V.Chu, C.Brech, V.Ferenczi and A.Tcaciuc, P.Borodulin-Nadzieja and B.Farkas, S.Jachimek, APB. The *p*-convex versions were introduced by A.Bird, N.J.Laustsen and A.Zsák, and considered by M.Fakhoury.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length).

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

• The unit vector basis $(x_i)_i \subset X_{\mathcal{F},p}$ is 1-unconditional and shrinking.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

- The unit vector basis $(x_i)_i \subset X_{\mathcal{F},p}$ is 1-unconditional and shrinking.
- (x_i)_i ⊂ X_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ ℓ_p,
 (x_i)_i ⊂ X_{F,p} is 1-dominated by (e_i)_i ⊂ ℓ_p, and admits no subsequence equivalent to (e_i)_i ⊂ ℓ_p (thus (x_i)_i has an inhomogeneous subsequence).

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

- The unit vector basis $(x_i)_i \subset X_{\mathcal{F},p}$ is 1-unconditional and shrinking.
- (x_i)_i ⊂ X_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ l_p,
 (x_i)_i ⊂ X_{F,p} is 1-dominated by (e_i)_i ⊂ l_p, and admits no subsequence equivalent to (e_i)_i ⊂ l_p (thus (x_i)_i has an inhomogeneous subsequence).
- $X_{\mathcal{F},p}$ contains an isomorphic copy of c_0 .

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the *p*-convex combinatorial space $X_{\mathcal{F},p}$, $1 \leq p < \infty$, as the completion of c_{00} with

$$\|(a_i)_i\|_{\mathcal{F},p} = \sup_{F \in \mathcal{F}} \|(a_i)_{i \in F}\|_p, \ \ (a_i)_i \in c_{00}$$

- The unit vector basis $(x_i)_i \subset X_{\mathcal{F},p}$ is 1-unconditional and shrinking.
- (x_i)_i ⊂ X_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ l_p,
 (x_i)_i ⊂ X_{F,p} is 1-dominated by (e_i)_i ⊂ l_p, and admits no subsequence equivalent to (e_i)_i ⊂ l_p (thus (x_i)_i has an inhomogeneous subsequence).
- $X_{\mathcal{F},p}$ contains an isomorphic copy of c_0 .

The criterion yields the following generalization of results in [A.Manoussakis, APB 2021, R.M.Causey, APB 2025, N.J.Laustsen, J.Smith 2025].

Corollary. There are $2^{\mathfrak{c}}$ many closed operator ideals in $\mathscr{L}(X_{\mathcal{F},p})$.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length).

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the Baernstein space $\mathcal{B}_{\mathcal{F},p}$, $1 , as the completion of <math>c_{00}$ with a norm

$$\|(a_i)_i\|_{B_{\mathcal{F},\rho}} = \sup_{F_1 < \dots < F_m \in \mathcal{F}} \left\| \left(\|(a_i)_{i \in F_j}\|_1 \right)_{j=1}^m \right\|_{\rho}, \ \ (a_i)_i \in c_{00}$$

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the Baernstein space $\mathcal{B}_{\mathcal{F},p}$, $1 , as the completion of <math>c_{00}$ with a norm

$$\|(a_i)_i\|_{B_{\mathcal{F},\rho}} = \sup_{F_1 < \cdots < F_m \in \mathcal{F}} \left\| \left(\|(a_i)_{i \in F_j}\|_1 \right)_{j=1}^m \right\|_{\rho}, \quad (a_i)_i \in c_{00}$$

• $B_{\mathcal{F},p}$ is reflexive, the unit vector basis $(x_i)_i \subset B_{\mathcal{F},p}$ is 1-unconditional.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the Baernstein space $\mathcal{B}_{\mathcal{F},p}$, $1 , as the completion of <math>c_{00}$ with a norm

$$\|(a_i)_i\|_{B_{\mathcal{F},\rho}} = \sup_{F_1 < \cdots < F_m \in \mathcal{F}} \left\| \left(\|(a_i)_{i \in F_j}\|_1 \right)_{j=1}^m \right\|_{\rho}, \quad (a_i)_i \in c_{00}$$

- $B_{\mathcal{F},p}$ is reflexive, the unit vector basis $(x_i)_i \subset B_{\mathcal{F},p}$ is 1-unconditional.
- (x_i)_i ⊂ B_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ l₁ (thus by reflexivity (x_i)_i contains an inhomogeneous subsequence).

