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Compactifications

Let (X , τ) be a Hausdorff topological space.

Do there exist a compact space (Y , σ) and a homeomorphism
h : X → h(X ) ⊂ Y such that h(X ) is dense in Y .

f (X , τ) is locally compact ⇒ Alexandrov compactification X ∪ {∞}.
f (X , τ) is completely regular ⇒ Stone-Čech compactification βX .

f In R we also have R ∪ {−∞,+∞}.
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Stone-Čech compactification

f Cb(X ): the space of bounded continuous functions from X to R.

x ∈ X ↪→ Φ(x) := (f (x))f∈Cb(X ) ∈
∏

f∈Cb(X )

[inf f , sup f ].

f βX = Φ(X ).

f Each point x ∈ X is seen as an evaluation map, Φ : X → RCb(X ).

f Each function f ∈ Cb(X ) is a coordinate of the space βX .

f The space Cb(X ) is used as a pivot to define βX .
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Horofunction extension of (X , d)

Equip C (X ) with the compact-open topology.
Gromov1 proposed the following construction:

x ∈ X ↪→ ιx(·) := d(·, x) ∈ C (X )

↪→ ι̂x := [ιx ] ∈ C (X )/{const},

Definition
The horofunction extension of (X , d) corresponds to

X
h
:= ι̂(X ) ⊂ C (X )/{const}.

Remark: ι̂ is continuous and injective.

1M. Gromov, Hyperbolic manifolds, groups and actions, in Riemann surfaces and
related topics: Proceedings of the 1978 Stony Brook Conference.
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A Lipschitz point of view.2

Fix b ∈ X (base point).
Lipb(X ): Space of real-valued 1-Lipschitz functions that vanish at b.
Equip Lipb(X ) with the pointwise topology.

Lipb(X ) ⊂
∏
x∈X

[−d(x , b), d(x , b)].

Define
x ∈ X ↪→ hx(·) := d(·, x)− d(b, x) ∈ Lip1

b(X ).

f h is continuous and injective.

f The horofunction extension X
h

is homeomorphic to h(X ).

f The horofunction extension of X is homeomorphic to the one of its
completion.

f X
h

is compact.

2A. Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation,
Aalto University (Finland) 2019.
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Applications and related works

f Description of the horofunction boundary ∂X := X
h \ h(X ):

Finite dimensional spaces, Hilbert geometry (C. Walsh 2007, 2008),
ℓp and Lp spaces (A. Gutierrez 2019, 2020).

f Dynamics of nonexpansive operators (S. Gaubert, G. Vigeral 2011)

f Fix point theory for nonexpansive operators (A. Karlsson 2024).

f And more...
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Some examples

For which metric spaces X is h an homeomorphism from X to
h(X ) ⊂ X

h
?

Known examples:

f Finite dimensional spaces. For instance, (Rn, ∥ · ∥2)
h
= B(0, 1).

Indeed, for x ∈ Rd \ {0} and y ∈ Rd , htx(y) −→
t→∞

⟨− x
∥x∥ , y⟩.

So, ∂Rn := Rnh \ h(Rn) = {⟨−x , ·⟩ : x ∈ SRn}.
f Hilbert spaces.

f The sphere of an infinite dimensional Hilbert space. Moreover,
SH

h
= (B(0, 1), ω).

Proposition (N. Fisher, S. Nicolussi Golo 2021)
Let X be a proper metric space such that every ball is path connected.
Then, h is an homeomorphism.
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h is not always bicontinuous

Let X := {0, en : n ∈ N} ⊂ ℓ1 and b = 0.

Observe that, for any m ∈ N,

hen(em) = d(em, en)− d(0, en)

= ∥en − em∥ − ∥en∥ −→
n→∞

1, for all m ∈ N.

Therefore, hen → ∥ · ∥ = h0 pointwise on X .
So, h is not a bicontinuous and ∂X = ∅.
A similar proof shows that h is not bicontinuous for X = ℓ1.

Question
Characterize those metric spaces such that h is bicontinuous, or
equivalently, when X

h
is a compactification of X .
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Main characterization: Metric spaces

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024)
Let (X , d) be a metric space. TFSAE:

f The horofunction extension X
h

is a compactification of X .

f For every point x ∈ X and every r > 0, there exist ηr > 0 and a
compact set Kr ⊂ X such that, for each z ∈ X \ B(x , r) there exists
w ∈ Kr satisfying

d(w , z) ≤ d(w , x) + d(x , z)− ηr .

Application: unit sphere of any normed space (SX , d∥·∥).

f Fix x ∈ Sx and r > 0. Set K = {−x} and ηr = r . Then

d(−x , z) ≤ 2 = d(−x , x) + r − r ≤ d(−x , x) + d(x , z)− ηr .
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Main characterization: Normed spaces

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024)

Let (X , ∥·∥) be a normed space. TFSAE:

(a) The horofunction extension X
h

is a compactification of X .

(b) There is a finite dimensional subspace F ⊂ X such that

dH(SF ,SX ) < 2,

where SF and SX denote the unit spheres of F and X respectively.

(c) (X , ∥ · ∥) is not an octahedral space.3

3G. Godefroy, Metric characterization of first Baire class linear forms and octahedral
norms, Studia Math. 95 (1989), no. 1, 1–15.
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Some examples.

Theorem (G. Godefroy (1989))
Let (X , ∥·∥) be a Banach space. TFSAE: (i). X contains an isomorphic
copy of ℓ1. (ii). X admits an equivalent octahedral norm.

Consequences: h is bicontinuous if

f X does not contain ℓ1 (Reflexive spaces, Asplund, ...).

f X = Y ⊕p Z , with p ∈ (1,+∞).4

f X = Y ⊕∞ Z , if Y is finite dimensional.

4R. Haller, J. Langemets and M. Põldvere, On duality of diameter 2 properties, J.
Convex Anal. 22 (2015), 465–483.
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Further consequences

Corollary

Every normed space (X , ∥·∥) admits an equivalent norm |||·||| such that

(X , |||·|||)
h

is a compactification of (X , |||·|||).

Proof: Consider X = Y ⊕ Rx . Consider (X , |||·|||) = Y ⊕2 Rx .

Denote by F(X ) the Lipschitz-free space5 and by P1(X ) the
1-Wasserstein space of (X , d).

Proposition
Let (X , d) be a metric space. Then

(i). X
h

is a compactification of X if F(X )
h

is a compactification of
F(X ).

(ii). X
h

is a compactification of X if P1(X )
h

is a compactification of
P1(X ).

5A. Procházka and A. Rueda Zoca, A characterisation of octahedrality in
Lipschitz-free spaces, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 2, 569–588.
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