Banach Space questions

Special Ultrafilters and similar objects

Comments and Open questions

# Q-measures, Q-points, and L-orthogonality.

#### Luis Sáenz

Universidad Nacional Autónoma de México Iuisdavidr@ciencias.unam.mx

## Workshop Structure in Banach Spaces 21 March 2025

Joint work with Antonio Avilés, Gonzalo Martínez-Cervantes, and Alejandro Poveda.

# The plan

#### Banach Space questions

#### Special Ultrafilters and similar objects

#### Comments and Open questions

# Some definitions

# Definition

Let  $(X, \|\cdot\|)$  be a Banach space

•  $\|\cdot\|$  is octahedral if for any  $x_0, \ldots, x_{n-1} \in X$ ,  $\epsilon > 0$ , there is  $y \in S_X$  such that  $||x_i + y|| > ||x_i|| + ||y|| - \epsilon$ .

# Some definitions

# Definition

- $\|\cdot\|$  is octahedral if for any  $x_0, \ldots, x_{n-1} \in X$ ,  $\epsilon > 0$ , there is  $y \in S_X$  such that  $\|x_i + y\| > \|x_i\| + \|y\| \epsilon$ .
- ②  $(y_n)_{n \in \mathbb{N}} \subseteq S_X$  is an L-orthogonal sequence iff for any  $x \in X$ ,  $\lim_{n\to\infty} ||x + y_n|| = ||x|| + 1$ .

# Some definitions

# Definition

- $\|\cdot\|$  is octahedral if for any  $x_0, \ldots, x_{n-1} \in X$ ,  $\epsilon > 0$ , there is  $y \in S_X$  such that  $\|x_i + y\| > \|x_i\| + \|y\| \epsilon$ .
- ②  $(y_n)_{n \in \mathbb{N}} \subseteq S_X$  is an L-orthogonal sequence iff for any  $x \in X$ ,  $\lim_{n\to\infty} ||x + y_n|| = ||x|| + 1$ .
- $y^{**} \in S_X^{**}$  is an L-orthogonal element iff for any  $x \in X$ ,  $||x + y^{**}|| = ||x|| + 1.$

## Some definitions

## Definition

- $\|\cdot\|$  is octahedral if for any  $x_0, \ldots, x_{n-1} \in X$ ,  $\epsilon > 0$ , there is  $y \in S_X$  such that  $\|x_i + y\| > \|x_i\| + \|y\| \epsilon$ .
- ②  $(y_n)_{n \in \mathbb{N}} \subseteq S_X$  is an L-orthogonal sequence iff for any  $x \in X$ ,  $\lim_{n\to\infty} ||x + y_n|| = ||x|| + 1$ .
- $y^{**} \in S_X^{**}$  is an L-orthogonal element iff for any  $x \in X$ ,  $||x + y^{**}|| = ||x|| + 1.$



# Some definitions

# Definition

- $\|\cdot\|$  is octahedral if for any  $x_0, \ldots, x_{n-1} \in X$ ,  $\epsilon > 0$ , there is  $y \in S_X$  such that  $\|x_i + y\| > \|x_i\| + \|y\| \epsilon$ .
- ②  $(y_n)_{n \in \mathbb{N}} \subseteq S_X$  is an L-orthogonal sequence iff for any  $x \in X$ ,  $\lim_{n\to\infty} ||x + y_n|| = ||x|| + 1$ .
- $y^{**} \in S_X^{**}$  is an L-orthogonal element iff for any  $x \in X$ ,  $||x + y^{**}|| = ||x|| + 1.$



Special Ultrafilters and similar objects

Comments and Open questions

# Renorming results

## Theorem (Godefroy (1989))

For a Banach space X, TFAE:

- X contains a isomorphic copy of  $\ell_1$ .
- X admits an equivalent norm such that X<sup>\*\*</sup> has an L-orthogonal element.

Special Ultrafilters and similar objects

Comments and Open questions

# Renorming results

## Theorem (Godefroy (1989))

#### For a Banach space X, TFAE:

- X contains a isomorphic copy of  $\ell_1$ .
- X admits an equivalent norm such that X<sup>\*\*</sup> has an L-orthogonal element.

#### Theorem (Kadets, Shepelska, Werner (2011))

For a Banach space X, TFAE:

- X contains a isomorphic copy of  $\ell_1$ .
- X admits an equivalent norm such that X has an L-orthogonal sequence.