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the Baernstein space $\mathcal{B}_{\mathcal{F},p}$, $1 , as the completion of <math>c_{00}$ with a norm

$$\|(a_i)_i\|_{B_{\mathcal{F},p}} = \sup_{F_1 < \dots < F_m \in \mathcal{F}} \left\| \left(\|(a_i)_{i \in F_j}\|_1 \right)_{j=1}^m \right\|_p, \ (a_i)_i \in c_{00}$$

- $B_{\mathcal{F},p}$ is reflexive, the unit vector basis $(x_i)_i \subset B_{\mathcal{F},p}$ is 1-unconditional.
- (x_i)_i ⊂ B_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ ℓ₁ (thus by reflexivity (x_i)_i contains an inhomogeneous subsequence).
- $B_{\mathcal{F},p}$ contains an isomorphic copy of ℓ_p .
- $(x_i)_i \subset B_{\mathcal{F},p} \infty$ -dominates $(e_i)_i \subset \ell_p$.

Fix a family $\mathcal{F} \subset [\mathbb{N}]^{<\infty}$ which is hereditary (with respect to taking subsets), compact (in the product topology), covering \mathbb{N} (contains all singletons) and large (any $L \in [\mathbb{N}]$ contains elements of \mathcal{F} of arbitrary length). Define the Baernstein space $\mathcal{B}_{\mathcal{F},p}$, $1 , as the completion of <math>c_{00}$ with a norm

$$\|(a_i)_i\|_{B_{\mathcal{F},\rho}} = \sup_{F_1 < \cdots < F_m \in \mathcal{F}} \left\| \left(\|(a_i)_{i \in F_j}\|_1 \right)_{j=1}^m \right\|_{\rho}, \ (a_i)_i \in c_{00}$$

- B_{F,p} is reflexive, the unit vector basis (x_i)_i ⊂ B_{F,p} is 1-unconditional.
- (x_i)_i ⊂ B_{F,p} admits a subsequence with a spreading model (e_i)_i ⊂ ℓ₁ (thus by reflexivity (x_i)_i contains an inhomogeneous subsequence).
- $B_{\mathcal{F},p}$ contains an isomorphic copy of ℓ_p .
- $(x_i)_i \subset B_{\mathcal{F},p} \infty$ -dominates $(e_i)_i \subset \ell_p$.

The criterion implies the following generalization of one of results in [N.J.Laustsen-J.Smith].

Corollary. There are $2^{\mathfrak{c}}$ many closed operator ideals in $\mathscr{L}(B_{\mathcal{F},p})$.

 $\text{Fix } q < 2 < p \text{ with } \frac{1}{p} + \frac{1}{q} = 1, \text{ and } w = (w_i)_i \searrow 0 \text{ with } \sum_i w_i^{2p/p-2} = \infty.$

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

Spaces $X_{w,p}$ defined by different w's as above are isomorphic [H.Rosenthal].

X_{w,p} is a complemented subspace of L_p(0,1) [H.Rosenthal], the unit vector basis (x_i)_i ⊂ X_{w,p} is 1-unconditional.

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

- X_{w,p} is a complemented subspace of L_p(0,1) [H.Rosenthal], the unit vector basis (x_i)_i ⊂ X_{w,p} is 1-unconditional.
- (x_i^{*})_i ⊂ X_{w,p}^{*} generates (e_i)_i ⊂ ℓ_q as a spreading model (however, any subsequence (x_i^{*})_i ⊂ X_{w,p}^{*} contains further equivalent to (e_i)_i ⊂ ℓ_q, thus the "spreading model" criterion for inhomogeneity doesn't apply).

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

- X_{w,p} is a complemented subspace of L_p(0,1) [H.Rosenthal], the unit vector basis (x_i)_i ⊂ X_{w,p} is 1-unconditional.
- (x_i^{*})_i ⊂ X_{w,p}^{*} generates (e_i)_i ⊂ ℓ_q as a spreading model (however, any subsequence (x_i^{*})_i ⊂ X_{w,p}^{*} contains further equivalent to (e_i)_i ⊂ ℓ_q, thus the "spreading model" criterion for inhomogeneity doesn't apply).
- A careful choice of w provides a partition N = U_{n∈N} I_n so that any (x_i^{*})_{i∈In} is c_n-equivalent to (e_i)_{i∈In} ⊂ ℓ₂, with c_n ≪ |I_n|. This property combined with the ℓ_q-spreading model yields inhomogeneity of (x_i^{*})_i ⊂ X_{w,p}^{*}.

