Horofunction extension of metric spaces and Banach spaces

Sebastián Tapia-García

TU Wien. Structures in Banach spaces. March 17th, 2025.

Joint work with A. Daniilidis, M. Garrido and J. Jaramillo

Let (X, τ) be a Hausdorff topological space.

Do there exist a compact space (Y, σ) and a homeomorphism $h: X \to h(X) \subset Y$ such that h(X) is dense in Y.

(X, τ) is locally compact ⇒ Alexandrov compactification X ∪ {∞}.
(X, τ) is completely regular ⇒ Stone-Čech compactification βX.
In ℝ we also have ℝ ∪ {-∞, +∞}.

 \triangleright $C_b(X)$: the space of bounded continuous functions from X to \mathbb{R} .

$$x \in X \hookrightarrow \Phi(x) := (f(x))_{f \in C_b(X)} \in \prod_{f \in C_b(X)} [\inf f, \sup f].$$

 \triangleright $C_b(X)$: the space of bounded continuous functions from X to \mathbb{R} .

$$x \in X \hookrightarrow \Phi(x) := (f(x))_{f \in C_b(X)} \in \prod_{f \in C_b(X)} [\inf f, \sup f].$$

 $\flat \beta X = \overline{\Phi(X)}.$

Each point $x \in X$ is seen as an evaluation map, $\Phi : X \to \mathbb{R}^{C_b(X)}$.

Each function $f \in C_b(X)$ is a coordinate of the space βX .

The space $C_b(X)$ is used as a pivot to define βX .

Equip C(X) with the compact-open topology. Gromov¹ proposed the following construction:

 $x \in X \hookrightarrow \iota_x(\cdot) := d(\cdot, x) \in C(X)$

¹M. Gromov, Hyperbolic manifolds, groups and actions, in *Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference.*

Equip C(X) with the compact-open topology. Gromov¹ proposed the following construction:

 $x \in X \hookrightarrow \iota_x(\cdot) := d(\cdot, x) \in C(X) \hookrightarrow \widehat{\iota}_x := [\iota_x] \in C(X)/\{const\},$

¹M. Gromov, Hyperbolic manifolds, groups and actions, in *Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference.*

Equip C(X) with the compact-open topology. Gromov¹ proposed the following construction:

 $x \in X \hookrightarrow \iota_x(\cdot) := d(\cdot, x) \in C(X) \hookrightarrow \widehat{\iota}_x := [\iota_x] \in C(X)/\{const\},$

Definition

The horofunction extension of (X, d) corresponds to

 $\overline{X}^h := \overline{\widehat{\iota}(X)} \subset C(X)/\{const\}.$

Remark: $\hat{\iota}$ is continuous and injective.

¹M. Gromov, Hyperbolic manifolds, groups and actions, in *Riemann surfaces and* related topics: Proceedings of the 1978 Stony Brook Conference.

A Lipschitz point of view.²

Fix $b \in X$ (base point).

 $\operatorname{Lip}_b(X)$: Space of real-valued 1-Lipschitz functions that vanish at *b*. Equip $\operatorname{Lip}_b(X)$ with the pointwise topology.

$$\operatorname{Lip}_{b}(X) \subset \prod_{x \in X} [-d(x, b), d(x, b)].$$

²A. Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation, Aalto University (Finland) 2019.

A Lipschitz point of view.²

Fix $b \in X$ (base point).

 $\operatorname{Lip}_b(X)$: Space of real-valued 1-Lipschitz functions that vanish at *b*. Equip $\operatorname{Lip}_b(X)$ with the pointwise topology.

$$\operatorname{Lip}_{b}(X) \subset \prod_{x \in X} [-d(x, b), d(x, b)].$$

Define

 $x \in X \hookrightarrow h_x(\cdot) := d(\cdot, x) - d(b, x) \in Lip_b^1(X).$

²A. Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation, Aalto University (Finland) 2019.

