A separable Banach space of nontrivial Baire order

Zdeněk Silber Institute of Mathematics of the Czech Academy of Sciences, Prague Joint work IN PROGRESS with A. Pelczar-Barwacz and T. Wawrzycki

Structures in Banach spaces, Vienna, 2025

Intrinsic Baire classes of X

We set $X_0^{**} = X$ and for a countable ordinal α we set

$$X_{lpha}^{**} = \{x^{**} \in X^{**} : \text{there is a sequence } (x_n^{**}) \subseteq \bigcup_{eta < lpha} X_{eta}^{**}$$

that weak^{*} converges to $x^{**}\}.$

Intrinsic Baire classes of X

We set $X_0^{**} = X$ and for a countable ordinal α we set

$$X^{**}_{lpha} = \{x^{**} \in X^{**} : ext{there is a sequence } (x^{**}_n) \subseteq igcup_{eta < lpha} X^{**}_{eta} \ ext{that weak}^* ext{ converges to } x^{**}\}.$$

Examples:

• $X = X_1^{**}$ if and only if X is weakly sequentially complete.

A B F A B F

Intrinsic Baire classes of X

We set $X_0^{**} = X$ and for a countable ordinal α we set

$$X^{**}_{lpha} = \{x^{**} \in X^{**} : ext{there is a sequence } (x^{**}_n) \subseteq igcup_{eta < lpha} X^{**}_{eta} \ ext{that weak}^* ext{ converges to } x^{**} \}.$$

Examples:

- $X = X_1^{**}$ if and only if X is weakly sequentially complete.
- For X = C([0,1]) we have $X_{\alpha}^{**} = \mathcal{B}_{\alpha}([0,1])$ for every $\alpha \leq \omega_1$.

• • = • • = •

Intrinsic Baire classes of X

We set $X_0^{**} = X$ and for a countable ordinal α we set

$$X^{**}_{lpha} = \{x^{**} \in X^{**} : ext{there is a sequence } (x^{**}_n) \subseteq igcup_{eta < lpha} X^{**}_{eta} \ ext{that weak}^* ext{ converges to } x^{**}\}.$$

Examples:

- $X = X_1^{**}$ if and only if X is weakly sequentially complete.
- For X = C([0,1]) we have $X_{\alpha}^{**} = \mathcal{B}_{\alpha}([0,1])$ for every $\alpha \leq \omega_1$.
- (Odell, Rosenthal '75) $X_1^{**} = X^{**}$ if and only if X does not contain ℓ_1 .

• • = • • = •

•
$$X = X_0^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in C(B_{X^*})\}$$

.∋...>

- $X = X_0^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in C(B_{X^*})\}$
- (Choquet '62) $X_1^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in \mathcal{B}_1(B_{X^*})\}$

- $X = X_0^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in C(B_{X^*})\}$
- (Choquet '62) $X_1^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in \mathcal{B}_1(B_{X^*})\}$

(Talagrand '84) There is a Schur space X (this implies X^{**}_α = X for any α ≤ ω₁), such that there is x^{**} ∈ X^{**} \ X with x^{**} ↾ B_{X*} ∈ B₂(B_{X*}).

- $X = X_0^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in C(B_{X^*})\}$
- (Choquet '62) $X_1^{**} = \{x^{**} \in X^{**} : x^{**} \upharpoonright B_{X^*} \in \mathcal{B}_1(B_{X^*})\}$
- (Talagrand '84)

There is a Schur space X (this implies $X_{\alpha}^{**} = X$ for any $\alpha \leq \omega_1$), such that there is $x^{**} \in X^{**} \setminus X$ with $x^{**} \upharpoonright B_{X^*} \in \mathcal{B}_2(B_{X^*})$.

In general we need to distinguish between elements of X_{α}^{**} and elements of X^{**} that happen to be Baire- α .

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

에 물 에 물 에

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

Examples:

• X has Baire order 0 if and only if X is weakly sequentially complete,

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

Examples:

- X has Baire order 0 if and only if X is weakly sequentially complete,
- C([0, 1]) has Baire order ω₁,

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

Examples:

- X has Baire order 0 if and only if X is weakly sequentially complete,
- C([0,1]) has Baire order ω₁,
- X has Baire order 1 if it is not weakly sequentially complete and does not contain ℓ₁.

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

Examples:

- X has Baire order 0 if and only if X is weakly sequentially complete,
- C([0,1]) has Baire order ω₁,
- X has Baire order 1 if it is not weakly sequentially complete and does not contain l₁.

ト 4 ほ ト 4 ほ ト

4/7

Problem (Argyros, Godefroy, Rosenthal 2003)

Is there a separable Banach space with Baire order other then 0, 1, ω_1 ?

