Dimension dependence of factorization problems

Structures in Banach Spaces

Thomas Speckhofer

Institute of Analysis Johannes Kepler University Linz, Austria

March 18, 2025

(中) (종) (종) (종) (종) (종)

Dimension dependence of factorization problems

T. Speckhofer. *Dimension dependence of factorization problems: Haar system Hardy spaces.* Studia Mathematica, to appear.

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理



T. Speckhofer. *Dimension dependence of factorization problems: Haar system Hardy spaces.* Studia Mathematica, to appear.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$

- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbb{1}_{I^+} \mathbb{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x, y \in H$ and |x|, |y| have the same distribution, then $||x||_X = ||y||_X$.
 - $\|\mathbf{1}_{[0,1)}\|_X = 1.$
- Examples: L^p , $1 \le p < \infty$, all separable rearrangement-invariant function spaces on [0,1)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbb{1}_{I^+} \mathbb{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x, y \in H$ and |x|, |y| have the same distribution, then $||x||_X = ||y||_X$.
 - $\|\mathbf{1}_{[0,1)}\|_X = 1.$
- Examples: L^p , $1 \le p < \infty$, all separable rearrangement-invariant function spaces on [0,1)

・ 何 ト ・ ヨ ト ・ ヨ ト

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbbm{1}_{I^+} \mathbbm{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x, y \in H$ and |x|, |y| have the same distribution, then $||x||_X = ||y||_X$.
 - $\|\mathbf{1}_{[0,1)}\|_X = 1.$
- Examples: L^p , $1 \le p < \infty$, all separable rearrangement-invariant function spaces on [0,1)

A 回 > A 回 > A 回 >

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbbm{1}_{I^+} \mathbbm{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x,y\in H$ and $|x|,\,|y|$ have the same distribution, then $\|x\|_X=\|y\|_X$
 - $\|\mathbf{1}_{[0,1)}\|_X = 1.$
- Examples: L^p, 1 ≤ p < ∞, all separable rearrangement-invariant function spaces on [0, 1)

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbbm{1}_{I^+} \mathbbm{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If x, y ∈ H and |x|, |y| have the same distribution, then ||x||_X = ||y||_X.
 ||1_{0,1}⟩||_X = 1.
- Examples: L^p , $1 \le p < \infty$, all separable rearrangement-invariant function spaces on [0,1)

イロト 不得 トイヨト イヨト

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbb{1}_{I^+} \mathbb{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x, y \in H$ and |x|, |y| have the same distribution, then $||x||_X = ||y||_X$.
 - $\|\mathbb{1}_{[0,1)}\|_X = 1.$
- Examples: L^p , $1 \le p < \infty$, all separable rearrangement-invariant function spaces on [0, 1)

イロト 不得 トイヨト イヨト

- Dyadic intervals: $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- $I^+ =$ left half, $I^- =$ right half of $I \in \mathcal{D}$
- Define $h_I = \mathbbm{1}_{I^+} \mathbbm{1}_{I^-}$, $I \in \mathcal{D}$.
- A Haar system space X is the completion of $H = \operatorname{span}\{\mathbb{1}_{[0,1)}, h_I : I \in \mathcal{D}\}$ under a norm $\|\cdot\|_X$ such that:
 - If $x, y \in H$ and |x|, |y| have the same distribution, then $||x||_X = ||y||_X$.
 - $\|\mathbb{1}_{[0,1)}\|_X = 1.$
- Examples: $L^p, \ 1 \leq p < \infty,$ all separable rearrangement-invariant function spaces on [0,1)

3

$$\Big|\sum_{I\in\mathcal{D}}a_Ih_I\Big|_{\circ} = \Big\|\Big(\sum_{I\in\mathcal{D}}a_I^2h_I^2\Big)^{1/2}\Big\|_X$$

- If $X = L^1$, then $\|\cdot\|_{\circ} = \|\cdot\|_{H^1}$.
- From now on, let Y be a fixed Haar system Hardy space.

$$\Big|\sum_{I\in\mathcal{D}}a_Ih_I\Big\|_{\circ} = \Big\|\Big(\sum_{I\in\mathcal{D}}a_I^2h_I^2\Big)^{1/2}\Big\|_X$$

- If $X = L^1$, then $\|\cdot\|_{\circ} = \|\cdot\|_{H^1}$.
- From now on, let Y be a fixed Haar system Hardy space.

$$\Big\|\sum_{I\in\mathcal{D}}a_Ih_I\Big\|_{\circ} = \Big\|\Big(\sum_{I\in\mathcal{D}}a_I^2h_I^2\Big)^{1/2}\Big\|_X$$

- If $X = L^1$, then $\|\cdot\|_{\circ} = \|\cdot\|_{H^1}$.
- From now on, let Y be a fixed Haar system Hardy space.

$$\Big|\sum_{I\in\mathcal{D}}a_Ih_I\Big\|_{\circ} = \Big\|\Big(\sum_{I\in\mathcal{D}}a_I^2h_I^2\Big)^{1/2}\Big\|_X$$

- If $X = L^1$, then $\|\cdot\|_{\circ} = \|\cdot\|_{H^1}$.
- From now on, let Y be a fixed Haar system Hardy space.

