The Banach-Saks rank of a separable weakly compact set

Víctor Olmos Prieto

joint work in progress with J. López-Abad

Structures in Banach Spaces Viena, March 17-21, 2025

Erwin Schrödinger International Institute for Mathematics and Physics

ES

Theorem (Mazur)

Every weakly convergent sequence in a Banach space has a norm-convergent block subsequence of convex combinations.

Theorem (Mazur)

Every weakly convergent sequence in a Banach space has a norm-convergent block subsequence of convex combinations.

But how can we measure the *complexity* of those convex combinations? A sequence $(x_n)_n$ is Cesàro convergent to x if its averages converge to x in norm, i.e. if

$$\frac{1}{n}\sum_{j=1}^n x_j \xrightarrow{n\to\infty} x.$$

Theorem (Mazur)

Every weakly convergent sequence in a Banach space has a norm-convergent block subsequence of convex combinations.

But how can we measure the *complexity* of those convex combinations? A sequence $(x_n)_n$ is Cesàro convergent to x if its averages converge to x in norm, i.e. if

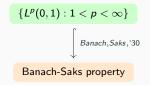
$$\frac{1}{n}\sum_{j=1}^n x_j \xrightarrow{n\to\infty} x.$$

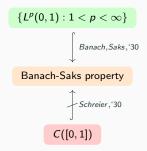
Theorem (Banach, Saks, 1930)

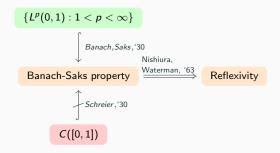
Every bounded sequence in $L^p(0,1)$, 1 , has a Cesàro convergent subsequence.

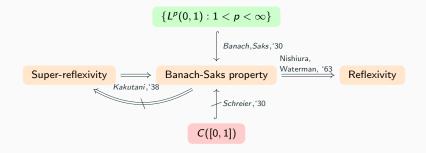
A subset A of a Banach space X has the Banach-Saks property if every sequence in A has a Cesàro convergent subsequence. We say that X has the Banach-Saks property if its unit ball B_X has it.

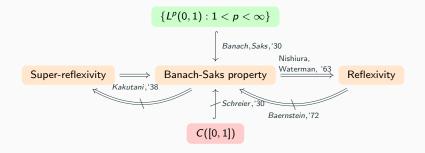
Banach-Saks property

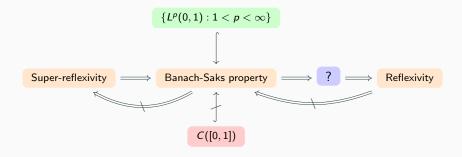












Proposition

For a sequence $(x_n)_n$ the following are equivalent:

(i) Every subsequence has a further subsequence which is Cesàro convergent.

Proposition

For a sequence $(x_n)_n$ the following are equivalent:

- (i) Every subsequence has a further subsequence which is Cesàro convergent.
- (ii) For every subsequence (y_n)_n of (x_n)_n there is a sequence of blocks (s_k)_k ⊆ [ℕ]^{<∞} satisfying |s_k| ≤ min s_k and such that 1/|s_k| ∑_{n∈s_k} y_n (k→∞)/(k→∞) x ∈ X.

Proposition

For a sequence $(x_n)_n$ the following are equivalent:

- (i) Every subsequence has a further subsequence which is Cesàro convergent.
- (ii) For every subsequence (y_n)_n of (x_n)_n there is a sequence of blocks (s_k)_k ⊆ [ℕ]^{<∞} satisfying |s_k| ≤ min s_k and such that 1/|s_k| ∑_{n∈s_k} y_n (k→∞)/(k→∞) x ∈ X.

Definition (The Schreier hierarchy [Alspach, Argyros, '92])

We define a sequence of families $S_{\xi} \subseteq [\mathbb{N}]^{<\infty}$, $\xi < \omega_1$, as follows:

Proposition

For a sequence $(x_n)_n$ the following are equivalent:

- (i) Every subsequence has a further subsequence which is Cesàro convergent.
- (ii) For every subsequence (y_n)_n of (x_n)_n there is a sequence of blocks (s_k)_k ⊆ [ℕ]^{<∞} satisfying |s_k| ≤ min s_k and such that 1/|s_k| ∑_{n∈s_k} y_n (k→∞)/(k→∞) x ∈ X.