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

- X_{w,p} is a complemented subspace of L_p(0,1) [H.Rosenthal], the unit vector basis (x_i)_i ⊂ X_{w,p} is 1-unconditional.
- (x_i^{*})_i ⊂ X_{w,p}^{*} generates (e_i)_i ⊂ ℓ_q as a spreading model (however, any subsequence (x_i^{*})_i ⊂ X_{w,p}^{*} contains further equivalent to (e_i)_i ⊂ ℓ_q, thus the "spreading model" criterion for inhomogeneity doesn't apply).
- A careful choice of w provides a partition N = U_{n∈N} I_n so that any (x_i^{*})_{i∈In} is c_n-equivalent to (e_i)_{i∈In} ⊂ ℓ₂, with c_n ≪ |I_n|. This property combined with the ℓ_q-spreading model yields inhomogeneity of (x_i^{*})_i ⊂ X_{w,p}^{*}.
- $X_{w,p}^*$ contains an isomorphic copy of ℓ_2 [H.Rosenthal].

•
$$(x_i^*)_i \subset X_{w,p}^* \infty$$
-dominates $(e_i)_i \subset \ell_2$.

Fix q < 2 < p with $\frac{1}{p} + \frac{1}{q} = 1$, and $w = (w_i)_i \searrow 0$ with $\sum_i w_i^{2p/p-2} = \infty$. Define the Rosenthal space $X_{w,p}$ as the completion of c_{00} with a norm

$$\|(a_i)_i\|_{w,p} = \max\left\{\|(a_i)_i\|_p, \|(w_ia_i)_i\|_2\right\}, \ (a_i)_i \in c_{00}$$

Spaces $X_{w,p}$ defined by different w's as above are isomorphic [H.Rosenthal].

- X_{w,p} is a complemented subspace of L_p(0,1) [H.Rosenthal], the unit vector basis (x_i)_i ⊂ X_{w,p} is 1-unconditional.
- (x_i^{*})_i ⊂ X_{w,p}^{*} generates (e_i)_i ⊂ ℓ_q as a spreading model (however, any subsequence (x_i^{*})_i ⊂ X_{w,p}^{*} contains further equivalent to (e_i)_i ⊂ ℓ_q, thus the "spreading model" criterion for inhomogeneity doesn't apply).
- A careful choice of w provides a partition N = U_{n∈N} I_n so that any (x_i^{*})_{i∈In} is c_n-equivalent to (e_i)_{i∈In} ⊂ ℓ₂, with c_n ≪ |I_n|. This property combined with the ℓ_q-spreading model yields inhomogeneity of (x_i^{*})_i ⊂ X_{w,p}^{*}.
- $X_{w,p}^*$ contains an isomorphic copy of ℓ_2 [H.Rosenthal].
- $(x_i^*)_i \subset X_{w,p}^* \infty$ -dominates $(e_i)_i \subset \ell_2$.

Corollary [W.B.Johnson, G.Schechtman]

There are 2^c many closed operator ideals in $\mathscr{L}(X_{w,p}^*)$ and $\mathscr{L}(X_{w,p})$.

Fix $1 and <math>w = (w_i)_i \searrow 0$ with $\sum_i w_i = \infty$. Let Π be the set of all permutations of \mathbb{N} .

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ (a_i)_i \in c_{00}$$

Fix $1 and <math>w = (w_i)_i \searrow 0$ with $\sum_i w_i = \infty$. Let Π be the set of all permutations of \mathbb{N} . Define the Lorentz sequence space $d_{w,p}$ as the completion of c_{00} with

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ \ (a_i)_i \in c_{00}$$

d_{w,p} is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ \ (a_i)_i \in c_{00}$$

- *d_{w,p}* is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).
- Any block sequence of averages of the basis spans a complemented subspace (general fact concerning symmetric bases).

$$\|(a_i)_i\|_{d_{\mathbf{w},p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ (a_i)_i \in c_{00}$$

- *d_{w,p}* is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).
- Any block sequence of averages of the basis spans a complemented subspace (general fact concerning symmetric bases).
- Fix $k \in \mathbb{N}$. Decompose $\mathbb{N} = \bigcup_i E_i^k$ into successive intervals of length k. For $v_k := \sum_{i \in E_1} w_i$ define $w_i^k = \frac{1}{v_k} \sum_{j \in E_i} w_j$ and $x_i^k = \frac{1}{v_k^{1/p}} \sum_{j \in E_i} e_j$. Then $(x_i^k)_i$ is 1-equivalent to $(e_i)_i \subset d(w^k, p)$ with $w^k = (w_i^k)_i$.