• For $n \in \mathbb{N}_0$, let $Y_n = \operatorname{span}\{h_I : |I| \ge 2^{-n}\} \subset Y$.

• Given $n \in \mathbb{N}_0, \delta > 0$, how large does $N \in \mathbb{N}_0$ have to be chosen such that for every operator $T: Y_N \to Y_N$ with $||T|| \leq 1$ and with δ -large positive diagonal, there exists a factorization

where $||A|| ||B|| \le (1 + \varepsilon)/\delta$? (\rightarrow factorization constant)

• Variant: no "large diagonal", but factorization through T or $I_{Y_N} - T$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- For $n \in \mathbb{N}_0$, let $Y_n = \operatorname{span}\{h_I : |I| \ge 2^{-n}\} \subset Y$.
- Given $n \in \mathbb{N}_0, \delta > 0$, how large does $N \in \mathbb{N}_0$ have to be chosen such that for every operator $T: Y_N \to Y_N$ with $||T|| \le 1$ and with δ -large positive diagonal, there exists a factorization

$$\begin{array}{ccc} Y_n & \xrightarrow{I_{Y_n}} & Y_n \\ B \downarrow & & \uparrow A \\ Y_N & \xrightarrow{T} & Y_N \end{array}$$

where $||A|| ||B|| \le (1 + \varepsilon)/\delta$? (\rightarrow factorization constant)

• Variant: no "large diagonal", but factorization through T or $I_{Y_N} - T$.

- For $n \in \mathbb{N}_0$, let $Y_n = \operatorname{span}\{h_I : |I| \ge 2^{-n}\} \subset Y$.
- Given $n \in \mathbb{N}_0, \delta > 0$, how large does $N \in \mathbb{N}_0$ have to be chosen such that for every operator $T: Y_N \to Y_N$ with $||T|| \leq 1$ and with δ -large positive diagonal, there exists a factorization

$$\begin{array}{ccc} Y_n & \xrightarrow{I_{Y_n}} & Y_n \\ B \downarrow & & \uparrow A \\ Y_N & \xrightarrow{T} & Y_N \end{array}$$

where $\|A\| \|B\| \le (1 + \varepsilon)/\delta$? (\rightarrow factorization constant)

• Variant: no "large diagonal", but factorization through T or $I_{Y_N} - T$.

- For $n \in \mathbb{N}_0$, let $Y_n = \operatorname{span}\{h_I : |I| \ge 2^{-n}\} \subset Y$.
- Given $n \in \mathbb{N}_0, \delta > 0$, how large does $N \in \mathbb{N}_0$ have to be chosen such that for every operator $T: Y_N \to Y_N$ with $||T|| \leq 1$ and with δ -large positive diagonal, there exists a factorization

$$\begin{array}{ccc} Y_n & \xrightarrow{I_{Y_n}} & Y_n \\ B \downarrow & & \uparrow A \\ Y_N & \xrightarrow{T} & Y_N \end{array}$$

where $||A|| ||B|| \le (1 + \varepsilon)/\delta$? (\rightarrow factorization constant)

• Variant: no "large diagonal", but factorization through T or $I_{Y_N} - T$.

In L^p, 1 ≤ p ≤ ∞: Restricted Invertibility Theorem (Bourgain-Tzafriri 1987) → linear dimension dependence

- Conversely: factorization \implies T "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

イロト イヨト イヨト

- In L^p , $1 \le p \le \infty$:
 - Restricted Invertibility Theorem (Bourgain-Tzafriri 1987) \rightarrow linear dimension dependence
- Conversely: factorization \implies T "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

- 4 回 ト 4 ヨ ト 4 ヨ ト

• In L^p , $1 \le p \le \infty$:

Restricted Invertibility Theorem (Bourgain-Tzafriri 1987)

- \rightarrow linear dimension dependence
- Conversely: factorization \implies T "well invertible" on a large subspace

Bourgain's localization method may yield primariness

- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

- 4 同 ト 4 三 ト - 4 三 ト - -

• In L^p , $1 \le p \le \infty$:

Restricted Invertibility Theorem (Bourgain-Tzafriri 1987)

- \rightarrow linear dimension dependence
- Conversely: factorization \implies T "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- Existing bounds for ${\cal N}$ are often super-exponential functions of ${\cal n}$
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