Definition (The Schreier hierarchy [Alspach, Argyros, '92])

We define a sequence of families $S_{\xi} \subseteq [\mathbb{N}]^{<\infty}$, $\xi < \omega_1$, as follows: $S_0 \coloneqq [\mathbb{N}]^{\leq 1}$ and

 $\mathcal{S}_1 := \{ s \subseteq \mathbb{N} : |s| \le \min s \}$ (the Schreier family).

Proposition

For a sequence $(x_n)_n$ the following are equivalent:

- (i) Every subsequence has a further subsequence which is Cesàro convergent.
- (ii) For every subsequence (y_n)_n of (x_n)_n there is a sequence of blocks (s_k)_k ⊆ [ℕ]^{<∞} satisfying |s_k| ≤ min s_k and such that 1/|s_k| ∑_{n∈s_k} y_n (k→∞)/(k→∞) x ∈ X.

Definition (The Schreier hierarchy [Alspach, Argyros, '92])

We define a sequence of families $S_{\xi} \subseteq [\mathbb{N}]^{<\infty}$, $\xi < \omega_1$, as follows: $S_0 := [\mathbb{N}]^{\leq 1}$ and

 $\mathcal{S}_1 := \{ s \subseteq \mathbb{N} : |s| \le \min s \}$ (the Schreier family).

Once \mathcal{S}_{ξ} is defined, we set

$$\mathcal{S}_{\xi+1} = \mathcal{S}_{\xi} \otimes \mathcal{S}_1 := \left\{ igcup_{j=1}^n s_j : (s_j)_{j=1}^n ext{ is block, } s_j \in \mathcal{S}_{\xi}, \ n \leq \min s_1
ight\}.$$

Proposition

For a sequence $(x_n)_n$ the following are equivalent:

- (i) Every subsequence has a further subsequence which is Cesàro convergent.
- (ii) For every subsequence (y_n)_n of (x_n)_n there is a sequence of blocks (s_k)_k ⊆ [ℕ]^{<∞} satisfying |s_k| ≤ min s_k and such that 1/|s_k| ∑_{n∈s_k} y_n (k→∞)/(k→∞) x ∈ X.

Definition (The Schreier hierarchy [Alspach, Argyros, '92])

We define a sequence of families $S_{\xi} \subseteq [\mathbb{N}]^{<\infty}$, $\xi < \omega_1$, as follows: $S_0 := [\mathbb{N}]^{\leq 1}$ and

 $\mathcal{S}_1 := \{ s \subseteq \mathbb{N} : |s| \le \min s \}$ (the Schreier family).

Once \mathcal{S}_{ξ} is defined, we set

$$\mathcal{S}_{\xi+1} = \mathcal{S}_{\xi} \otimes \mathcal{S}_1 := \left\{ \bigcup_{j=1}^n s_j : (s_j)_{j=1}^n \text{ is block, } s_j \in \mathcal{S}_{\xi}, \ n \leq \min s_1 \right\}.$$

If ξ is a limit ordinal we fix a sequence $(\xi_n)_{n\in\mathbb{N}}
earrow \xi$ and set

$$\mathcal{S}_{\xi} \coloneqq \left\{ s \subseteq \mathbb{N} : s \in \mathcal{S}_{\xi_n} \text{ for some } n \leq \min s
ight\}.$$

Banach-Saks' worst enemy:

Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- The Schreier space X_{S_1} (built from the Schreier family S_1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- The Schreier space X_{S_1} (built from the Schreier family S_1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence. The reason is that this basis *looks like* ℓ_1 asymptotically.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- The Schreier space X_{S_1} (built from the Schreier family S_1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence. The reason is that this basis *looks like* ℓ_1 asymptotically.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- ► The Schreier space X_{S1} (built from the Schreier family S1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence. The reason is that this basis *looks like* ℓ1 asymptotically.