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ \ (a_i)_i \in c_{00}$$

- *d_{w,p}* is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).
- Any block sequence of averages of the basis spans a complemented subspace (general fact concerning symmetric bases).
- Fix $k \in \mathbb{N}$. Decompose $\mathbb{N} = \bigcup_i E_i^k$ into successive intervals of length k. For $v_k := \sum_{i \in E_1} w_i$ define $w_i^k = \frac{1}{v_k} \sum_{j \in E_i} w_j$ and $x_i^k = \frac{1}{v_k^{1/p}} \sum_{j \in E_i} e_j$. Then $(x_i^k)_i$ is 1-equivalent to $(e_i)_i \subset d(w^k, p)$ with $w^k = (w_i^k)_i$.

Assume (*)
$$\exists (k_n)_n \subset \mathbb{N} : w_i^{k_n+1} \geq w_i^{k_n}$$
 for any $n, i \in \mathbb{N}$ and $\sum_{i=1}^{s_n} w_i^{k_n+1} / \sum_{i=1}^{s_n} w_i^{k_n} \to \infty$ for some $(s_n)_n \subset \mathbb{N}$.

Fix $1 and <math>w = (w_i)_i \searrow 0$ with $\sum_i w_i = \infty$. Let Π be the set of all permutations of \mathbb{N} . Define the Lorentz sequence space $d_{w,p}$ as the completion of c_{00} with

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ \ (a_i)_i \in c_{00}$$

- *d_{w,p}* is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).
- Any block sequence of averages of the basis spans a complemented subspace (general fact concerning symmetric bases).
- Fix $k \in \mathbb{N}$. Decompose $\mathbb{N} = \bigcup_i E_i^k$ into successive intervals of length k. For $v_k := \sum_{i \in E_1} w_i$ define $w_i^k = \frac{1}{v_k} \sum_{j \in E_i} w_j$ and $x_i^k = \frac{1}{v_k^{1/p}} \sum_{j \in E_i} e_j$. Then $(x_i^k)_i$ is 1-equivalent to $(e_i)_i \subset d(w^k, p)$ with $w^k = (w_i^k)_i$.

Assume (*) $\exists (k_n)_n \subset \mathbb{N} : w_i^{k_n+1} \ge w_i^{k_n}$ for any $n, i \in \mathbb{N}$ and $\sum_{i=1}^{s_n} w_i^{k_n+1} / \sum_{i=1}^{s_n} w_i^{k_n} \to \infty$ for some $(s_n)_n \subset \mathbb{N}$. Then there is a sequence $(x_i)_i \subset (x_i^k)_{i,k}$ that is inhomogeneous and ∞ -dominates $(e_i)_i \subset d(w, p)$.

Fix $1 and <math>w = (w_i)_i \searrow 0$ with $\sum_i w_i = \infty$. Let Π be the set of all permutations of \mathbb{N} . Define the Lorentz sequence space $d_{w,p}$ as the completion of c_{00} with

$$\|(a_i)_i\|_{d_{w,p}} = \sup_{\pi \in \Pi} \|(w_i^{1/p} a_{\pi(i)})_i\|_p, \ \ (a_i)_i \in c_{00}$$

- *d_{w,p}* is reflexive, the unit vector basis (*e_i*)_{*i*} ⊂ *d_{w,p}* is 1-unconditional and symmetric (i.e. equivalent to all of its subsequences).
- Any block sequence of averages of the basis spans a complemented subspace (general fact concerning symmetric bases).
- Fix $k \in \mathbb{N}$. Decompose $\mathbb{N} = \bigcup_i E_i^k$ into successive intervals of length k. For $v_k := \sum_{i \in E_1} w_i$ define $w_i^k = \frac{1}{v_k} \sum_{j \in E_i} w_j$ and $x_i^k = \frac{1}{v_k^{1/p}} \sum_{j \in E_i} e_j$. Then $(x_i^k)_i$ is 1-equivalent to $(e_i)_i \subset d(w^k, p)$ with $w^k = (w_i^k)_i$.

Assume (*) $\exists (k_n)_n \subset \mathbb{N} : w_i^{k_n+1} \ge w_i^{k_n}$ for any $n, i \in \mathbb{N}$ and $\sum_{i=1}^{s_n} w_i^{k_n+1} / \sum_{i=1}^{s_n} w_i^{k_n} \to \infty$ for some $(s_n)_n \subset \mathbb{N}$. Then there is a sequence $(x_i)_i \subset (x_i^k)_{i,k}$ that is inhomogeneous and ∞ -dominates $(e_i)_i \subset d(w, p)$.

Corollary. There are 2^c many closed operator ideals in $\mathscr{L}(d_{w,p})$ for w with (*).
Thank you !