イロト イヨト イヨト ・

• In L^p , $1 \le p \le \infty$:

Restricted Invertibility Theorem (Bourgain-Tzafriri 1987)

- \rightarrow linear dimension dependence
- Conversely: factorization $\implies T$ "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

イロト 不得 トイヨト イヨト

• In L^p , $1 \le p \le \infty$:

Restricted Invertibility Theorem (Bourgain-Tzafriri 1987)

- \rightarrow linear dimension dependence
- Conversely: factorization $\implies T$ "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- $\bullet\,$ Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

(日)

• In L^p , $1 \le p \le \infty$:

Restricted Invertibility Theorem (Bourgain-Tzafriri 1987)

- \rightarrow linear dimension dependence
- Conversely: factorization \implies T "well invertible" on a large subspace
- Bourgain's localization method may yield primariness
- Results in other classical spaces: $\mathcal{B}(\ell^2)$ (Blower), H^1 and BMO (Müller), $\ell^{\infty}(L^p)$ (Wark), ...
- $\bullet\,$ Existing bounds for N are often super-exponential functions of n
- Lechner 2019: $N \ge Cn$ is sufficient in H^p , $1 \le p < \infty$, and SL^{∞} .

(日)

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\varepsilon > 0$. Put $\eta = \frac{\varepsilon}{6(1+\varepsilon)}$. If

$$N \ge 42n(n+1) \left\lceil \frac{1}{\eta} \right\rceil + 42 + \left\lfloor 4 \log_2 \left(\frac{1}{\eta} \right) \right\rfloor,\tag{1}$$

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \leq 1$, the identity I_{Y_n} factors through T or $I_{Y_N} - T$ with constant $2(1 + \varepsilon)$.

 $f(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by

 $N \geq C(\eta,K) \, n_{\cdot}$

3

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\varepsilon > 0$. Put $\eta = \frac{\varepsilon}{6(1+\varepsilon)}$. If

$$N \ge 42n(n+1) \left\lceil \frac{1}{\eta} \right\rceil + 42 + \left\lfloor 4 \log_2 \left(\frac{1}{\eta} \right) \right\rfloor,\tag{1}$$

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \leq 1$, the identity I_{Y_n} factors through T or $I_{Y_N} - T$ with constant $2(1 + \varepsilon)$.

If $(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by

 $N \ge C(\eta, K) \, n.$

э

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\varepsilon > 0$. Put $\eta = \frac{\varepsilon}{6(1+\varepsilon)}$. If

$$N \ge C(\eta) \, n^2,\tag{1}$$

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \leq 1$, the identity I_{Y_n} factors through T or $I_{Y_N} - T$ with constant $2(1 + \varepsilon)$.

If $(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by

 $N \ge C(\eta, K) \, n.$

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\varepsilon > 0$. Put $\eta = \frac{\varepsilon}{6(1+\varepsilon)}$. If

$$N \ge C(\eta) n^2, \tag{1}$$

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \leq 1$, the identity I_{Y_n} factors through T or $I_{Y_N} - T$ with constant $2(1 + \varepsilon)$.

If $(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by

 $N \ge C(\eta, K) \, n.$

3

く 伺 ト く ヨ ト く ヨ ト

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\delta, \varepsilon > 0$. Put $\eta = \frac{\varepsilon \delta}{6(1+\varepsilon)}$. If $N \ge C(\eta) n^2$, (1)

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \le 1$ and with δ -large positive diagonal, the identity I_{Y_n} factors through T with constant $(1+\varepsilon)/\delta$. If $(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by N > C(n, K) n.

Corollary (S. '24)

If $N \ge Cn^4 2^{Cn^2}$, where $C = C(\eta, \delta)$, then the word "positive" can be omitted (this doubles the factorization constant).

э

7/13

Theorem (S. '24)

Let Y be a Haar system Hardy space and $\delta, \varepsilon > 0$. Put $\eta = \frac{\varepsilon \delta}{6(1+\varepsilon)}$. If $N \ge C(\eta) n^2$, (1)

then for every linear operator $T: Y_N \to Y_N$ with $||T|| \le 1$ and with δ -large positive diagonal, the identity I_{Y_n} factors through T with constant $(1+\varepsilon)/\delta$. If $(h_I)_I$ is K-unconditional in Y, then (1) can be replaced by N > C(n, K) n.

Corollary (S. '24)

If $N \ge Cn^4 2^{Cn^2}$, where $C = C(\varepsilon, \delta)$, then the word "positive" can be omitted (this doubles the factorization constant).