A Lipschitz point of view.²

Fix $b \in X$ (base point).

 $\operatorname{Lip}_b(X)$: Space of real-valued 1-Lipschitz functions that vanish at *b*. Equip $\operatorname{Lip}_b(X)$ with the pointwise topology.

$$\operatorname{Lip}_b(X) \subset \prod_{x \in X} [-d(x, b), d(x, b)].$$

Define

$$x \in X \hookrightarrow h_x(\cdot) := d(\cdot, x) - d(b, x) \in Lip_b^1(X).$$

h is continuous and injective.

- The horofunction extension \overline{X}^h is homeomorphic to $\overline{h(X)}$.
- The horofunction extension of X is homeomorphic to the one of its completion.

$\blacktriangleright \overline{X}^h$ is compact.

 $^2\mbox{A}.$ Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation, Aalto University (Finland) 2019.

- Description of the horofunction boundary \(\partial X := \overline X^h \ h(X):\) Finite dimensional spaces, Hilbert geometry (C. Walsh 2007, 2008), \(\ell_p\) and \(L^p\) spaces (A. Gutierrez 2019, 2020).
- Dynamics of nonexpansive operators (S. Gaubert, G. Vigeral 2011)
- Fix point theory for nonexpansive operators (A. Karlsson 2024).
- And more...

For which metric spaces X is h an homeomorphism from X to $h(X) \subset \overline{X}^h$?

For which metric spaces X is h an homeomorphism from X to $h(X) \subset \overline{X}^h$?

Known examples:

Finite dimensional spaces. For instance, $\overline{(\mathbb{R}^n, \|\cdot\|_2)}^h = \overline{B}(0, 1)$. Indeed, for $x \in \mathbb{R}^d \setminus \{0\}$ and $y \in \mathbb{R}^d$, $h_{tx}(y) \xrightarrow[t \to \infty]{t \to \infty} \langle -\frac{x}{\|x\|}, y \rangle$. So, $\partial \mathbb{R}^n := \overline{\mathbb{R}^n}^h \setminus h(\mathbb{R}^n) = \{\langle -x, \cdot \rangle : x \in S_{\mathbb{R}^n}\}.$

Hilbert spaces.

The sphere of an infinite dimensional Hilbert space. Moreover, $\overline{S_{\mathcal{H}}}^h = (\overline{B}(0,1), \omega).$ For which metric spaces X is h an homeomorphism from X to $h(X) \subset \overline{X}^h$?

Known examples:

Finite dimensional spaces. For instance, $\overline{(\mathbb{R}^n, \|\cdot\|_2)}^h = \overline{B}(0, 1)$. Indeed, for $x \in \mathbb{R}^d \setminus \{0\}$ and $y \in \mathbb{R}^d$, $h_{tx}(y) \xrightarrow[t \to \infty]{} \langle -\frac{x}{\|x\|}, y \rangle$. So, $\partial \mathbb{R}^n := \overline{\mathbb{R}^n}^h \setminus h(\mathbb{R}^n) = \{\langle -x, \cdot \rangle : x \in S_{\mathbb{R}^n}\}.$

Hilbert spaces.

The sphere of an infinite dimensional Hilbert space. Moreover, $\overline{S_{\mathcal{H}}}^h = (\overline{B}(0,1), \omega).$

Proposition (N. Fisher, S. Nicolussi Golo 2021)

Let X be a proper metric space such that every ball is path connected. Then, h is an homeomorphism. Let $X := \{0, e_n : n \in \mathbb{N}\} \subset \ell_1$ and b = 0.