# Proposition (Avilés, Martínez-Cervantez, Rueda Zoca (2022))

There is a Banach space X with no L-orthogonal sequence such that  $X^{**}$  admits a L-orthogonal element.

# Proposition (Avilés, Martínez-Cervantez, Rueda Zoca (2022))

There is a Banach space X with no L-orthogonal sequence such that  $X^{**}$  admits a L-orthogonal element.

• Let X be a Banach space with an L-orthogonal sequence  $(x_n)_{n \in \mathbb{N}}$ , is there an L-orthogonal element  $x^{**} \in X^{**}$ ?

# Proposition (Avilés, Martínez-Cervantez, Rueda Zoca (2022))

There is a Banach space X with no L-orthogonal sequence such that  $X^{**}$  admits a L-orthogonal element.

• Let X be a Banach space with an L-orthogonal sequence  $(x_n)_{n \in \mathbb{N}}$ , is there an L-orthogonal element  $x^{**} \in X^{**}$ ?

② Let X be a Banach space with an L-orthogonal sequence  $(x_n)_{n \in \mathbb{N}}$ , is there an L-orthogonal element  $x^{**} \in \overline{\{x_n : n \in \mathbb{N}\}}^{w^*}$ ?

# Proposition (Avilés, Martínez-Cervantez, Rueda Zoca (2022))

There is a Banach space X with no L-orthogonal sequence such that  $X^{**}$  admits a L-orthogonal element.

**()** Let X be a Banach space with an L-orthogonal sequence  $(x_n)_{n \in \mathbb{N}}$ , is there an L-orthogonal element  $x^{**} \in X^{**}$ ?

② Let X be a Banach space with an L-orthogonal sequence (x<sub>n</sub>)<sub>n∈ℕ</sub>, is there an L-orthogonal element x<sup>\*\*</sup> ∈ {x<sub>n</sub> : n ∈ ℕ}<sup>w<sup>\*</sup></sup>?

#### Spoiler

The answer to both questions is independent of the usual set theory axioms (ZFC).

# Ultrafilters

# Definition (Filters)

- A family  $\mathscr{F} \subseteq \mathcal{P}(\mathbb{N})$  is a filter over  $\mathbb{N}$  if
  - $\textcircled{1} \varnothing \notin \mathscr{F}$
  - 2 If  $F \in \mathscr{F}$ ,  $F \subseteq E$  then  $E \in \mathscr{F}$
  - $If F, F' \in \mathscr{F}, then F \cap F' \in \mathscr{F}$
  - A filter over N is free if it extends the Fréchet filter.
  - A filter is an ultrafilter if it maximal.

# Ultrafilters

# Definition (Filters)

A family  $\mathscr{F} \subseteq \mathcal{P}(\mathbb{N})$  is a filter over  $\mathbb{N}$  if

 $\textcircled{1} \varnothing \notin \mathscr{F}$ 

- 2 If  $F \in \mathscr{F}$ ,  $F \subseteq E$  then  $E \in \mathscr{F}$
- $If F, F' \in \mathscr{F}, then F \cap F' \in \mathscr{F}$
- A filter over N is free if it extends the Fréchet filter.
- A filter is an ultrafilter if it maximal.

## Definition

A free ultrafilter  $\mathscr{U} \subseteq \mathcal{P}(\mathbb{N})$  is a Q-point if for any partition of  $\mathbb{N}$  into finite sets  $(I_n)_{n \in \mathbb{N}}$ , there is a selector  $S \in \mathscr{U}$  such that for any  $n \in \omega$ ,  $|S \cap I_n| = 1$ .

<ロト < 部ト < 差ト < 差ト 差 の Q () 6/13

# Ultrafilters

# Definition (Filters)

A family  $\mathscr{F} \subseteq \mathcal{P}(\mathbb{N})$  is a filter over  $\mathbb{N}$  if

 $\textcircled{1} \varnothing \notin \mathscr{F}$ 

- 2 If  $F \in \mathscr{F}$ ,  $F \subseteq E$  then  $E \in \mathscr{F}$
- $If F, F' \in \mathscr{F}, then F \cap F' \in \mathscr{F}$
- A filter over N is free if it extends the Fréchet filter.
- A filter is an ultrafilter if it maximal.

## Definition

A free ultrafilter  $\mathscr{U} \subseteq \mathcal{P}(\mathbb{N})$  is a Q-point if for any partition of  $\mathbb{N}$  into finite sets  $(I_n)_{n \in \mathbb{N}}$ , there is a selector  $S \in \mathscr{U}$  such that for any  $n \in \omega$ ,  $|S \cap I_n| = 1$ .