э

7/13

< □ > < □ > < □ > < □ > < □ > < □ >

• Basic idea: Step-by-step reduction

Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}

• Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

$$D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

$$D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

 $D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Basic idea: Step-by-step reduction Operator $T \to$ Haar multiplier $D \to$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

 $D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

<日

<</p>

- Basic idea: Step-by-step reduction Operator $T \to$ Haar multiplier $D \to$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

 $D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

< 回 > < 三 > < 三 > -

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

 $D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

く 伺 ト く ヨ ト く ヨ ト

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

 $D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

< 回 > < 三 > < 三 > -

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

$$D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

< 回 > < 三 > < 三 > -

- Basic idea: Step-by-step reduction Operator $T \rightarrow$ Haar multiplier $D \rightarrow$ constant multiple of the identity cI_{Y_n}
- Clearly, the identity I_{Y_n} factors through cI_{Y_n} or $(1-c)I_{Y_n}$.

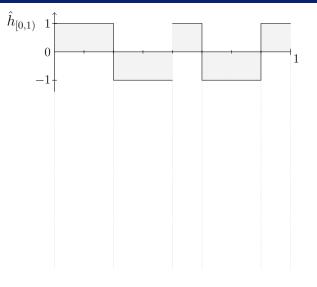
$$D \approx A_1 T B_1, \qquad c I_{Y_n} \approx A_2 D B_2$$

• How are A_i, B_i defined? \rightarrow faithful Haar system $(\hat{h}_I)_I$, Associated operators A, B:

$$Bx = \sum_{I} \frac{\langle h_{I}, x \rangle}{|I|} \hat{h}_{I}, \qquad Ax = \sum_{I} \frac{\langle \hat{h}_{I}, x \rangle}{|I|} h_{I}$$

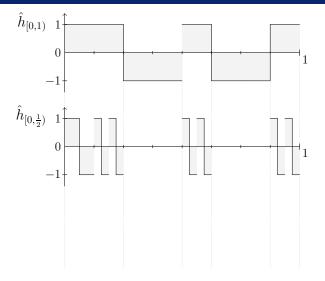
< 回 > < 三 > < 三 > -

Faithful Haar system



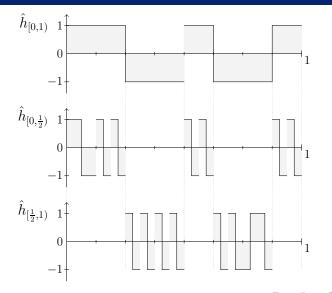
э

Faithful Haar system



э

Faithful Haar system



э

First step: diagonalization via random faithful Haar systems

- Choose signs $\theta = (\theta_K)_{K \in \mathcal{D}} \in \{\pm 1\}^{\mathcal{D}}$ uniformly at random.
- Construct a (finite) randomized faithful Haar system by

$$\hat{h}_I(\theta) = \sum_{K \in \mathcal{B}_I(\theta)} \theta_K h_K, \qquad |I| \ge 2^{-Cn^2},$$

where $\mathcal{B}_{I}(\theta) \subset \mathcal{D}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

First step: diagonalization via random faithful Haar systems

• Choose signs $\theta = (\theta_K)_{K \in \mathcal{D}} \in \{\pm 1\}^{\mathcal{D}}$ uniformly at random.

Construct a (finite) randomized faithful Haar system by

$$\hat{h}_I(\theta) = \sum_{K \in \mathcal{B}_I(\theta)} \theta_K h_K, \qquad |I| \ge 2^{-Cn^2},$$

where $\mathcal{B}_{I}(\theta) \subset \mathcal{D}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

First step: diagonalization via random faithful Haar systems

- Choose signs $\theta = (\theta_K)_{K \in \mathcal{D}} \in \{\pm 1\}^{\mathcal{D}}$ uniformly at random.
- Construct a (finite) randomized faithful Haar system by

$$\hat{h}_I(\theta) = \sum_{K \in \mathcal{B}_I(\theta)} \theta_K h_K, \qquad |I| \ge 2^{-Cn^2},$$

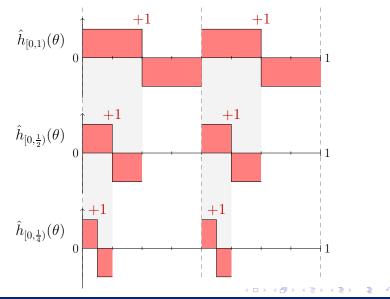
where $\mathcal{B}_{I}(\theta) \subset \mathcal{D}$.