We say that a sequence $(x_n)_n$ in a Banach space is an ℓ_1 -spreading model if there exists $\varepsilon > 0$ such that for every sequence of coefficients $(a_n)_n$ we have

$$\left\|\sum_{n \in s} a_n x_n\right\| \ge \varepsilon \sum_{n \in s} |a_n| \quad \text{for every } s \in \mathcal{S}.$$

• The unit vector basis of the Schreier space X_{S_1} is an ℓ_1 -spreading model.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- ► The Schreier space X_{S1} (built from the Schreier family S1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence. The reason is that this basis *looks like* l1 asymptotically.

Definition (Alspach, Argyros, '92)

We say that a sequence $(x_n)_n$ in a Banach space is an ℓ_1^{ξ} -spreading model, $\xi < \omega_1$, if there exists $\varepsilon > 0$ such that for every sequence of coefficients $(a_n)_n$ we have

$$\left\|\sum_{n \in s} a_n x_n\right\| \ge \varepsilon \sum_{n \in s} |a_n| \quad \text{for every } s \in \mathcal{S}_{\boldsymbol{\xi}}.$$

• The unit vector basis of the Schreier space X_{S_1} is an ℓ_1^1 -spreading model.

- Every block subsequence of convex combinations of the unit vector basis $(e_n)_n$ of ℓ_1 is isometric to $(e_n)_n$ itself.
- ► The Schreier space X_{S1} (built from the Schreier family S1) has an unconditional basis which is weakly null, yet it has no Cesàro convergent subsequence. The reason is that this basis *looks like* l1 asymptotically.

Definition (Alspach, Argyros, '92)

We say that a sequence $(x_n)_n$ in a Banach space is an ℓ_1^{ξ} -spreading model, $\xi < \omega_1$, if there exists $\varepsilon > 0$ such that for every sequence of coefficients $(a_n)_n$ we have

$$\left\|\sum_{n \in s} a_n x_n\right\| \ge \varepsilon \sum_{n \in s} |a_n| \quad \text{for every } s \in \mathcal{S}_{\boldsymbol{\xi}}.$$

• The unit vector basis of the Schreier space X_{S_1} is an ℓ_1^1 -spreading model.

Theorem (Alspach, Argyros, '92)

If a sequence contains ℓ_1^{ξ} -spreading models for every $\xi < \omega_1$, then it contains a subsequence equivalent to the unit vector basis of ℓ_1 .

$\xi\text{-}\mathsf{Repeated}$ averages

Argyros, Mercourakis and Tsarpalias ('98) define a transfinite sequence of summability methods consisting on taking averages repeatedly over sets of the Schreier families.

$\xi\text{-}\mathsf{Repeated}$ averages

Argyros, Mercourakis and Tsarpalias ('98) define a transfinite sequence of summability methods consisting on taking averages repeatedly over sets of the Schreier families. Let $(e_n)_n$ be the usual basis of c_{00} , and let $\mathbf{a} := \sum_{n \in s} a_n e_n \in c_{00}$ be a convex combination with support in $s \subseteq \mathbb{N}$. We say that \mathbf{a} is an ξ -repeated average, $\xi < \omega_1$, if:

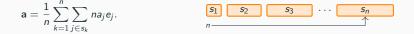
(i) $\xi = 0$ and $s = \{n\}$, in which case a = (0, ..., 1, ...).

ξ -Repeated averages

Argyros, Mercourakis and Tsarpalias ('98) define a transfinite sequence of summability methods consisting on taking averages repeatedly over sets of the Schreier families. Let $(e_n)_n$ be the usual basis of c_{00} , and let $\mathbf{a} := \sum_{n \in s} a_n e_n \in c_{00}$ be a convex combination with support in $s \subseteq \mathbb{N}$. We say that \mathbf{a} is an ξ -repeated average, $\xi < \omega_1$, if:

(i)
$$\xi = 0$$
 and $s = \{n\}$, in which case $a = (0, ..., 1, ...)$.