The existence of Q-points is independent of ZFC.

### Definition

Given a sequence  $(x_n)_{n\in\mathbb{N}}$  in a topological space X, and filter  $\mathscr{F}$  over  $\mathbb{N}$ , the  $\mathscr{F}$ -limit with respect to the sequence is  $x \in X$  ( $x = \mathscr{F}$ -lim  $x_n$ ) iff for every neighborhood V of x,  $\{n \in \mathbb{N} : x_n \in V\} \in \mathscr{F}.$ 

# Answering the second question.

#### Definition

Given a sequence  $(x_n)_{n\in\mathbb{N}}$  in a topological space X, and filter  $\mathscr{F}$  over  $\mathbb{N}$ , the  $\mathscr{F}$ -limit with respect to the sequence is  $x \in X$  ( $x = \mathscr{F}$ -lim  $x_n$ ) iff for every neighborhood V of x,  $\{n \in \mathbb{N} : x_n \in V\} \in \mathscr{F}.$ 

## Theorem (Hrušák, S. (2024))

For any Banach Space X,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mathscr{U}$  a Q-point,  $\mathscr{U}$ -lim  $x_n \in X^{**}$  (taken in the  $w^*$  topology of  $X^{**}$ ) is L-orthogonal.

# Answering the second question.

#### Definition

Given a sequence  $(x_n)_{n\in\mathbb{N}}$  in a topological space X, and filter  $\mathscr{F}$  over  $\mathbb{N}$ , the  $\mathscr{F}$ -limit with respect to the sequence is  $x \in X$  ( $x = \mathscr{F}$ -lim  $x_n$ ) iff for every neighborhood V of x,  $\{n \in \mathbb{N} : x_n \in V\} \in \mathscr{F}.$ 

## Theorem (Hrušák, S. (2024))

For any Banach Space X,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mathscr{U}$  a Q-point,  $\mathscr{U}$ -lim  $x_n \in X^{**}$  (taken in the  $w^*$  topology of  $X^{**}$ ) is L-orthogonal.

## Theorem (Avilés, Martínez-Cervantes, Rueda-Zoca (2022))

If there are no Q-points, then there is a Banach space X with an L-orthogonal sequence such that no  $x^{**} \in \overline{\{x_n : n \in \mathbb{N}\}}^{w^*}$  is L-orthogonal.

# Answering the second question.

### Definition

Given a sequence  $(x_n)_{n\in\mathbb{N}}$  in a topological space X, and filter  $\mathscr{F}$  over  $\mathbb{N}$ , the  $\mathscr{F}$ -limit with respect to the sequence is  $x \in X$  ( $x = \mathscr{F}$ -lim  $x_n$ ) iff for every neighborhood V of x,  $\{n \in \mathbb{N} : x_n \in V\} \in \mathscr{F}.$ 

## Theorem (Hrušák, S. (2024))

For any Banach Space X,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mathscr{U}$  a Q-point,  $\mathscr{U}$ -lim  $x_n \in X^{**}$  (taken in the  $w^*$  topology of  $X^{**}$ ) is L-orthogonal.

## Theorem (Avilés, Martínez-Cervantes, Rueda-Zoca (2022))

If there are no Q-points, then there is a Banach space X with an L-orthogonal sequence such that no  $x^{**} \in \overline{\{x_n : n \in \mathbb{N}\}}^{w^*}$  is L-orthogonal.

#### Theorem

Fix an ultrafilter  $\mathcal{U}$ .  $\mathcal{U}$  is a Q-point iff for any Banach space X, and  $(x_n)_{n\in\mathbb{N}}$  an L-orthogonal sequence,  $\mathcal{U}$ -lim  $x_n \in X^{**}$  is L-orthogonal.

# **Special Measures**

# Definition

Let  $\mu: \mathcal{P}(\mathbb{N}) \longrightarrow [0, +\infty)$  be a finitely additive measure defined on the subsets of  $\mathbb{N}$  and vanishing on finite sets.

- ${\small \bullet}~\mu$  is a Q-measure if every partition of  ${\mathbb N}$  into finite sets has a selector of positive measure.
- 2  $\mu$  is a fit *Q*-measure if for every partition of  $\mathbb{N}$  into finite sets and every  $\delta < \frac{1}{2}$  there is a finite union of selectors of measure greater than  $\delta \cdot \mu(\mathbb{N})$ .
- 0  $\mu$  is a strong Q-measure if every partition of  $\mathbb N$  into finite sets has a selector of full measure.