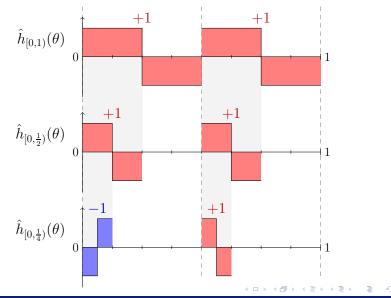
First step: diagonalization via random faithful Haar systems

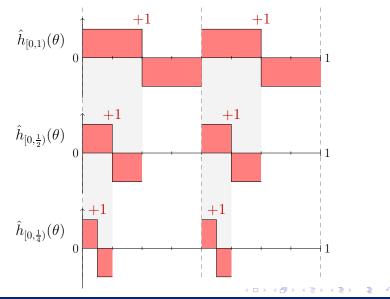
- Choose signs $\theta = (\theta_K)_{K \in \mathcal{D}} \in \{\pm 1\}^{\mathcal{D}}$ uniformly at random.
- Construct a (finite) randomized faithful Haar system by

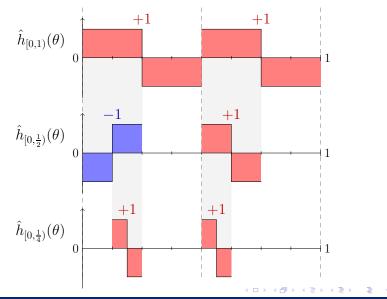
$$\hat{h}_I(\theta) = \sum_{K \in \mathcal{B}_I(\theta)} \theta_K h_K, \qquad |I| \ge 2^{-Cn^2},$$

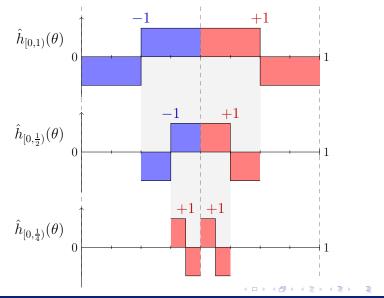
where $\mathcal{B}_I(\theta) \subset \mathcal{D}$.