(ii) $\xi = \zeta + 1$ and $s = s_1 \cup \cdots \cup s_n$, with $\max s_k < \min s_{k+1}$, $n = \min s$, each $\sum_{j \in s_k} na_j e_j$ is a ζ -repeated average, and



ξ -Repeated averages

Argyros, Mercourakis and Tsarpalias ('98) define a transfinite sequence of summability methods consisting on taking averages repeatedly over sets of the Schreier families. Let $(e_n)_n$ be the usual basis of c_{00} , and let $\mathbf{a} := \sum_{n \in s} a_n e_n \in c_{00}$ be a convex combination with support in $s \subseteq \mathbb{N}$. We say that \mathbf{a} is an ξ -repeated average, $\xi < \omega_1$, if:

(i)
$$\xi = 0$$
 and $s = \{n\}$, in which case $a = (0, ..., 1, ...)$.

(ii) $\xi = \zeta + 1$ and $s = s_1 \cup \cdots \cup s_n$, with $\max s_k < \min s_{k+1}$, $n = \min s$, each $\sum_{j \in s_k} na_j e_j$ is a ζ -repeated average, and

(iii) ξ is a limit ordinal and **a** is an ξ_n -repeated average for $n = \min s$, where $(\xi_n)_n$ is a fixed increasing sequence of ordinals converging to ξ .

ξ -Repeated averages

Argyros, Mercourakis and Tsarpalias ('98) define a transfinite sequence of summability methods consisting on taking averages repeatedly over sets of the Schreier families. Let $(e_n)_n$ be the usual basis of c_{00} , and let $\mathbf{a} := \sum_{n \in s} a_n e_n \in c_{00}$ be a convex combination with support in $s \subseteq \mathbb{N}$. We say that \mathbf{a} is an ξ -repeated average, $\xi < \omega_1$, if:

(i)
$$\xi = 0$$
 and $s = \{n\}$, in which case $a = (0, ..., 1, ...)$.

(ii) $\xi = \zeta + 1$ and $s = s_1 \cup \cdots \cup s_n$, with max $s_k < \min s_{k+1}$, $n = \min s$, each $\sum_{j \in s_k} na_j e_j$ is a ζ -repeated average, and

$$\mathbf{a} = \frac{1}{n} \sum_{k=1}^{n} \sum_{j \in s_k} na_j e_j.$$

(iii) ξ is a limit ordinal and **a** is an ξ_n -repeated average for $n = \min s$, where $(\xi_n)_n$ is a fixed increasing sequence of ordinals converging to ξ .

Definition

A sequence $\mathbf{x} = (x_n)_n$ is ξ -summable if there is a block sequence $(\mathbf{a}^k)_k$ of ξ -repeated averages such that $\langle \mathbf{a}^n, \mathbf{x} \rangle$ converges in norm.

Theorem (Argyros, Mercourakis, Tsarpalias, '92)

For a weakly null sequence $(x_n)_n$ and $\xi < \omega_1$ exactly one of the following holds:

- (i) Every subsequence has a further subsequence which is ξ -summable.
- (ii) There is a subsequence which is an ℓ_1^{ξ} -spreading model.

Theorem (Argyros, Mercourakis, Tsarpalias, '92)

For a weakly null sequence $(x_n)_n$ and $\xi < \omega_1$ exactly one of the following holds:

- (i) Every subsequence has a further subsequence which is ξ -summable.
- (ii) There is a subsequence which is an ℓ_1^{ξ} -spreading model.

Definition

Given a separable subset A of a Banach space, we define its Banach-Saks rank $\rho_{BS}(A)$ as the minimum ordinal $\xi < \omega_1$ (if it exists) such that every sequence in A has a ξ -summable subsequence.

▶ The coefficients of the convex combinations are not important:

Theorem

A separable subset A of a Banach space has Banach-Saks rank $\leq \xi$ if and only if every $(x_n)_n \subseteq A$ has a subsequence for which there is a block subsequence of convex combinations with supports in S_{ξ} converging in norm. One can replace S_{ξ} by any spreading and ω^{ξ} -uniform family. The coefficients of the convex combinations are not important:

Theorem

A separable subset A of a Banach space has Banach-Saks rank $\leq \xi$ if and only if every $(x_n)_n \subseteq A$ has a subsequence for which there is a block subsequence of convex combinations with supports in S_{ξ} converging in norm. One can replace S_{ξ} by any spreading and ω^{ξ} -uniform family.