# **Special Measures**

# Definition

Let  $\mu: \mathcal{P}(\mathbb{N}) \longrightarrow [0, +\infty)$  be a finitely additive measure defined on the subsets of  $\mathbb{N}$  and vanishing on finite sets.

- ${\small \bullet}~\mu$  is a Q-measure if every partition of  ${\mathbb N}$  into finite sets has a selector of positive measure.
- 2  $\mu$  is a fit *Q*-measure if for every partition of  $\mathbb{N}$  into finite sets and every  $\delta < \frac{1}{2}$  there is a finite union of selectors of measure greater than  $\delta \cdot \mu(\mathbb{N})$ .
- **(3)**  $\mu$  is a strong *Q*-measure if every partition of  $\mathbb N$  into finite sets has a selector of full measure.

#### Definition

Given a sequence  $(x_n)_{n \in \mathbb{N}}$  in a Banach space X, and a measure of bounded variation  $\mu : \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ . Let  $T : \ell_1 \to X$  be defined as  $T(e_n) := x_n$  for  $n \in \mathbb{N}$ . Define the  $\mu$ -limit of  $(x_n)_{n \in \mathbb{N}}$  as

$$\mu\text{-}\lim x_n := T^{**}(\mu).$$

Here  $T^{**}: \ell_1^{**} \to X^{**}$  and remember that  $\ell_1^{**} = \ell_{\infty}^*$  is naturally identified with the set of finitely additive signed finite measures on  $\mathcal{P}(\mathbb{N})$ . In the case where  $\mu$  stems from an ultrafilter  $\mathcal{U}$  this coincides with the classical  $\mathcal{U}$ -limit.

#### Theorem

Let X be a Banach space,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mu \colon \mathcal{P}(\mathbb{N}) \to [0,1]$  a strong Q-measure with  $\mu(\mathbb{N}) = 1$ . Then  $\mu$ -lim  $x_n$  is an L-orthogonal element.

#### Theorem

Let X be a Banach space,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mu : \mathcal{P}(\mathbb{N}) \to [0,1]$  a strong Q-measure with  $\mu(\mathbb{N}) = 1$ . Then  $\mu$ -lim  $x_n$  is an L-orthogonal element.

#### Theorem

If no fit Q-measures exist, then there is a Banach space with an L-orthogonal sequence and no L-orthogonal elements.

#### Theorem

Let X be a Banach space,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mu : \mathcal{P}(\mathbb{N}) \to [0,1]$  a strong Q-measure with  $\mu(\mathbb{N}) = 1$ . Then  $\mu$ -lim  $x_n$  is an L-orthogonal element.

#### Theorem

If no fit Q-measures exist, then there is a Banach space with an L-orthogonal sequence and no L-orthogonal elements.

#### Theorem

It is consistent with ZFC that there are no Q-measures.

#### Theorem

Let X be a Banach space,  $(x_n)_{n \in \mathbb{N}}$  an L-orthogonal sequence, and  $\mu : \mathcal{P}(\mathbb{N}) \to [0,1]$  a strong Q-measure with  $\mu(\mathbb{N}) = 1$ . Then  $\mu$ -lim  $x_n$  is an L-orthogonal element.

#### Theorem

If no fit Q-measures exist, then there is a Banach space with an L-orthogonal sequence and no L-orthogonal elements.

#### Theorem

It is consistent with ZFC that there are no Q-measures.

Can you provide a characterization of when, for any measure  $\mu$ , the  $\mu$ -lim  $x_n$  of an *L*-orthogonal sequence is *L*-orthogonal?

# Comments on the proofs

## Theorem (Mathias)

Let  $\mathscr{U}$  be a free ultrafilter on  $\mathbb{N}$ , TFAE.

**2** For any tall analytic ideal  $\mathcal{I}, \mathcal{I} \cap \mathcal{U} \neq \emptyset$ .

Comments and Open questions  $_{\odot OOO}$ 

# Comments on the proofs

### Theorem (Mathias)

Let  $\mathscr{U}$  be a free ultrafilter on  $\mathbb{N}$ , TFAE.

*U* is selective.

**2** For any tall analytic ideal  $\mathcal{I}, \mathcal{I} \cap \mathcal{U} \neq \emptyset$ .

## Theorem (Hrušák, Meza, Minami (2010))

Let  $\mathscr{U}$  be a free ultrafilter on  $\mathbb{N}$ , TFAE.