Let $X := \{0, e_n : n \in \mathbb{N}\} \subset \ell_1$ and b = 0. Observe that, for any $m \in \mathbb{N}$,

$$egin{aligned} h_{e_n}(e_m) &= d(e_m,e_n) - d(0,e_n) \ &= \|e_n - e_m\| - \|e_n\| \xrightarrow[n o \infty]{} 1, & ext{ for all } m \in \mathbb{N}. \end{aligned}$$

Therefore, $h_{e_n} \to || \cdot || = h_0$ pointwise on X. So, *h* is not a bicontinuous and $\partial X = \emptyset$. A similar proof shows that *h* is not bicontinuous for $X = \ell_1$. Let $X := \{0, e_n : n \in \mathbb{N}\} \subset \ell_1$ and b = 0. Observe that, for any $m \in \mathbb{N}$,

$$egin{aligned} h_{e_n}(e_m) &= d(e_m,e_n) - d(0,e_n) \ &= \|e_n - e_m\| - \|e_n\| \xrightarrow[n o \infty]{} 1, & ext{ for all } m \in \mathbb{N}. \end{aligned}$$

Therefore, $h_{e_n} \to || \cdot || = h_0$ pointwise on X. So, *h* is not a bicontinuous and $\partial X = \emptyset$. A similar proof shows that *h* is not bicontinuous for $X = \ell_1$.

Question

Characterize those metric spaces such that h is bicontinuous, or equivalently, when \overline{X}^h is a compactification of X.

Main characterization: Metric spaces

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024) Let (X, d) be a metric space. TFSAE:

The horofunction extension \overline{X}^h is a compactification of X.

For every point $x \in X$ and every r > 0, there exist $\eta_r > 0$ and a compact set $K_r \subset X$ such that, for each $z \in X \setminus \overline{B}(x, r)$ there exists $w \in K_r$ satisfying

 $d(w,z) \leq d(w,x) + d(x,z) - \eta_r.$

Main characterization: Metric spaces

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024) Let (X, d) be a metric space. TFSAE:

The horofunction extension
$$\overline{X}^h$$
 is a compactification of X.

► $\forall x \in X, \forall r > 0, \exists \eta_r > 0 \text{ and } K_r \subset X \text{ compact such that,}$ $\forall z \in X \setminus \overline{B}(x, r), \exists w \in K_r \text{ satisfying}$

 $d(w,z) \leq d(w,x) + d(x,z) - \eta_r.$

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024) Let (X, d) be a metric space. TFSAE:

The horofunction extension
$$\overline{X}^h$$
 is a compactification of X.

► $\forall x \in X, \forall r > 0, \exists \eta_r > 0 \text{ and } K_r \subset X \text{ compact such that,}$ $\forall z \in X \setminus \overline{B}(x, r), \exists w \in K_r \text{ satisfying}$

 $d(w,z) \leq d(w,x) + d(x,z) - \eta_r.$

Application: unit sphere of any normed space $(S_X, d_{\|\cdot\|})$.

Fix
$$x \in S_x$$
 and $r > 0$. Set $K = \{-x\}$ and $\eta_r = r$. Then

$$d(-x,z) \le 2 = d(-x,x) + r - r \le d(-x,x) + d(x,z) - \eta_r.$$

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024)

Let $(X, \|\cdot\|)$ be a normed space. TFSAE:

- (a) The horofunction extension \overline{X}^h is a compactification of X.
- (b) There is a finite dimensional subspace $F \subset X$ such that

 $d_H(S_F,S_X) < 2,$

where S_F and S_X denote the unit spheres of F and X respectively.

 $^{^{3}}$ G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. **95** (1989), no. 1, 1–15.

Theorem (Daniilidis, Garrido, Jaramillo, T. 2024)

Let $(X, \|\cdot\|)$ be a normed space. TFSAE:

- (a) The horofunction extension \overline{X}^h is a compactification of X.
- (b) There is a finite dimensional subspace $F \subset X$ such that

 $d_H(S_F,S_X) < 2,$

where S_F and S_X denote the unit spheres of F and X respectively. (c) $(X, \|\cdot\|)$ is not an octahedral space.³

 $^{^3}$ G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. **95** (1989), no. 1, 1–15.