• We can obtain information about $\rho_{BS}(\mathbf{x})$ from the sequence \mathbf{x} :

Proposition

For a sequence **x** weakly convergent to some $x \in X$ and $\varepsilon > 0$ define

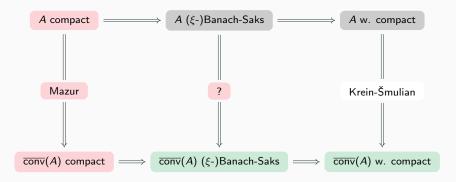
$$\mathcal{C}(\mathbf{x},\varepsilon) := \{ s \in [\mathbb{N}]^{<\infty} : \exists x^* \in B_{X^*} \text{ such that } |x^*(x_n - x)| \ge \varepsilon \text{ for every } n \in s \}.$$

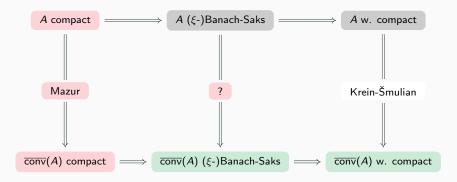
For a separable subset $A \subseteq X$ set

$$\beta(A) := \sup \left\{ \alpha < \omega_1 : \begin{array}{l} \exists (x_n)_n \subseteq A \text{ weakly convergent and } \varepsilon > 0 \\ \text{such that } \mathcal{C}(\mathbf{x}, \varepsilon) \text{ is } \alpha \text{-uniform} \end{array} \right\}$$

Then

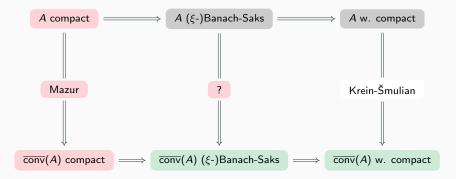
$$\beta(A) \leq \omega^{\varrho_{BS}(A)} \leq \beta(A) \cdot \omega.$$





Theorem (López-Abad, Ruiz, Tradacete, 2013)

There exists a separable Banach-Saks set whose closed convex hull is not Banach-Saks.

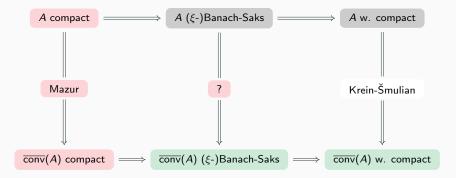


Theorem (López-Abad, Ruiz, Tradacete, 2013)

There exists a separable Banach-Saks set whose closed convex hull is not Banach-Saks.

Question 1

Do we have $\rho_{BS}(\overline{\text{conv}}(A)) \leq \rho_{BS}(A) + 1$ for all separable weakly compact sets A?



Theorem (López-Abad, Ruiz, Tradacete, 2013)

There exists a separable Banach-Saks set whose closed convex hull is not Banach-Saks.

Question 2

Is there an ordinal function $f : \omega_1 \to \omega_1$ such that $\rho_{BS}(\overline{\text{conv}}(A)) \leq f(\rho_{BS}(A))$ for all separable weakly compact sets A?

Víctor Olmos Prieto

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

The subfamily $RWC \subseteq \mathfrak{F}$ of relatively weakly compact sets is co-analytic (Π_1^1) by a result of James. We take the notion of Π_1^1 -ranks $\varrho : RWC \to \omega_1$ from Descriptive Set Theory, which satisfies:

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

The subfamily $RWC \subseteq \mathfrak{F}$ of relatively weakly compact sets is co-analytic (Π_1^1) by a result of James. We take the notion of Π_1^1 -ranks $\varrho : RWC \to \omega_1$ from Descriptive Set Theory, which satisfies:

Theorem (Boundedness Theorem for Π_1^1 -ranks)

Let $\varrho: A \to \omega_1$ be a co-analytic rank on a Π^1_1 subset A of a standard Borel space.