- *U* is a Q-point.
- 2 For any countably hitting analytic ideal  $\mathcal{I}, \mathcal{I} \cap \mathcal{U} \neq \emptyset$ .

# Comments on the proofs

## Theorem (Mathias)

Let  $\mathscr{U}$  be a free ultrafilter on  $\mathbb{N}$ , TFAE.

*U* is selective.

**2** For any tall analytic ideal  $\mathcal{I}, \mathcal{I} \cap \mathcal{U} \neq \emptyset$ .

## Theorem (Hrušák, Meza, Minami (2010))

Let  $\mathscr{U}$  be a free ultrafilter on  $\mathbb{N}$ , TFAE.

*U* is a Q-point.

2 For any countably hitting analytic ideal  $\mathcal{I}, \mathcal{I} \cap \mathcal{U} \neq \emptyset$ .

#### Theorem

Let  $\mu \colon \mathcal{P}(\mathbb{N}) \to [0,1]$  be a measure and  $\varepsilon > 0$ . TFAE.



**2** For every analytic hereditary family  $\mathcal{H}$  that is countably hitting, there is  $A \in \mathcal{H}$ , such that  $\mu(A) \geq \varepsilon$ .

<ロト < 母 > < 臣 > < 臣 > 三 のへで 10/13

Comments and Open questions  $0 \bullet 00$ 

# Questions

Is it consistent that there is no Q-point but there is a Q-measure?

# Questions

Is it consistent that there is no Q-point but there is a Q-measure?

## Proposition

Assume the filter dichotomy holds and there are no Q-points, then there are no Q-measures.

# Questions

Is it consistent that there is no Q-point but there is a Q-measure?

#### Proposition

Assume the filter dichotomy holds and there are no Q-points, then there are no Q-measures.

#### Theorem

There are no Q-measures in the Laver, Mathias, or Miller models.

Comments and Open questions  $_{\bigcirc \odot \odot \bigcirc \bigcirc }$ 

# Questions

Is it consistent that there is no Q-point but there is a Q-measure?

#### Proposition

Assume the filter dichotomy holds and there are no Q-points, then there are no Q-measures.

#### Theorem

There are no Q-measures in the Laver, Mathias, or Miller models.

#### Theorem

#### TFAE

- 2 Any filter  $\mathscr{F}$  of character less that  $\mathfrak{d}$  can be extended to a Q-point.
- **③** For any measure  $\mu$  :  $\mathbb{B}$  → [0, 1], such that  $[\mathbb{N}]^{\leq \mathbb{N}} \subseteq \mathbb{B} \subseteq \mathcal{P}(\mathbb{N})$  is Boolean Algebra,  $\mu$  vanishes on finite sets, and has density less than  $\vartheta$ , there exists an atomless strong *Q*-measure  $\nu$  :  $\mathcal{P}(\mathbb{N}) \rightarrow [0, 1]$  extending  $\mu$ .

Banach Space questions

 $\underset{0000}{\text{Special Ultrafilters and similar objects}}$ 

Comments and Open questions  $_{\bigcirc \bigcirc \odot \odot \odot }$ 

# Thanks!

<ロ > < 部 > < 書 > < 書 > 差 ) への 12/13

# References

- Antonio Avilés, Gonzalo Martínez-Cervantes, Alejandro Poveda, and Luis Sáenz. *A banach space with I-orthogonal sequences but without I-orthogonal elements*. Preprint, 2024.
- [2] Antonio Avilés, Gonzalo Martínez-Cervantes, and Abraham Rueda Zoca. L-Orthogonal Elements and L-Orthogonal Sequences. International Mathematics Research Notices, 2023(11):9128–9154, 05 2022.
- [3] Gilles Godefroy. *Metric characterization of first baire class linear forms and octahedral norms*. Studia Mathematica, 95(1):1–15, 1989.
- [4] Michael Hrušák, David Meza-Alcántara, and Hiroaki Minami. Pair-splitting, pair-reaping and cardinal invariants of f Σ-ideals. Journal of Symbolic Logic, 75(2):661–677, 2010.
- [5] Michael Hrušák and Luis Sáenz. Some applications of q-points and lebesgue filters to banach spaces. Extracta Mathematicae, 2024.
- [6] Vladimir Kadets, Varvara Shepelska, and Dirk Werner. Thickness of the unit sphere, 1-types, and the almost daugavet property. Houston journal of mathematics, 37:867–878, 01 2011.