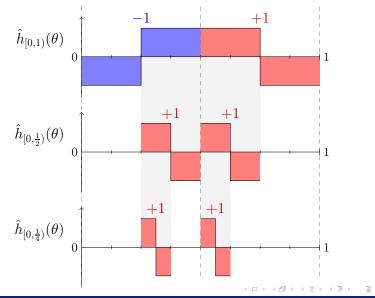


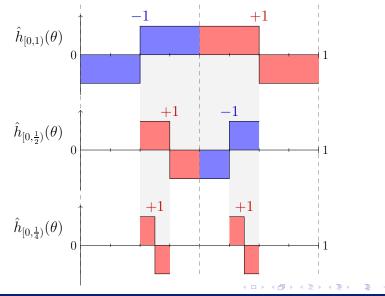


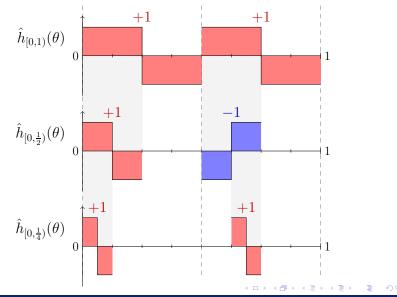


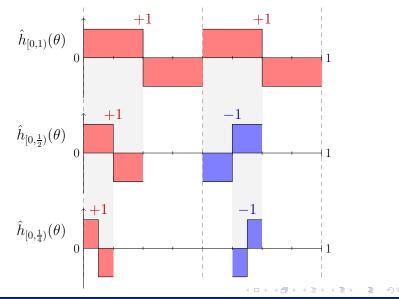


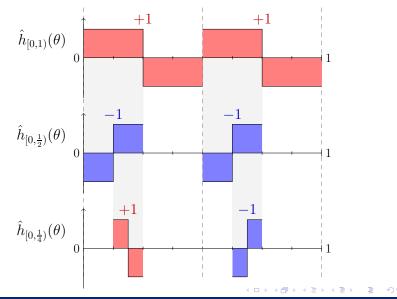


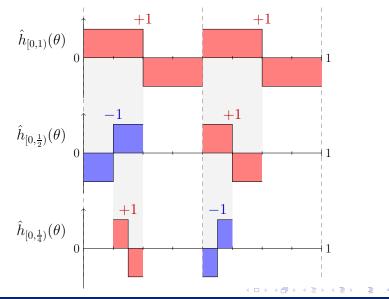


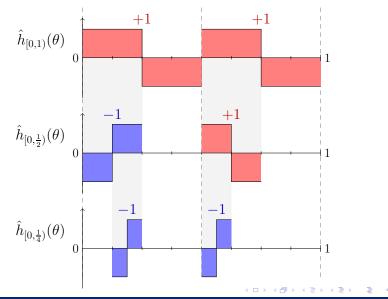


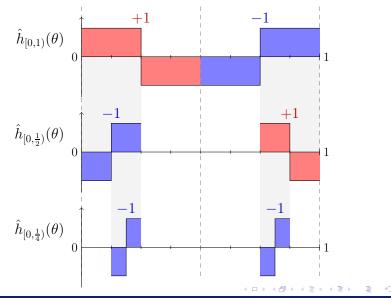


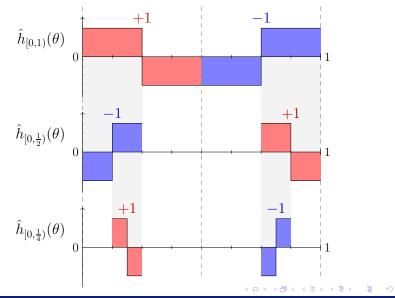




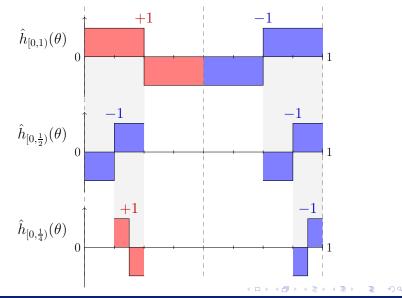




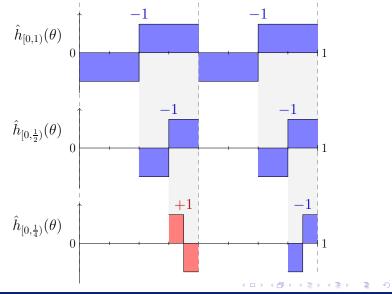


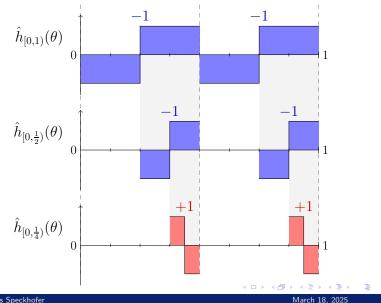


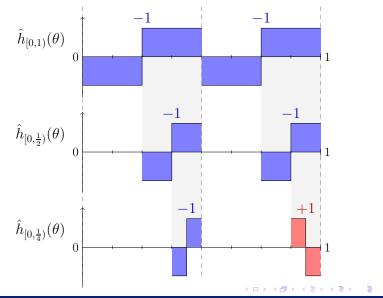
11 / 13



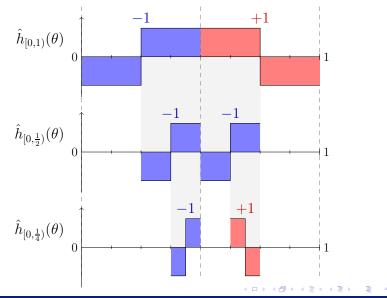
11 / 13

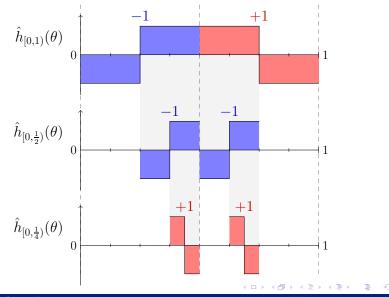






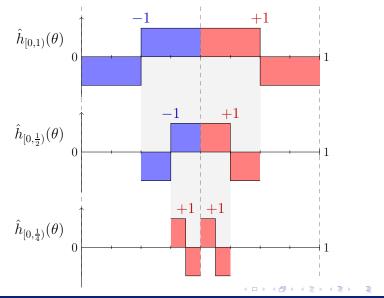
11 / 13

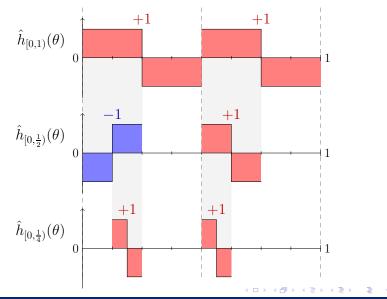


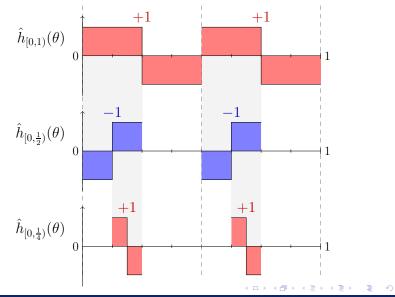


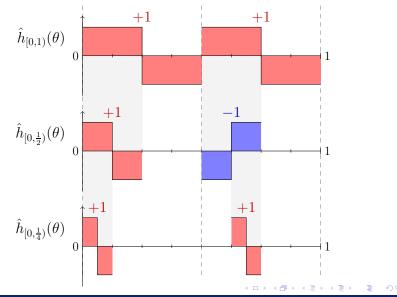
Thomas Speckhofer

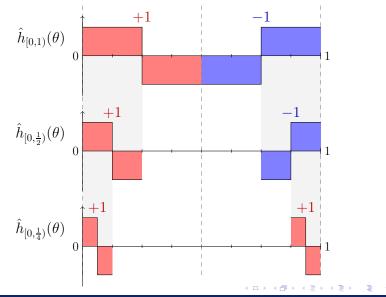
11 / 13

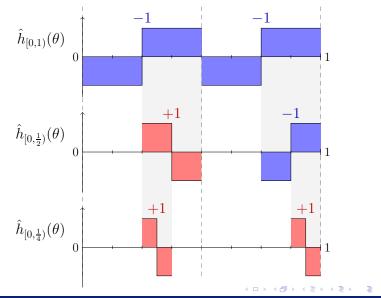


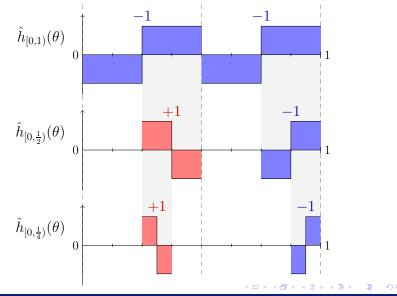