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

The subfamily $RWC \subseteq \mathfrak{F}$ of relatively weakly compact sets is co-analytic (Π_1^1) by a result of James. We take the notion of Π_1^1 -ranks $\varrho : RWC \to \omega_1$ from Descriptive Set Theory, which satisfies:

Theorem (Boundedness Theorem for Π_1^1 -ranks)

Let $\varrho: A \to \omega_1$ be a co-analytic rank on a Π^1_1 subset A of a standard Borel space.

(i) For every $\xi < \omega_1$ the set $\{x \in A : \varrho(x) \le \xi\}$ is Borel.

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

The subfamily $RWC \subseteq \mathfrak{F}$ of relatively weakly compact sets is co-analytic (Π_1^1) by a result of James. We take the notion of Π_1^1 -ranks $\varrho : RWC \to \omega_1$ from Descriptive Set Theory, which satisfies:

Theorem (Boundedness Theorem for Π_1^1 -ranks)

Let $\varrho: A \to \omega_1$ be a co-analytic rank on a Π^1_1 subset A of a standard Borel space.

- (i) For every $\xi < \omega_1$ the set $\{x \in A : \varrho(x) \le \xi\}$ is Borel.
- (ii) If $B \subseteq A$ is analytic then $\sup\{\varrho(x) : x \in B\} < \omega_1$.

 $\{F \in \mathfrak{F} : F \cap U \neq \emptyset\}$ with $U \subseteq C([0,1])$ open.

This space is an standard Borel space, meaning that there is a Polish topology generating the σ -algebra.

The subfamily $RWC \subseteq \mathfrak{F}$ of relatively weakly compact sets is co-analytic (Π_1^1) by a result of James. We take the notion of Π_1^1 -ranks $\varrho : RWC \to \omega_1$ from Descriptive Set Theory, which satisfies:

Theorem (Boundedness Theorem for Π_1^1 -ranks)

Let $\varrho: A \to \omega_1$ be a co-analytic rank on a Π^1_1 subset A of a standard Borel space.

- (i) For every $\xi < \omega_1$ the set $\{x \in A : \varrho(x) \le \xi\}$ is Borel.
- (ii) If $B \subseteq A$ is analytic then $\sup\{\varrho(x) : x \in B\} < \omega_1$.
- (iii) If ϱ is another co-analytic rank on A, then there exists an increasing function $f: \omega_1 \to \omega_1$ such that $\varrho' \leq f(\varrho)$.

 $A \mapsto \varrho_{BS}(A)$ and $A \mapsto \varrho_{BS}(\overline{\operatorname{conv}}(A))$.

 $A \mapsto \varrho_{BS}(A)$ and $A \mapsto \varrho_{BS}(\overline{\operatorname{conv}}(A))$.

By the Boundedness Theorem for these ranks they must be equivalent, i.e. there exists $f : \omega_1 \to \omega_1$ such that $\varrho_{BS}(\overline{\text{conv}}(A)) \leq f(\varrho_{BS}(A))$.

 $A \mapsto \varrho_{BS}(A)$ and $A \mapsto \varrho_{BS}(\overline{\operatorname{conv}}(A))$.

By the Boundedness Theorem for these ranks they must be equivalent, i.e. there exists $f : \omega_1 \to \omega_1$ such that $\varrho_{BS}(\overline{\text{conv}}(A)) \le f(\varrho_{BS}(A))$. Thus:

 ρ_{BS} is co-analytic \implies Yes to Question 2 about the Banach-Saks rank of the convex hull.

 $A \mapsto \varrho_{BS}(A)$ and $A \mapsto \varrho_{BS}(\overline{\operatorname{conv}}(A))$.

By the Boundedness Theorem for these ranks they must be equivalent, i.e. there exists $f : \omega_1 \to \omega_1$ such that $\varrho_{BS}(\overline{\text{conv}}(A)) \le f(\varrho_{BS}(A))$. Thus:

 ρ_{BS} is co-analytic \implies Yes to Question 2 about the Banach-Saks rank of the convex hull.

Question 3

Is ρ_{BS} : $RWC \rightarrow \omega_1$ a co-analytic rank?

The Banach-Saks rank ϱ_{BS} : RWC $\rightarrow \omega_1$ is not

a co-analytic rank.