Theorem (G. Godefroy (1989))

Let $(X, \|\cdot\|)$ be a Banach space. TFSAE: (i). X contains an isomorphic copy of ℓ^1 . (ii). X admits an equivalent octahedral norm.

⁴R. Haller, J. Langemets and M. Põldvere, On duality of diameter 2 properties, J. Convex Anal. **22** (2015), 465–483.

Theorem (G. Godefroy (1989))

Let $(X, \|\cdot\|)$ be a Banach space. TFSAE: (i). X contains an isomorphic copy of ℓ^1 . (ii). X admits an equivalent octahedral norm.

Consequences: h is bicontinuous if

X does not contain ℓ^1 (Reflexive spaces, Asplund, ...).

$$\blacktriangleright X=Y\oplus_p Z$$
, with $p\in(1,+\infty).^4$

 \triangleright $X = Y \oplus_{\infty} Z$, if Y is finite dimensional.

⁴R. Haller, J. Langemets and M. Põldvere, On duality of diameter 2 properties, J. Convex Anal. **22** (2015), 465–483.

Further consequences

Corollary

Every normed space $(X, \|\cdot\|)$ admits an equivalent norm $\|\cdot\|$ such that $\overline{(X, \|\cdot\|)}^h$ is a compactification of $(X, \|\cdot\|)$.

Proof: Consider $X = Y \oplus \mathbb{R}\overline{x}$. Consider $(X, \|\cdot\|) = Y \oplus_2 \mathbb{R}\overline{x}$.

⁵A. Procházka and A. Rueda Zoca, A characterisation of octahedrality in Lipschitz-free spaces, Ann. Inst. Fourier (Grenoble) **68** (2018), no. 2, 569–588.

Further consequences

Corollary

Every normed space $(X, \|\cdot\|)$ admits an equivalent norm $\|\cdot\|$ such that $\overline{(X, \|\cdot\|)}^h$ is a compactification of $(X, \|\cdot\|)$.

Proof: Consider $X = Y \oplus \mathbb{R}\overline{x}$. Consider $(X, ||| \cdot |||) = Y \oplus_2 \mathbb{R}\overline{x}$. Denote by $\mathcal{F}(X)$ the Lipschitz-free space⁵ and by $\mathcal{P}^1(X)$ the 1-Wasserstein space of (X, d).

Proposition

Let (X, d) be a metric space. Then

(i). \overline{X}^h is a compactification of X if $\overline{\mathcal{F}(X)}^h$ is a compactification of $\mathcal{F}(X)$.

(ii). \overline{X}^h is a compactification of X if $\overline{\mathcal{P}^1(X)}^h$ is a compactification of $\mathcal{P}^1(X)$.

⁵A. Procházka and A. Rueda Zoca, A characterisation of octahedrality in Lipschitz-free spaces, Ann. Inst. Fourier (Grenoble) **68** (2018), no. 2, 569–588.

References

- A. Daniilidis, M. Garrido, J. Jaramillo, S. Tapia-García. Horofunction extension and metric compactifications. Preprint: https://hal.science/hal-04786684v1.
- G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. **95** (1989), no. 1, 1–15.
- M. Gromov. Hyperbolic manifolds, groups and actions, in *Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference* (1978), pp. 183–213, Princeton Univ. Press, Princeton, NJ.
- A. Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation, Aalto University (Finland) 2019.

References

- A. Daniilidis, M. Garrido, J. Jaramillo, S. Tapia-García. Horofunction extension and metric compactifications.
 Preprint: https://hal.science/hal-04786684v1.
- G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. **95** (1989), no. 1, 1–15.
- M. Gromov. Hyperbolic manifolds, groups and actions, in *Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference* (1978), pp. 183–213, Princeton Univ. Press, Princeton, NJ.
- A. Gutiérrez. Metric Compactification of Banach Spaces. Doctoral Dissertation, Aalto University (Finland) 2019.

Thank you for your attention.