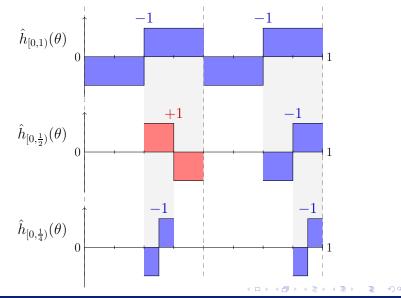




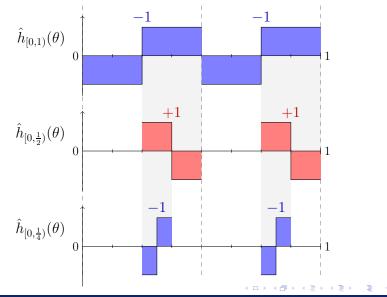


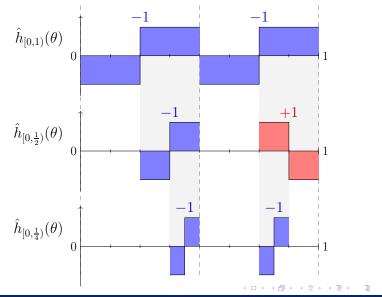


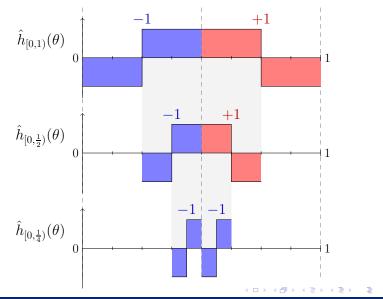
11 / 13

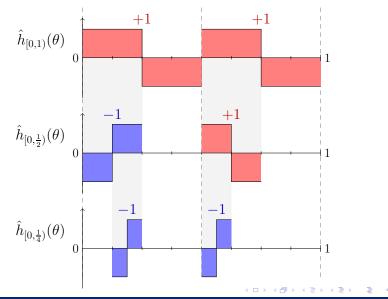


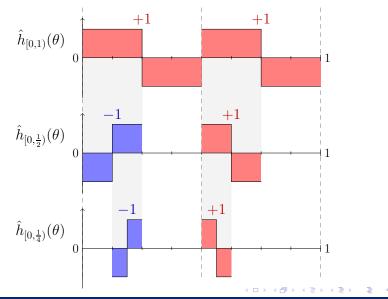
11 / 13

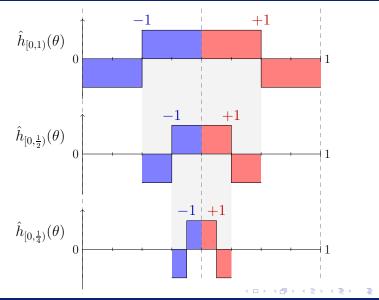


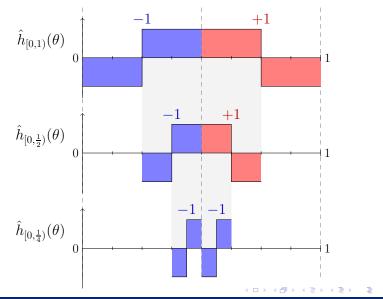


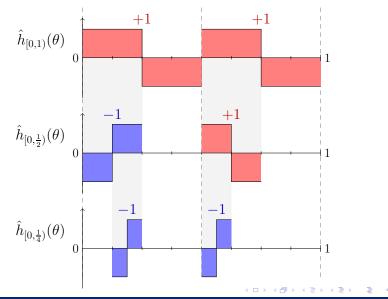


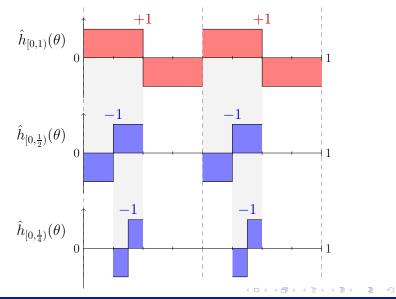


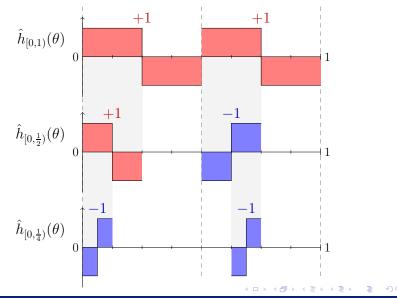


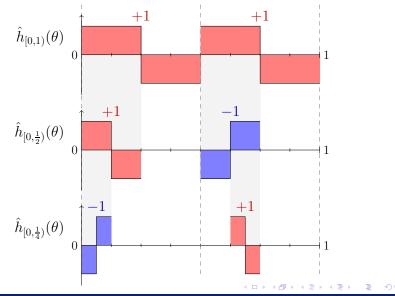


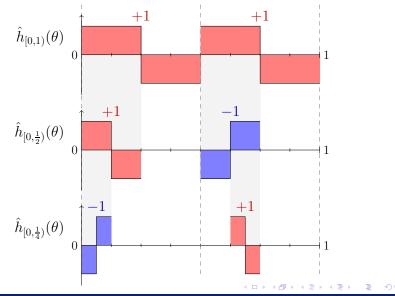


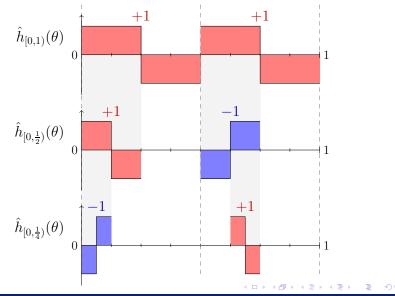


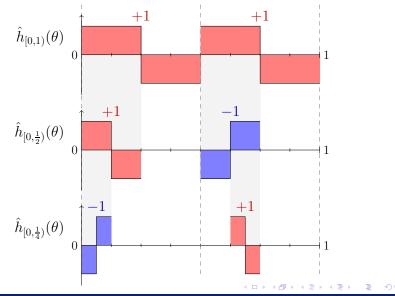


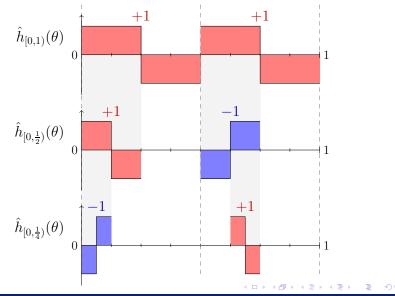


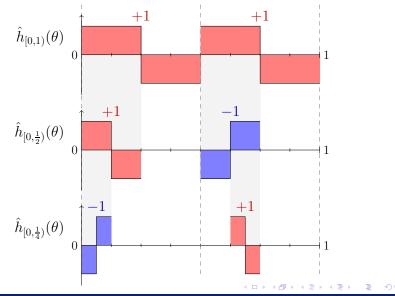












• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E} X_{I,J} = 0$ for I
eq J and $\mathbb{V} X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m =first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

(日)

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: *stabilization of Haar multipliers*

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

A (1) × A (2) × A (2) ×

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

< 日 > < 同 > < 三 > < 三 > <

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I pprox d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

< 日 > < 同 > < 三 > < 三 > <

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

(日)

• The random variables $X_{I,J}(\theta) = \langle \hat{h}_I(\theta), T \hat{h}_J(\theta) \rangle$ satisfy

 $\mathbb{E}X_{I,J} = 0$ for $I \neq J$ and $\mathbb{V}X_{I,J} \leq 3 \|T\|^2 2^{-m/2}$

(m = first level used in our construction)

• Choose m large \implies for some realization of θ , the system almost diagonalizes T.

Second step: stabilization of Haar multipliers

- Above, we obtain a Haar multiplier D with entries $(d_I)_I$.
- D is stable along every level: $d_I \approx d_J$ whenever |I| = |J|.
- Use pigeonhole principle to stabilize across all levels $\rightsquigarrow cI_{Y_n}$.

Thank you for your attention!