The Banach-Saks rank ρ_{BS} : RWC $\rightarrow \omega_1$ is not bounded below by a co-analytic rank.

The Banach-Saks rank ρ_{BS} : RWC $\rightarrow \omega_1$ is not bounded below by a co-analytic rank.

Idea of the proof.

 \blacktriangleright We define the uniform rank of a compact family ${\mathcal F}$ of finite subsets of ${\mathbb N}$ as

 $\operatorname{urk}(\mathcal{F}) := \sup\{\alpha < \omega_1 : \exists M \in [\mathbb{N}] \text{ s.t. } \mathcal{F} \cap \mathcal{P}(M) \text{ is } \alpha \text{-uniform on } M\}.$

 ϱ_{BS} is related to the uniform rank of the families $C(\mathbf{x}, \varepsilon)$ above. If ϱ_{BS} is co-analytic, so is urk.

The Banach-Saks rank ρ_{BS} : RWC $\rightarrow \omega_1$ is not bounded below by a co-analytic rank.

Idea of the proof.

• We define the uniform rank of a compact family \mathcal{F} of finite subsets of \mathbb{N} as

 $\operatorname{urk}(\mathcal{F}) := \sup\{\alpha < \omega_1 : \exists M \in [\mathbb{N}] \text{ s.t. } \mathcal{F} \cap \mathcal{P}(M) \text{ is } \alpha \text{-uniform on } M\}.$

 ϱ_{BS} is related to the uniform rank of the families $C(\mathbf{x},\varepsilon)$ above. If ϱ_{BS} is co-analytic, so is urk.

The Cantor-Bedixson rank is co-analytic.

The Banach-Saks rank ρ_{BS} : RWC $\rightarrow \omega_1$ is not bounded below by a co-analytic rank.

Idea of the proof.

• We define the uniform rank of a compact family \mathcal{F} of finite subsets of \mathbb{N} as

 $\operatorname{urk}(\mathcal{F}) := \sup\{\alpha < \omega_1 : \exists M \in [\mathbb{N}] \text{ s.t. } \mathcal{F} \cap \mathcal{P}(M) \text{ is } \alpha \text{-uniform on } M\}.$

 ϱ_{BS} is related to the uniform rank of the families $C(\mathbf{x}, \varepsilon)$ above. If ϱ_{BS} is co-analytic, so is urk.

- The Cantor-Bedixson rank is co-analytic.
- We can construct families *F* with urk(*F*) ≤ 1 but Cantor-Bendixson rank arbitrarily high.

The Banach-Saks rank ρ_{BS} : RWC $\rightarrow \omega_1$ is not bounded below by a co-analytic rank.

Idea of the proof.

• We define the uniform rank of a compact family \mathcal{F} of finite subsets of \mathbb{N} as

 $\operatorname{urk}(\mathcal{F}) := \sup\{\alpha < \omega_1 : \exists M \in [\mathbb{N}] \text{ s.t. } \mathcal{F} \cap \mathcal{P}(M) \text{ is } \alpha \text{-uniform on } M\}.$

 ϱ_{BS} is related to the uniform rank of the families $C(\mathbf{x},\varepsilon)$ above. If ϱ_{BS} is co-analytic, so is urk.

- The Cantor-Bedixson rank is co-analytic.
- We can construct families *F* with urk(*F*) ≤ 1 but Cantor-Bendixson rank arbitrarily high.

Question 2 (again)

Is there an ordinal function $\phi : \omega_1 \to \omega_1$ such that $\rho_{BS}(\overline{\text{conv}}(A)) \le \phi(\rho_{BS}(A))$ for all $A \in RWC$?

- D. E. Alspach and S. Argyros. *Complexity of weakly null sequences*. Disertationes Mathematicae, 321, 1992.

S. Argyros, S. Mercourakis, A. Tsarpalias. *Convex unconditionality and summability of weakly null sequences*. Israel Journal of Mathematics, 107:1577-193, 1998.

J. López-Abad, C. Ruiz, and P. Tradacete. *The convex hull of a Banach-Saks set*. Journal of Functional Analysis, 266(4):2251–2280, 2013.

Thank you for your attention!