Definition

We say that X has Baire order α for some $\alpha \leq \omega_1$ if α is minimal ordinal such that for all $\beta < \alpha$ we have $X_{\beta}^{**} \neq X_{\alpha}^{**} = X_{\alpha+1}^{**}$.

Examples:

- X has Baire order 0 if and only if X is weakly sequentially complete,
- C([0,1]) has Baire order ω₁,
- X has Baire order 1 if it is not weakly sequentially complete and does not contain l₁.

Problem (Argyros, Godefroy, Rosenthal 2003)

Is there a separable Banach space with Baire order other then 0, 1, ω_1 ?

Answer

There is a separable Banach space of Baire order 2.

Z. Silber

There is a separable Banach space X_{AH} , called the *Azimi-Hagler space*, such that:

There is a separable Banach space X_{AH} , called the *Azimi-Hagler space*, such that:

• X_{AH} has a normalised bimonotone spreading boundedly complete Schauder basis (*e_n*);

5/7

There is a separable Banach space X_{AH} , called the *Azimi-Hagler space*, such that:

• X_{AH} has a normalised bimonotone spreading boundedly complete Schauder basis (*e_n*);

5/7

• (e_n) is weak^{*} convergent in X_{AH}^{**} to an element of $X_{AH}^{**} \setminus X_{AH}$;

There is a separable Banach space X_{AH} , called the *Azimi-Hagler space*, such that:

- X_{AH} has a normalised bimonotone spreading boundedly complete Schauder basis (*e_n*);
- (e_n) is weak^{*} convergent in X_{AH}^{**} to an element of $X_{AH}^{**} \setminus X_{AH}$;
- X_{AH} is of codimension 1 in $(X_{AH})_1^{**}$.

There is a separable Banach space X_{AH} , called the *Azimi-Hagler space*, such that:

- X_{AH} has a normalised bimonotone spreading boundedly complete Schauder basis (*e_n*);
- (e_n) is weak^{*} convergent in X_{AH}^{**} to an element of $X_{AH}^{**} \setminus X_{AH}$;
- X_{AH} is of codimension 1 in $(X_{AH})_1^{**}$.

The Azimi-Hagler space is like a "Baire-1" version of the James space.

$$\|x\|_{AH} = \sup\left\{\sum_{j=1}^{n} \frac{1}{j} |\langle I_j, x \rangle| : (I_1, \dots, I_n) \text{ sequence of successive intervals}\right\}$$

• Build X such that $X_1^{**} = X \oplus X_{AH}$;

伺き くほき くほき

- **1** Build X such that $X_1^{**} = X \oplus X_{AH}$;
- **2** Show $X_2^{**} = X_1^{**} \oplus \mathbb{R}$;

通 ト イ ヨ ト イ ヨ ト

- **1** Build X such that $X_1^{**} = X \oplus X_{AH}$;
- **2** Show $X_2^{**} = X_1^{**} \oplus \mathbb{R}$;
- 3 Get $X_3^{**} = X_2^{**} \neq X_1^{**}$.

- * ほ * * ほ *

æ

- Build X such that $X_1^{**} = X \oplus X_{AH}$;
- **2** Show $X_2^{**} = X_1^{**} \oplus \mathbb{R}$;

3 Get
$$X_3^{**} = X_2^{**} \neq X_1^{**}$$

We define a completion X of $c_{00}(A)$ where $A = \{(n, m) \in \mathbb{N}^2 : m \ge n\}$ such that

• every column is equivalent to X_{AH} ,

• • = • • = •

3

- Build X such that $X_1^{**} = X \oplus X_{AH}$;
- **2** Show $X_2^{**} = X_1^{**} \oplus \mathbb{R}$;

3 Get
$$X_3^{**} = X_2^{**} \neq X_1^{**}$$

We define a completion X of $c_{00}(A)$ where $A = \{(n, m) \in \mathbb{N}^2 : m \ge n\}$ such that

- every column is equivalent to X_{AH} ,
- every "diagonal" sequence is equivalent to ℓ_1 ,

• • = • • = •

- Build X such that $X_1^{**} = X \oplus X_{AH}$;
- **2** Show $X_2^{**} = X_1^{**} \oplus \mathbb{R}$;

3 Get
$$X_3^{**} = X_2^{**} \neq X_1^{**}$$

We define a completion X of $c_{00}(A)$ where $A = \{(n, m) \in \mathbb{N}^2 : m \ge n\}$ such that

- every column is equivalent to X_{AH} ,
- every "diagonal" sequence is equivalent to ℓ_1 ,

•
$$X_1^{**} = X \oplus X_{AH}$$

• • = • • = •

What we are working on right now

Is there a separable Banach space of order α for every $\alpha < \omega_1$?

∃ ►

What we are working on right now

Is there a separable Banach space of order α for every $\alpha < \omega_1$?

Thanks for your attention.